• Tidak ada hasil yang ditemukan

English-Indonesian code-mixing used by Indonesian twitter users as seen Through Their Tweets.

N/A
N/A
Protected

Academic year: 2017

Membagikan "English-Indonesian code-mixing used by Indonesian twitter users as seen Through Their Tweets."

Copied!
88
0
0

Teks penuh

(1)

H

S

I

L

G

N

E

I

N

D

O

N

E

S

I

A

N

C

O

D

E

-

M

I

X

I

N

G

U

S

E

D

B

Y

N

A

I

S

E

N

O

D

N

I

T

W

I

T

T

E

R

U

S

E

R

S

A

S

S

E

E

N

T

H

R

O

U

G

H

T

H

E

I

R

S

T

E

E

W

T

S I S E H T E T A U D A R G R E D N U N A

s t n e m e ri u q e R e h t f o t n e m ll if l u F l a it r a P s a d e t n e s e r P

r o

f theDegreeo fSarjanaSastra s r e tt e L h s il g n E n i

y B

T I K A N I R A W I J U T S A W R A N I N A V E T S

: r e b m u N t n e d u t

S 084214053

S R E T T E L H S I L G N

E STUDYPROGRAMME

T N E M T R A P E

D OFENGLISHLETTERS

S R E T T E L F O Y T L U C A F

Y T I S R E V I N U A M R A H D A T A N A S

A T R A K A Y G O Y

(2)

i

H

S

I

L

G

N

E

I

N

D

O

N

E

S

I

A

N

C

O

D

E

-

M

I

X

I

N

G

U

S

E

D

B

Y

N

A

I

S

E

N

O

D

N

I

T

W

I

T

T

E

R

U

S

E

R

S

A

S

S

E

E

N

T

H

R

O

U

G

H

T

H

E

I

R

S

T

E

E

W

T

S I S E H T E T A U D A R G R E D N U N A

s t n e m e ri u q e R e h t f o t n e m ll if l u F l a it r a P s a d e t n e s e r P

r o

f theDegreeo fSarjanaSastra s r e tt e L h s il g n E n i

y B

T I K A N I R A W I J U T S A W R A N I N A V E T S

: r e b m u N t n e d u t

S 084214053

S R E T T E L H S I L G N

E STUDYPROGRAMME

T N E M T R A P E

D OFENGLISHLETTERS

S R E T T E L F O Y T L U C A F

Y T I S R E V I N U A M R A H D A T A N A S

A T R A K A Y G O Y

(3)
(4)
(5)

v i

N A U J U T E S R E P N A A T A Y N R E P R A B M E L

S I M E D A K A N A G N I T N E P E K K U T N U H A I M L I A Y R A K I S A K I L B U P

: a m r a h D a t a n a S s a ti s r e v i n U a w s i s a h a m a y a s ,i n i h a w a b i d n a g n a t a d n a tr e b g n a Y

a m a

N :Stevan iNarwastuJ iwaRinakti a

w s i s a h a M r o m o

N :084214053

e g n e p u m li n a g n a b m e g n e p i m e

D tahuan ,saya membeirkan kepada Perpustakaan :l

u d u jr e b g n a y a y a s h a i m li a y r a k a m r a h D a t a n a S s a ti s r e v i n U

h s il g n

E – IndonesianCode-MixingUsedbyI ndonesianTwitterUser sa sSeen s

t e e w T r i e h T h g u o r h T

r e v i n U n a a k a t s u p r e P a d a p e k n a k ir e b m e m a y a s n a i k i m e d n a g n e

D stia sSanata

, n i a l a i d e m k u t n e b m a l a d n a k h il a g n e m , n a p m i y n e m k u t n u k a h a m r a h D

n a d , s a t a b r e t a r a c e s n a k i s u b ir t s i d n e m , a t a d n a l a k g n a p k u t n e b m a l a d a y n a l o l e g n e m

s i m e d a k a n a g n it n e p e k k u t n u n i a l a i d e m u a t a t e n r e t n i i d a y n n a k i s a k il b u p m e m

n ij i a t n i m e m u lr e p a p n a

t dar isaya maupun membeirkan royatl ikepada saya .s

il u n e p i a g a b e s a y a s a m a n n a k m u t n a c n e m p a t e t a m a l e s

. a y n r a n e b e s n a g n e d t a u b a y a s i n i n a a t a y n r e p n a i k i m e D

, a tr a k a y g o Y i d t a u b i D

2 1 0 2 r e b m e v o N 0 3 : l a g g n a t a d a P

n a k a t a y n e m g n a Y

(6)

v

p

u

e

vi

g

r

e

v

e

n

ll'

I

ni

e

vi

g

r

e

v

e

N

ni

p

il

s

t

b

u

o

d

f

o

y

a

r

a

t

el

r

e

v

e

N

ll

a

f

I

fi

d

n

A

li

a

f

r

e

v

e

n

ll'

I

ni

a

g

a

y

rt

d

n

a

p

u

t

e

g

t

s

u

j l

l'I

e

p

o

h

e

s

o

l

r

e

v

e

N

h

ti

a

f

e

s

o

l

r

e

v

e

N

e

k

a

t

s

t

a

h

c

u

m

o

o

t

h

c

u

m

s

'

e

r

e

h

T

d

n

e

p

e

d

t

s

u

m

I

fl

e

s

y

m

n

o

p

U

e

c

al

p

r

o

f

g

ni

k

o

o

l

t

o

n

m

'I

o

r

s

h

o

w

ni

w

a

n

n

o

g

m

'I

t h gi n K c M n ai r

(7)

i v

,

s

t

n

e

r

a

p

d

e

v

o

l

e

b

y

m

r

o

F

n

o

t

h

i

n

g

o

t

s

e

r

a

p

m

o

c

y

o

u

r

e

v

e

r

l

a

s

t

i

n

g

l

o

v

e

,

&

s

r

e

y

a

r

p

s

u

p

p

o

r

t

;

I

l

o

v

e

y

o

u

.

o

T

e

v

e

r

y

T

w

e

e

p

i

n

t

h

e

T

w

i

t

t

e

r

l

a

n

d

w

h

o

e

m

d

e

r

i

p

s

n

i

w

i

t

h

t

h

e

i

r

t

w

e

e

t

s

t

o

d

o

t

h

i

s

n

o

p

e

e

k

d

n

a

t

o

l

a

s

k

n

a

h

t

,

h

c

r

a

e

s

e

r

!

g

n

i

p

r

i

h

c

i v

,

s

t

n

e

r

a

p

d

e

v

o

l

e

b

y

m

r

o

F

n

o

t

h

i

n

g

o

t

s

e

r

a

p

m

o

c

y

o

u

r

e

v

e

r

l

a

s

t

i

n

g

l

o

v

e

,

&

s

r

e

y

a

r

p

s

u

p

p

o

r

t

;

I

l

o

v

e

y

o

u

.

o

T

e

v

e

r

y

T

w

e

e

p

i

n

t

h

e

T

w

i

t

t

e

r

l

a

n

d

w

h

o

e

m

d

e

r

i

p

s

n

i

w

i

t

h

t

h

e

i

r

t

w

e

e

t

s

t

o

d

o

t

h

i

s

n

o

p

e

e

k

d

n

a

t

o

l

a

s

k

n

a

h

t

,

h

c

r

a

e

s

e

r

!

g

n

i

p

r

i

h

c

i v

,

s

t

n

e

r

a

p

d

e

v

o

l

e

b

y

m

r

o

F

n

o

t

h

i

n

g

o

t

s

e

r

a

p

m

o

c

y

o

u

r

e

v

e

r

l

a

s

t

i

n

g

l

o

v

e

,

&

s

r

e

y

a

r

p

s

u

p

p

o

r

t

;

I

l

o

v

e

y

o

u

.

o

T

e

v

e

r

y

T

w

e

e

p

i

n

t

h

e

T

w

i

t

t

e

r

l

a

n

d

w

h

o

e

m

d

e

r

i

p

s

n

i

w

i

t

h

t

h

e

i

r

t

w

e

e

t

s

t

o

d

o

t

h

i

s

n

o

p

e

e

k

d

n

a

t

o

l

a

s

k

n

a

h

t

,

h

c

r

a

e

s

e

r

(8)

ii v

S T N E M G D E L W O N K C A

o t e d u ti t a r g t s e t a e r g y m s s e r p x e o t e k il d l u o w I , ll a f o t s ri

F Jesu sChrist

r o

f a lloft heblessing sHeha sgiven to me .It hank Him fo rguiding mepasst he .s

i s e h t s i h t g n i h s i n if n i e m it d r a h

, r o s i v d a s i s e h t y m o t s e o g n o it a i c e r p p a t s e p e e

D Dr .Franci sBorgia sAilp ,

. A . M , . d P .

M ,fo rhi sguidance in the proces so fcompleitng my thesis . Iam u

s s i h r o f l u f e t a r g y l p e e

d ggesiton ,advice ,assistance ,and ciritcism i n every par t

k n a h t o t e k il d l u o w o s l a I . s i s e h t s i h t f o n o it e l p m o c e h t g n ir u d y d u t s y m f o

. m u H . M , . d P . S i t a i r ti F a n n

A , my co-advisor ,fo rproofreading my t hesis . Iam s

s e n d n i k d n a s n o it s e g g u s r e h r o f l u f k n a h

t tome.

o t s k n a h t t s e n r a e y m s s e r p x e o t t n a w

I alll ecturer sandstaf fo fEngilsh t

n e m t r a p e D s r e tt e

L ,especially fo rmy academic advisor ,Maria Ananta Tr i .

d E . M , . S . S i r a d n a y r u

S It hank herf o rhe rcareand guidanceand I t hank al lo f k

d e r a h s e h t r o f m e h

t nowledgeand expe irencet ha twli lbevery usefulf o rmei n

. e r u t u f e h t

, s t n e r a p d e v o l e b y m o t d e s s e r d d a y lt s o m s i e d u ti t a r g t s e t a e r g y

M Yohane s

o y r u S g n a b m a

B and Yohana Rin iSusan it ,fo rsupporitng me morally and n

a e v o l g n it s a lr e v e r i e h t r o f , y ll a i c n a n

if dcare ,prayer ,guidance ,andatteniton .My

, s r e h t o r b d e v o l e b y m o t o g o s l a s k n a h t g n i m l e h w r e v

o Nicko ,Denni ,sandDeo.

y ll a i c e p s e , 8 0 0 2 h c t a b f o s d n e ir f l l a k n a h t

I Lany ,Yultia ,Erltia ,Dewi ,

, y tt e r G , a i

(9)

ii i v

, y r c , r e t h g u a l ,s e ir o t s e h t r o f u o y k n a h T . s r a e y y ti s r e v i n u e h t g n ir u d t r o p p u s d n a

. d e r a h s e w r a e f d n a

t o n n a c s e m a n e s o h w , y d o b y r e v e k n a h t o t e k il d l u o w I , t s a e l t o n t u b t s a L

s i h t h s i n if n a c I t a h t o s r e y a r p d n a t r o p p u s r i e h t r o f , e n o y b e n o d e n o it n e m e b

.s s e n i p p a h d n a , y o j , e c a e p h ti w m e h t t n a r g t s ir h C s u s e J y a M . s i s e h t

(10)

x i

S T N E T N O C F O E L B A T

E G A P E L T I

T ... i .... E

G A P L A V O R P P

A ... ii E

G A P E C N A T P E C C

A ... iii A

Y R A K I S A K I L B U P N A U J U T E S R E P N A A T A Y N R E P R A B M E

L ILMIAH

S I M E D A K A N A G N I T N E P E K K U T N

U ... vi E

G A P O T T O

M ... v E

G A P N O I T A C I D E

D ... iv S

T N E M E G D E L W O N K C

A ... iiv S

T N E T N O C F O E L B A

T ... xi E

L B A T F O T S I

L S ... x T

C A R T S B

A ... i....x K

A R T S B

A ... iix N

O I T C U D O R T N I : I R E T P A H

C ... 1 .... .

A Backgroundoft heStudy ...1 .

B ProblemFormulaiton ... 3 .

C Objecitve soft heStudy ...3 .

D De ifniitono fTerm s ...3 W

E I V E R L A C I T E R O E H T : I I R E T P A H

C ... 5 .

A Reviewo fRelatedStudie s...5 .

B Reviewo fRelatedTheo ire s ...7 .

C Theoreitca lFramework ...1 8 I

I R E T P A H

C I :METHODOLOGY ... 02 .

A Objec toft heStudy ...2 0 .

B Approachoft heStudy ...2 0 .

C Methodoft heStudy ...2 1 V

I R E T P A H

C :ANALYSIS ... 52 .

A TheType so fCode-Mixing ... ....2 5 .

B ThePossibleReason so fCode-Mixing ...3 3 .

C Miscellaneou sFinding s ...4 3 V

R E T P A H

C :CONCLUSION ... 9....4 Y

H P A R G O I L B I

B ... 15

S E C I D N E P P

A

x i d n e p p

A 1: Observa itonFormoft heType so fCode-Mixing ... 35 :

2 x i d n e p p

A Observa iton Form o fthe Possible Reason so f Code -g

n i x i

(11)

x

E L B A T F O T S I

L S

f o s e p y T e h t f o m r o F n o it a v r e s b O . 1 . 3 e l b a

T Code-mixing ... 22 s

i s y l a n A f o s n o s a e R e l b i s s o P e h t f o m r o F n o it a v r e s b O . 2 . 3 e l b a

T ... 32

e d o C f o s e p y T e h t f o s i s y l a n A e h t f o t l u s e R e h T . 1 . 4 e l b a

T -Mixing ... 62

. 2 . 4 e l b a

(12)

i x T C A R T S B A . ) 2 1 0 2 ( . T I K A N I R A W I J U T S A W R A N I N A V E T

S Engilsh – IndonesianCode

-.s t e e w T r i e h T h g u o r h T n e e S s a s r e s U r e tt i w T n a i s e n o d n I y b d e s U g n i x i M a m r a h D a t a n a S , s r e tt e L f o y tl u c a F , s r e tt e L h s il g n E f o t n e m tr a p e D : a tr a k a y g o Y . y ti s r e v i n U e d o

C -mixing i sone o fthe phenomena in socioilnguisitcs .I tnormally t n e r e f fi d m o r f e l p o e P . a i s e n o d n I s a h c u s , y ti n u m m o c l a u g n il it l u m n i s r u c c o u g n a l d n a d n u o r g k c a

b age smay use more than one language in communicaiton . e d o c f o s n o it a t e r p r e t n i g n i v i g t a d e m i a y d u t s s i h

T -mixing in one o f socia -l

, s e ti s b e w g n i k r o w t e

n Twitte.r Thereweresomeelement so fEngilsh which were e e w t e h t n i n a i s e n o d n I f o s t n e m e l e h ti w d e s o p a t x u

j t sposted by Indonesian

.s r e s u r e tt i w T ) 1 ( : e r e w y e h T . y d u t s s i h t n i d e r e w s n a e b o t s n o it s e u q o w t e r e w e r e h T e h t e r a t a h

w type so fcode-mixingusedbyIndonesianTwitter’ suser sasf oundon s t e e w t ri e h

t ? and( 2 )wha taret hepossibler easonsf ort heuseofthecode-mixing r e tt i w T n o ? 0 0 1 m o r f n e k a t e r e w h c r a e s e r s i h t f o a t a d e h

T statuses ,o rusually called

s t e e w

t ,on Twitte rwhichcontained code-mixing betweenEngilsh and I ndonesian e g a u g n a

l posted by1 -9 untli-25-y - earold Indonesian user swho arestudying in ro m o r f d e t a u d a r g e v a

h theuniverstiy .Thecollecteddatawereanalyzedi ndetai land d e if i s s a l

c basedont hechosent heo ires .Inordert oanswert hef ris tproblemoft hi s r e ti r w e h t , h c r a e s e

r used t het heoryoft ype so fcode-mixing by Kachru ( 1982)t o find outt hecode-mixingused by t heTwitter’ suser .sWhlie Hoffmann’ s(1991) ;

s u T d n a a il g i m a s l a C d n a , ) 0 8 9 1 ( s ’ k c a l p o P , ) 4 7 9 1 ( s ’ r a a s k

O ón’ s(1984) ;and

r o e h t ) 7 7 9 1 ( s ’ e r u l C c

M i es a sctied by Hoffmann (1991 :116 )and also Mailk’ s y r o e h t ) 4 9 9 1

( aboutt hereason soft heuseo fcode-mixingwereusedt oanswert he . h c r a e s e r s i h t f o s m e l b o r p d n o c e s e v if d e s u s r e s u r e tt i w T n a i s e n o d n I t a h t d e w o h s y d u t s e h t f o t l u s e r e h T e d o c f o s e p y

t -mixing namely sentence inseriton 1(5 %) ,uni tinseriton (39.9%) , o ll o c d n a m o i d

i caiton inseriton (4.2%) , uni t hyb irdizaiton (3.5%) , and n o it a c il p u d e

r 4(1. % .) I twa salso found t hat t here i sa tendency t o apply vairou s t e e w t e l g n i s a n i s e p y

t .Meanwhlie, t here were seven kind so freason so fcode -y b d e t s o p s t e e w t e h t n i d e r r u c c o g n i x i

m Indonesian Twitte rusers .They were e h t f o d o o m , ) % 6 . 1 1 ( c i p o t r a l u c it r a p a t u o b a g n i k l a t ,) % 2 . 3 2 ( e c n e ir e p x e l a u ti b a h , ) % 2 . 6 ( e s l e y d o b e m o s g n it o u q , ) % 6 . 1 1 ( t n i o p a g n i z i s a h p m e , ) % 6 . 1 1 ( r e k a e p s i s e d s ’ r e k a e p s e h t g n i w o h s d n a g n i h t e m o s t u o b a c it a h p m e g n i e

b re to be wel l

(13)

ii x K A R T S B A . ) 2 1 0 2 ( . T I K A N I R A W I J U T S A W R A N I N A V E T

S Engilsh – Indonesian Code

-d e s U g n i x i

M by Indonesian Twi tter User sa sSeen Through Their Tweet .s . a m r a h D a t a n a S s a ti s r e v i n U , a rt s a S s a tl u k a F , s ir g g n I a rt s a S n a s u r u J : a tr a k a y g o Y a y n a s a i b i n i l a H . k it s i u g n il o i s o s a n e m o n e f u t a s h a l a s h a l a d a e d o k r u p m a C tr e p e s l a u g n il it l u m t a k a r a y s a m i d i d a jr e

t iI ndonesia .Orangyangberasa ldairl ata r i r a d h i b e l n a k a n u g g n e m a s i b n a n i k g n u m e k a d e b r e b g n a y a s a h a b n a d g n a k a l e b n a k r a p a m e m k u t n u n a u j u tr e b i n i n a it il e n e P . i s a k i n u m o k r e b m a l a d a s a h a b u t a s o s g n ir a j e j s u ti s u t a s h a l a s i d e d o k r u p m a c i a n e g n e m i s a t e r p r e t n

i sial ,Twitter .

n e m e l e m a l a d n a k p il e s i d g n a y s ir g g n I a s a h a B n e m e l e a p a r e b e b t a p a d r e

T -elemen

m a l a d i d a i s e n o d n I a s a h a

B tweetsyangdtiuil solehpenggunaTwitterI ndonesia. a p a ) 1 ( : u ti a y , i n i n a it il e n e p m a l a d b a w a ji d n i g n i g n a y n a a y n a tr e p a u d a d A u p m a c e p

it rkodeyangdigunakanolehpenggunat witters epe tr iyangt ampakpada s

t e e w

t mereka? dan (2 )apasaja yang mungkin menjad ialasan dar ipenggunaan ? r e tt i w T i d e d o k r u p m a c 0 0 1 i r a d l i b m a i d i n i n a it il e n e p a t a

D tweetsd iTwitte ryang mengandung e d o k r u p m a

c antara Bahasa Ingg ir sdan Bahasa Indonesia d idalamnya ,yang 9 1 a r a t n a a i s u n a g n e d a i s e n o d n I i r a d l a s a r e b g n a y r e tt i w T a n u g g n e p h e l o s il u ti d n a s u l u l n u p u a t a a w s i s a h a m i a g a b e s s u t a t s r e b h i s a m n a d n u h a t 5 2 n a g n e d i a p m a s h a d u s g n a y a t a D . i g g n it n a u r u g r e p i r a

d terkumpu ldianailsa secara deit ldan ir o e t n a k r a s a d r e b n a k i s a k if i s a l k i

d -teor i yang sudah dipiilh . Untuk menjawab e p it i r o e t n a k a n u g g n e m s il u n e p , i n i n a it il e n e p i r a d a m a tr e p n a a y n a tr e

p -itpe

i r a d e d o k r u p m a

c Kachru (1982) untuk mengetahu icampu rkode yang dipaka i ir o e t , u ti a r a t n e m e S . r e tt i w T a n u g g n e p h e l

o -teor idar iHoffmann( 1991) ;Oksaar’ s s u T n a d a il g i m a s l a C , ) 0 8 9 1 ( k c a l p o P , ) 4 7 9 1

( ón (1984) ;dan McClure (1977 )

) 4 9 9 1 ( k il a M i r a d i r o e t a g u j n a d , ) 6 1 1 : 1 9 9 1 ( n n a m f f o H h e l o p it u k i d g n a y i tr e p e s a s a l a i a n e g n e

m n-alasan dar i penggunaan campu r kode digunakan untuk .i n i n a it il e n e p i r a d a u d e k n a a y n a tr e p b a w a j n e m a i s e n o d n I r e tt i w T a n u g g n e p a w h a b n a k k u j n u n e m i n i n a it il e n e p i r a d l i s a H n a p i s i y n e p , ) % 1 5 ( t a m il a k n a p i s i y n e p u ti a y , e d o k r u p m a c e p it a m il n a k a n u g g n e m ( t i n

u 39.9%) ,penyisipan i diom dan kolokas i(4.2% ,) hib irdisas iuni t(3.5%) ,dan 4 . 1 ( i s a k il p u d e

r % .) D isamping tiu ,dtiemukan juga bahwa ada kecenderungan u t a s m a l a d e p it m a c a m i a g a b r e b n a k a n u g g n e m k u t n

u tweet .Sementara tiu ,ada

c n a a n u g g n e p n a s a l a m a c a m h u j u

t ampu rkode yang terdapa tdalam tweet syang , ) % 2 . 3 2 ( n a a s a i b e k n i a l a r a t n a , a i s e n o d n I r e tt i w T a n u g g n e p h e l o s il u ti d r u p m a c a n u g g n e p n a a s a r e p , ) % 6 . 1 1 ( s u s u h k k i p o t u t a u s i a n e g n e m n a a r a c i b m e p t a y n r e p p it u g n e m , ) % 6 . 1 1 ( n a a t a y n r e p h a u b e s n a n a k e n e p , ) % 6 . 1 1 ( e d o

k aanorang

a n u g g n e p n a n i g n i e k n a k k u j n u n e m n a d u t a u s e s p a d a h r e t it a p m e a s a r , ) % 2 . 6 ( n i a l n a s a l a n a d , ) % 5 . 4 ( it r e g n e m i d k u t n u e d o k r u p m a

c -alasanl ain( 31.3% )yangt erdri i i s a s il a n o s r e p i r a

(14)

1 I R E T P A H C N O I T C U D O R T N I y d u t S e h t f o d n u o r g k c a B . A r i e h t y l e m a n , s e d o c e r o m r o o w t r e t s a m e l p o e p e r o m d n a e r o m , s y a d a w o N y ti li b a e h t e v a h o s l a y e h T . e g a u g n a l d n o c e s e h t d n a e g a u g n a l e v it a

n to uset hese

y lt n e u lf s e d o

c .The language which i susually mastered wel lby people i sthei r

e u g n o t r e h t o m r i e h t d e s u y lt s ri f m e h t f o t s o M . e g a u g n a l e v it a n r o e u g n o t r e h t o m r i e h t g n ir u d r e v e w o H . y t e i c o s d n a y li m a f r i e h t h ti w e t a c i n u m m o c o t ti w n o it a c i n u m m o

c hothe rpeopleand becauseoft heneedo funderstandingothe r

w o n k r o r e t s a m o t e l p o e p e h t r o f d n a m e d a s i e r e h t , n a e m y e h t t a h w t u o b a e l p o e p e g a u g n a l r e h t o n a n r a e l o t e l p o e p y n a m s e s u a c n o it i d n o c s i h T . s e g a u g n a l r e h t o e h t t a c i n u m m o c r i e h t e k a m o t r e d r o n

i ion more effecitve .Thi salso happen sto the

.l a u g n il it l u m e r a o h w e l p o e p n a i s e n o d n I n n a i s e n o d n I e h t t s a e l t a r e t s a m e l p o e p n a i s e n o d n

I aitonall anguaget hati s

a i s e n o d n

I n and thei r regiona llanguage .Well-educated people usually maste r

s , s e g a u g n a l n g i e r o

f uch a sEngilsh ,Japanese ,French ,Chinese ,etc .Thefactt ha t

r e v e n e h w e d o c x i m o t m e h t s e g a r u o c n e e g a u g n a l e n o n a h t e r o m e s u n a c e l p o e p . e m it e m a s e h t t a e g a u g n a l e n o n a h t e r o m e s u n a c e l p o e p r e d n o w o N . k a e p s y e h t li b e h t r o f e l b i s s o p o s l a s i ti , r e v o e r o

M ingua lo rmulitilngua lpeoplet o usemore

(15)

e h t n i e d o c r o e g a u g n a l e n o n a h t e r o m e s u e l p o e p n e h w n o it i d n o c e h T

d e ll a c s i n o it a c i n u m m o c n i e l p o e p r o , t x e t n o c , c i p o t e m a

s code-mixing .The

e d o c f o n o n e m o n e h

p -mixing i s then considered common in biilngua l o r

e d o c d e n if e d ) 5 2 1 : 8 7 9 1 ( n a b a b a N . s e it e i c o s l a u g n il it l u

m -mixing a s“the use o f

. ” e g a u g n a l r e h t o n a n i e c n e t n e s a n i h ti w e g a u g n a l e n o f o s t n e m e l e

e d o

C -mixingoccur sbothi nw irttenandora lcommunicaiton .Code-mixing

, s m a r g o r p n o i s i v e l e t , s m a r g o r p o i d a r n o d n u o f e b n a c e g a u g n a l n e k o p s n i

g n i h c a e

t -learning process ,etc .The code-mixing can also be found in w irtten

e m t e n r e t n i ,s l e v o n , s e n i z a g a m , s r e p a p s w e n n i s a h c u s e g a u g n a

l diaandetc .

e d o c y n a m d n if n a c e w a i d e m t e n r e t n i n

I -mixing ,fo rexample when we

r u o e t a d p u e w n e h w r o , r e g n e s s e m o o h a Y r o k o o b e c a F n o e l p o e p r e h t o h ti w t a h c

y b d e s u s y a w l a s i f l e s ti r e tt i w T . r e tt i w T n o ” s t e e w t “ r u o r o k o o b e c a F n o s u t a t s

a s a e l p o e p y n a

m too lo fcommunicaiton nowadays. I n Twitte rwecan ifndmany

e d o

c -mixing used by the user s in w iritng thei r tweets . Twitte r affect s the

e d o c f o g n i s a e r c n

i -mixing custom in Indonesia too ,especially Indonesian and

h s il g n

E code-mixing .Fromt hoser eason sabove,t hewrtieri si nterestedi n ifnding

e d o c t u

o -mixing t ha toccursi n oneoft hosesocial-networking websties ,which i s

(16)

n o it a l u m r o F m e l b o r P . B

t u o b a s i h c r a e s e r s i h

T Engilsh and Indonesian code-mixing used by

n a i s e n o d n

I Twitter’ suser sin wiritng thei rtweets .I ti sbased on the research

: w o l e b s n o it s e u q

.

1 Wha taret hetype so fcode-mixing usedbyI ndonesian Twitte ruser sasf ound

s t e e w t ri e h t n

o ?

.

2 Wha taret hepossibler easonsf ort heuseoft hecode-mixingonTwitter?

t S e h t f o e v it c e j b O .

C u dy

e h t t u o d n if o t s t n a w e h s e s u a c e b h c r a e s e r f o c i p o t s i h t s e s o o h c r e ti r w e h T

e d o c f o s e p y

t -mixing used by Indonesian Twitter users .Besides ,the wrtie ralso

e d o c y h w s n o s a e r e h t t u o d n if o t s t n a

w -mixingareusedi nt hetweets.

s m r e T f o n o it i n if e D . D

: y d u t s t n e s e r p e h t r o f y r a s s e c e n e r a w o l e b s m r e t e h T

.

1 Codei sdeifned a s“Any kind o fsystem t hatt wo o rmorepeopleemployf o r

f o s d n i k e h t d n a , e l y t s , t c e l a i d , e g a u g n a l a o t r e f e r n a c t I . n o it a c i n u m m o c

a v e g a u g n a

l ireites”( Wardhaugh ,2010 :84 .)

.

2 Code-mixing i sdeifned a s“the use o felement so fone language wtihin a

(17)

.

3 Socia lnetworking webstie (socia lstie )i san onilne communtiy member s

r o , n o i g il e r , s e i b b o h n i s t s e r e t n i n o m m o c e r a h s y ll a u s u h c i h

w poilitcs .Thi s

d n a s r e b m e m r e h t o f o s e g a p e li f o r p e h t g n i d a e r e d u l c n i y a m n o it a z il a i c o s

( . m e h t g n it c a t n o c n e v e y l b i s s o

p www.whaitssocialnetworking.com)

.

4 Twitteri sasocia lnetworkingand microbloggingservicet ha tallow suserst o

.s e t a d p u t s e t a l r i e h t t s o

p Twitte ri sa real-itme informaiton network tha t

.s w e n d n a , s n o i n i p o , s a e d i , s e ir o t s t s e t a l e h t o t s r e s u s t c e n n o

c An updatei s

1 y b d e ti m

il 40 character sand can be posted through a va irety o fmethods ,

x e t ; e ti s b e w s ’ r e tt i w T g n i d u l c n

i tmessaging ;instan tmessaging ;and thrid

-p o t k s e d y

tr a

p , moblie , and web appilcaitons .

r e tt i w t/ y n a p m o c / m o c . e s a b h c n u r c . w w w // : p tt h

( )

.

5 Tweeti sdeifned a san updatepubilshed by a Twitte ruser . tIi ssimliart o a

a e m e r a s t e e w T . s r e t c a r a h c 0 4 1 n a h t r e g n o l e b t o n n a c t u b , g n it s o p g o l

b nt t o

h ti w s r e s u r e h t o s e d i v o r p h c i h w ” ? g n i o d u o y e r a t a h W ” , n o it s e u q e h t r e w s n a

n o p u w o h s l li w t i ,t e e w t a h s il b u p u o y n e h W . e fi l r u o y t u o b a s e t a d p u k c i u q

n e h w , y lr a li m i S . g n i w o ll o f e r a u o y s r e s u e h t l l a f o s e g a p e m o h r e tt i w T e h t

y , r e tt i w T o t n i g o l u o

y ouwli lseet hemostr ecentt weet soft heuserst ha tyou

( . w o ll o f o t n e s o h c e v a

(18)

5

I I R E T P A H C

W E I V E R L A C I T E R O E H T

s e i d u t S d e t a l e R f o w e i v e R . A

e m a s e h t n i s r e h c r a e s e r s u o i v e r p e h t m o r f s e i d u t s e e r h t s e s u r e ti r w e h T

s u o i v e r p e h T . s e i d u t s d e t a l e r r e h s a y d u t s s i h t s a d l e

if studie swere done by )

0 1 0 2 ( o t n a y i

R ,Datu( 2009) ,andSeitawan( 2009 .)

.

1 Code Swtiching Study in Bukan Empa t Mata Ente trainmen t Program )

0 1 0 2 , o t n a y i R (

o t n a y i

R ’ sstudy was t o ifnd ou t(1) t hetype so fcode-swtiching used and )

2

( the reason s why the code- iswtching i s used in Bukan Empa t Mata

m a r g o r p t n e m n i a tr e t n

e .

o t n a y i

R observed three episode so fBukan Empa tMata ,and found 76 e

d o

c -swtiching cases .Hi sstudywa sadescirpitvestudyi n whichqualtiaitvedata .

d e y o l p m e s a w s i s y l a n a

f o g n i d n if e h

T Riyanto’ss tudys howedt hatt herewerethreet ype so fcode -n

i d e r r u c c o h c i h w g n i h c ti w

s Bukan Empa tMata ,namely conversaitona lcode e

l g n i s , g n i h c ti w

s -word code-swtiching and integrated loanwords .He also found h

t ree possible reason so fthe use o fcode-swtiching in the show ,namely topic .

(19)

.

2 EngilshCode-Swtichingi nI ndonesianWomanMagazines( Datu ,2009)

u t a

D ’ sobjecitves o fthe study wa sto ifnd ou t(1 )the type so fcode ,

s e n i z a g a m n a m o w n a i s e n o d n I n i g n i h c ti w

s (2 )the possible reason sfo rcode f o n o it a c il p m i e l b i s s o p e h t ) 3 ( d n a , s e n i z a g a m n a m o w n a i s e n o d n I n i g n i h c ti w s

e d o

c -swtiching in Indonesian woman magazine s toward s Engilsh language i

s e n o d n I n i g n i n r a e

l a. Sheconducted adescirpitvestudyand t heapproach o fhe r e

v it a ti l a u q s a w y d u t

s dataanalysis.

e r e w e r e h t t a h t d e w o h s y d u t s e h t f o s g n i d n if e h

T six majort ype so fcode -c i s s o l g i d , y l e m a n s e n i z a g a m n a m o w n a i s e n o d n I e h t n i d e r r u c c o h c i h w g n i h c ti w s

e d o

c - iswtching ,single-word code-swtiching ,phrasecode-swtiching ,clausecode -e

d o c e c n e t n e s e l o h w , g n i h c ti w

s -swtiching and integrated loanword s code -e

d o c r o f s n o s a e r e l b i s s o p r u o f e r e w e r e h t t a h t d n u o f o s l a e h S . g n i h c ti w

s -swtiching

i s s u c s i d r e d n u c i p o t e h t y l e m a

n on,t hewrtie rquote sothers ’expression,f ormaltiy , , g n i n r a e l e g a u g n a l o t s a w n o it s e u q d ri h t e h t r o f r e w s n a e h t e li h W . y c n e i c if f e d n a

e d o c l a c it a m m a r

g -swtiching may suppor t learning bu t ungrammaitca l code -e

s e r e h t ,s e d i s e B . g n i n r a e l t c u rt s b o y a m g n i h c ti w

s arche ralsof ound someEngilsh .

e g a u g n a l n a i s e n o d n I o t d e t p o d a y ll u f e r e w s d r o w

.

3 Code Mixing in Interview Aritcle s Pub ilshed in Popular Indonesian )

9 0 0 2 , n a w a it e S ( e n i z a g a M

e h t y b d e s u g n i x i m e d o c f o s e p y t e h t d e t a g it s e v n i r e ti r w e h t , y d u t s s i h t n I

d n a e l a

(20)

e l a m e f d n a e l a m e h t y b d e s s e r p x e g n i x i m e d o c f o e s u e h t n i s e c n e r e f fi d e h T d e n i m a x e o s l a e r e w s e e w e i v r e t n

i .Thewrtie rusedqualtiaitve-descirpitvedata.

n i e l a m e f o w t d n a e l a m o w t e s o h c e

H tervieweesi nf ouri nterview saritcle s n i d e h s il b u

p Popularmagazine .Thenheanalyzedt heanswer soft hei nterviewee s . s n o it s e u q h c r a e s e r e h t f o r e w s n a e h t t u o d n if o t e n i z a g a m e h t n i s e e w e i v r e t n i e h t t a h t d e w o h s s i s y l a n a e h t f o t l u s e r e h T p y t e e r h t d e s

u e so fcodemixing .They areunti i nseriton ,uni thyb irdizaiton ,and e d o c r a li m i s d e s u e l a m e f d n a e l a m t a h t d n u o f o s l a s a w t I . n o it r e s n i e c n e t n e s d i d r e d n e g f o t c e p s a e h t t a h t d e il p m i s i h T . s e c n e r e f fi d t n a c if i n g i s o n h ti w g n i x i m e c n e r r u c c o e h t e c n e u lf n i t o

n o fcodemixing.

s e i d u t s d e t s i x e y d a e rl a e h t p o l e v e d o t s e ir t r e ti r w e h t , y d u t s t n e s e r p s i h t n I o

c nducted by previou s researchers by rtying to use othe r type o f w irtten a , a i d e m t e n r e t n i s e s u r e ti r w e h T . y d u t s e h t f o t c e j b o e h t s a a i d e m n o it a c i n u m m o c a i c o

s l-networkingwebstietobeexac,tt os eewhethe rcodemixingalsooccur sand . g n i x i m e d o c g n i s u r o f s r e s u e h t f o s e v it o m e h t t u o d n if o t o s l a s e i r o e h T d e t a l e R f o w e i v e R . B o t r e ti r w e h t p l e h o t d e s u e b d l u o w t a h t s e ir o e h t e h t s t n e s e r p n o it c e s s i h T , m s il a u g n il i b , e d o c e r a d e t n e s e r p s e ir o e h t e h T . a t a d e h t e z y l a n

(21)

.

1 C eo d

9 0 2 : 0 0 0 2 ( h c n i

F -210 )ha sdeifnedcodeasf ollows:

Code i sa system o frule stha tallow speople to give informaiton in t a h t s d r o w f o s t s i s n o c t I . e d o c a s i e g a u g n a l n a m u H . m r o f c il o b m y s c n i r e h t e g o t t u p s i t i n e h W . s t c e j b o d n a , s t n e v e , s a e d i t n e s e r p e

r e train

s i e d o c , s d r o w r e h t o n I . e t a c i n u m m o c o t e l p o e p p l e h l li w t i ,s e c n a t s m u c ri c o t d e s u y ll a c i s a

b conveypeople’si deao rmessage.

r i e h t n e p o e l p o e p n e h W . n o it a c i n u m m o c y r e v e f o e s a b e h t s i e d o

C mouth ,s t hey

h t n o g n i d n e p e d e d o c r a l u c it r a p a e s o o h c t s u

m e need in cetrain cricumstances . . o s g n i o d d i o v a t o n n a c y e h T 9 9 : 6 8 9 1 ( h g u a d r a

W -100 )alsos tatest hat:

, k a e p s o t t u o b a e r a e l p o e p n e h W . e t a c i n u m m o c o t d e s u y ll a r e n e g s i e d o C e h T . g n il e e f f o s d n i m r i e h t s s e r p x e o t e d o c r a l u c it r a p a e s o o h c o t e v a h y e h t it r a

p cula rcode in thi scase can be a paritcula rlanguage ,dialect ,style , t n e r e f fi d e s u y a m e l p o e p , n o it a u ti s y li a d n i , e r o f e r e h T . y t e ir a v r o , r e t s i g e r a e s u o t d e e n y e h t t a h t k n i h t e l p o e p n e h W . s n o it a u ti s t n e r e f fi d n i e d o c r e c h ti w e t a c i n u m m o c o t e d o c n i a tr e

c tain people,t heywli ladjustt het ype h t n o g n i d n e p e d e d o c f

o eneed.

o t e d o c e n o n a h t e r o m e s u o t e l b a e r a o h w e l p o e p y n a m e r a e r e h t y a d o T e t a c i n u m m o

c wtih each other .Therefore , ti i svery possible for t hem t o use t he y li a d r i e h t n i d e r e t s a m y e h t s e d o

c lfiedepending on t he stiuaiton .T his stiuaiton . m s il a u g n il i b d e ll a c n o n e m o n e h p c it s i u g n il r e h t o n a o t s d a e l .

2 Biilnguailsm

l a n o it c n u f e m o s s a h o h w n o s r e p a “ s a l a u g n il i b s e n if e d ) 5 4 : 8 9 9 1 ( y k s l o p S e n o m o r f y r a v y a m y ti li b a s i h T . ” e g a u g n a l d n o c e s n i y ti li b

a biilngualt o another . c h c e e p s o t d e t a l e

(22)

b m u n a t a h t d n a n o it c a r e t n i e m a s e h t n i d e s u e b n a c s e d o c t a h t s tl u s e r e h

t e ro f

l a u g n il i b e r a s l a u d i v i d n

i ”. I n sho tr ,biilngual scan choosewhatl anguaget hey are .

e s u o t g n i o g

f o e ri o tr e p e r a e v a h s l a u g n il i b e h T “ s y a s ) 6 4 : 8 9 9 1 ( y k s l o p S , e n il s i h t n I n i a m o

d -relater ule sofl anguagechoice”.I n othe rwords ,biilngual scan varythei r o t r e d r o n i n o it i d n o c d n a n o it a u ti s g n it s i x e e h t t i u s o t e g a u g n a l f o e c i o h c

e m a s e h t n i h ti w s e d o c o w t e t a n r e tl a o t m e h t s d a e l s i h T . y l e v it c e f f e e t a c i n u m m o c

e c n e t n e

s o rcommonlycalled ,codemixing.

.

3 Borrowing

e d o

C -mixing o r code-swtiching i s dfiferent fom borrowing . Grosjean m o r f d e s s a p e v a h t a h t s m r e t o t r e f e r o t ’ g n i w o r r o b e g a u g n a l‘ m r e t e h t s e s u ) 2 8 9 1 (

e H . s l a u g n il o n o m y b n e v e d e s u e b o t e m o c e v a h d n a r e h t o n a o t e g a u g n a l e n o

e h t s e v i

g following example to illusrtate the dfiference he see sbetween cod -e :)

b ( g n i w o r r o b d n a ) a ( g n i h c ti w s

.

a ‘çam ’étonnerai tqu’onai tcode-swtichedautan tqueç ’a .

b ‘çam ’étonnerai tqu’onai tcode-swtichéautan tqueç ’a

) 8 0 3 : 2 8 9 1 n a e j s o r G (

e d o c e w t a h t e v e il e b t ’ n a c I ‘ ( e m a s e h t n a e m s e c n e t n e s h t o

B -swticheda so tfen a s .)

’t a h

t Fo rGrosjean ,borrowingi nvolve smorphologica ladopiton, codeswtiching e

d o c ‘ d r o w e h t ,) a ( e c n e t n e s n I . t o n s e o

(23)

e r F a n i m r o f e l p i c it r a

p nch sentence .Meanwhlie ,the word ‘code-swtiché ’i s . y ll a c i g o l o n o h p d n a y ll a c i g o l o h p r o m h c n e r F o t d e t p a d a s i ti e s u a c e b g n i w o r r o b

y b d e ti c s a ) 9 8 9 1 ( z t a h c S o t g n i d r o c c

A Michae lG Clyne in Dynamic so f :

t c a t n o C e g a u g n a

L Engilsh and Immigran t Languages , code-swtiching i s e

l g n i s h t o b r o f d e y o l p m

e -word and mulit-word elements ,borrowingi s ilmtied t o t u b g n i w o r r o b n i y l e k il s i n o it a r g e t n i l a c i g o l o h p r o m d n a l a c i g o l o n o h P . r e m r o f e h t

e d o c n i t o

n -swtiching .Schatzshowst ha tmonoilngual so rbiilngual scan ‘ borrow ’ e

d o c ‘ s l a u g n il i b y l n o t u

b -swtich .’

.

4 Type so fCodeMixing

c it s i u g n il a s i g n i x i m e d o c “ , ) 5 2 1 : 8 7 9 1 ( n a b a b a N o t g n i d r o c c A

n e tf o d n a n o n e m o n e h

p seenamongbiilnguals peakersi nmulitilnguals ociety . tIi s h

ti w e g a u g n a l e n o f o s t n e m e l e f o e s u e h t s a d e n if e

d in a sentence in anothe r .

” e g a u g n a

l Wardaugh( 1992 :106 )alsodeifne s“codemixinga samixo fcodet ha t n

e h w s r u c c

o conversantsuse t wo codes t ogethert ha tchange sfrom one code t o o

w t s e x i m e n o e m o s f i s u h T . e c n a r e tt u e l g n i s a f o e s r u o c e h t n i s r e h t o e h

t codesi n

e d o c s e s u e h t a h t s n a e m t i , e g a u g n a l f o s t n e m e l e r e h t o g n it r e s n i y b e c n e t n e s e n o

. ” g n i x i m

’ g n i x i m e d o c ‘ o s l a ( ’ g n i x i m e d o c ‘ m r e t e h t d e s u e v a h s r e h c r a e s e r e m o S

e d o c ‘ d n

a -mixing’ )to refe rspeciifcally to in rtasentenita lswtiching ,and code n

i h c ti w

s gt or efert oi ntersentenita lswtiching.I nmos tcurrentl tierature ,however , h t o b h ti w , ’ g n i h c ti w s e d o c ‘ h ti w y l b a e g n a h c r e t n i d e s u s i ’ g n i x i m e d o c ‘ m r e t e h t

s m r e

(24)

) 9 3 : 2 8 9 1 ( u r h c a

K state sthatt here are ifvet ype so fcodemixing namely n o it a c o ll o c d n a m o i d i , n o it r e s n i e c n e t n e s , n o it a z i d ir b y h t i n u , n o it r e s n i t i n u

n o it a c il p u d e r d n a , n o it r e s n

i . Fu trhe rexplanaiton about t hose ifve t ype so fcode -.

w o l e b d e t n e s e r p e b l li w g n i x i m

.

a UntiI nseriton

Gumperz( 1982 :60 )statest ha tuntii nseritonr eferst ot hei n rtoducitono fa r e h t o n a m o r f e s u a l c t n e d n e p e d d n a , e s a r h p , d r o w s a h c u s , ti n u l a c it a m m a r g

:. g . E . e g a u g n a l

.i Goandge tmycoa tau sdemSchrankda.

g n E ( .’ e r e h t t e s o l c e h t f o t u o t a o c y m t e g d n a o G

‘ ilsh rtanslaiton)

e h T . s e d o c y n a m r e G d n a h s il g n E e h t s e x i m r e k a e p s e h t , e l p m a x e s i h t n I

e s a r h p e h t n i s i h c i h w e d o c y n a m r e G e h t d n a , h s il g n E s i d e s u e d o c n i a m

.) 0 6 : 2 8 9 1 , z r e p m u G ( d e tr e s n i s i l e v e l

.

b Uni tHyb irdizaiton

t n e r e f fi d m o r f ) s e m e h p r o m r o ( s t n e m e l e f o p u e d a m d r o w a s i d ir b y H

s a h c u s , s e g a u g n a

l televsiion (Greek tele “far” plu s Laitn visto “seeing” ) 1

: 1 1 0 2 , t s i u q d r o N

( ) .I ti salso someitme scalled the morphologica ladaptaiton m

a x e r e h t o n A . ) 0 3 1 : 4 0 0 2 , it r a i n r u M

(25)

.i Aku bel i HP paviilon mx50 , walau processor- an y Celeron 766 tap i .s

u g a b a y n i s a k if i s e p s

e h t , 6 6 7 n o r e l e C s i r o s s e c o r p e h t h g u o h t n e v e , 0 5 x m n o il i v a p P H t h g u o b I ‘

) n o it a l s n a rt h s il g n E ( ’. d o o g s i n o it a c if i c e p s

l g n E e h t s e x i m r e k a e p s e h t , e l p m a x e s i h t n

I ish andI ndonesian codes .The x

if f u s a i s e n o d n I e h t d n a , a i s e n o d n I s i d e s u e d o c n i a

m – any combinedwtih d e s u e d o c n i a m e h t o t n i d e tr e s n i s i ) r o s s e c o r p ( e d o c h s il g n E e h t

.) 0 3 1 : 4 0 0 2 , it r a i n r u M (

.

c SentenceI nseriton

o r f e c n e t n e s a f o n o it r e s n i n a o t s r e f e r s i h

T m anothe rlanguage into the :.

e .i , ) 9 3 : 2 8 9 1 , u r h c a K ( e s r u o c s i d e h t f o e s a b e g a u g n a l

.i tI l’ lgoi ntot hes amecolumnal e imingmmingngo ijs ia?

h s il g n E ( ’ ? n a e m I t a h w d n a t s r e d n u u o y o d , n m u l o c e m a s e h t o t n i o g l l’ tI ‘

) n o it a l s n a rt

e p s e h t , e l p m a x e s i h t n

I akeri nsetred Engilshsentencei ntot heCantonese . e h t n i s i h c i h w e d o c h s il g n E e h t d n a , e s e n o t n a C s i d e s u e g a u g n a l n i a m e h T

.) 0 0 1 : 8 0 0 2 , n e h C ( d e tr e s n i s i l e v e l e c n e t n e s

.

d IdiomandCollocaitonI nseriton

f o e c n e u q e s a o t r e f e r o t y g o l o c i x e l d n a r a m m a r g n i d e s u m r e t a s i m o i d I

(26)

e h t f o s g n i n a e m e h t , t n i o p w e i v c it n a m e s a m o r F . ti n u e l g n i s a s a n o it c n u f

e m m u s e b t o n n a c s d r o w l a u d i v i d n

i d to produce the meaning o fthe i‘diomaitc ’ r o o w t t a h t y a w e h t s i n o it a c o ll o C . ) 9 8 1 : 7 9 9 1 , l a t s y r C ( e l o h w a s a n o i s s e r p x e

, r e d r u m h ti w y a w a t e g , r e tt u b d n a d a e r b “ s e l p m a x e r o f , d e t a i c o s s a e r a s d r o w e r o m

. ) 0 3 : 0 0 0 2 , o d r a tt A & n w o r B ( ” r e p p e p d n a t l a s

h t o n

A e rexampleofi diomandcollocaitoni nseritoni s:

.i ‘Biasal ah ,ngantorninet o ifve’. ’. e v if o t e n i n g n i k r o w m ’ I ,l a u s u s A ‘

.i

i ‘Wasitng itmebange tnih’. ’ . e m it g n it s a w y ll a e r s i tI

‘ (Engilsh rtanslaiton)

ti r w e h t , e l p m a x e t s ri f e h t n

I e rinsetred the idiom “nine to ifve” which s

n a e

m a job wtih norma l dayitme hours . Meanwhlie , in the second h

s il g n E n a , e l p m a x

e collocaiton “wasitng itme” wa sinse tred into the .

e c n e t n e s n a i s e n o d n I

.

e Redupilcaiton

g n it a e p e r f o s s e c o r p e h t s i n o it a c il p u d e r f o s s e c o r p e h

T thesamemeaning :.

e .i , ) 9 3 : 2 8 9 1 , u r h c a K ( s e d o c o w t n i

.i Parov ,sorry.

(27)

a m a l s i B d n a e d o c h s il g n E e h t s e t a c il p u d e r r e k a e p s e h t , e l p m a x e s i h t n I d n a ) h s il g n E ( y r r o s , e d o

c parov(Bislama) .Both word sactually havet he e

m a

s meaning .Themaincodei sBislama ,andt heEngilshcodei si nsetred .) 6 2 2 : 7 0 0 2 , m o rt s d n i L ( .

5 Reasonsf o rCodeMixing

5 1 1 : 1 9 9 1 ( n n a m f f o H o t g n i d r o c c

A -116 ) swtiche s may occu r when c a f f o k c a l f o e s u a c e b e b n a c t I . c i p o t r a l u c it r a p a t u o b a g n i k l a t s i e n o e m o

s litiyi n

. s n o it a t o n n o c s u o ir a v f f o r e g g ir t s m e ti n i a tr e c e s u a c e b r o r e t s i g e r t n a v e l e r e h t g n i e b r o , e s l e y d o b e m o s g n it o u q s i t c e j b u s e h t e s u a c e b e r a s n o s a e r e l b i s s o p r e h t O . n o it it e p e r r o n o it c e jr e t n i f o m r o f e h t n i e b n a c t i ; g n i h t e m o s t u o b a c it a h p m e c ti w

S hingmayalsos howst hes peaker’ sdesriet obewel lunderstood.

s u T d n a a il g i m a s l a C d n a , ) 0 8 9 1 ( k c a l p o P , ) 4 7 9 1 ( r a a s k

O ón( 1984 )a sctied e d o c “ t a h t t s e g g u s o s l a ) 6 1 1 : 1 9 9 1 ( n n a m f f o H y

b -swtiching i salso used to h ti w y ti r a d il o s d n a … y ti t n e d i p u o r g s s e r p x

e suchagroup” .Hoffmannalso ctied e d o c “ t a h t ) 7 7 9 1 ( e r u l C c M m o r f t n e m e t a t s e h

t -swtiche sare o tfen used wtih the . ” r o t u c o lr e t n i e h t r o f t n e t n o c h c e e p s e h t g n i y fi r a l c f o n o it n e t n i k o o b r e h n i ) 4 9 9 1 ( k il a M y b d e s o p o r p s n o s a e r r e h t

O Socio-ilnguisitcs :A y

d u t

S o fCode-swtichingarel ackoff aclitiy,l ackofr egister ,moodoft hespeaker , y ti t n e d i w o h s o t , e c n a c if i n g i s c it n a m e s , e c n e ir e p x e l a u ti b a h , t n i o p a e z i s a h p m e o t t c a rt t a o t d n a , s n o s a e r c it a m g a r p , e c n e i d u a t n e r e f fi d s s e r d d a o t , p u o r g a h ti w r u F . n o it n e tt

(28)

.

a Lackoff aclitiy

r o n o i s s e r p x e e t a ir p o r p p a n a d n if t o n n a c r e k a e p s a n e h w s n e p p a h t I r a l u c it r a p e h t e v a h t o n s e o d n o it a s r e v n o c f o e g a u g n a l e h t n e h w r o m e ti y r a l u b a c o v n o y r r a c o t d e d e e n d r o

w the conversaiton smoothly .In accordance wtih thi s . n a i s e n o d n I n i s d r o w t n e l a v i u q e f o k c a l e h t o t d e t a l e r s i n o s a e r s i h t , h c r a e s e r e r a h c i h w s n o i s s e r p x e h s il g n E l a u ti b a h e h t o t s r e f e r o s l a t i , e r o m r e h tr u F n o it a u ti s d n a t x e t n o c e m o s n i d e s u y l n o m m o

c s inI ndonesia.

.

b Lackofr egister

o w t n i t n e t e p m o c y ll a u q e t o n s i r e k a e p s a h c i h w n i n o it i d n o c e h t s i t I n I . s e g a u g n a l o w t n i s m r e t e h t w o n k t o n s e o d r e k a e p s e h t n e h w d n a , s e g a u g n a l e r o , s r e y w a l ,s r o t c o d f o h c e e p s e h t n i s r u c c o n e tf o t i ,s n o it a p u c c o n i a tr e

c ngineer s

s m r e t r e p o r p e m o s t a h t t c a f e h t f o e s u a c e b s e v l e s m e h t g n o m a t c a r e t n i y e h t e li h w . e l b a li a v a e b t o n y a m h s il g n E n a h t r e h t o e g a u g n a l r e h t o y n a n i .

c Moodoft hes peaker

e d o c , y r g n a r o d e ri t e r a s l a u g n il i b n e h w y ll a u s u t a h t s m i a l c ) 4 9 9 1 ( k il a M g n i h c ti w

s take splacewtihanewdimension.I tmeanst ha twhen t hespeakeri si n s n o i s s e r p x e h s il g n E n i a tr e c d n if y l s u o e n a t n o p s n a c e h s / e h , d n i m f o e t a t s n i a tr e c . g n il e e f r e h / s i h t n e s e r p e r t a h t .

d Toemphasizeapoint

o t n i o p n i a tr e c e z i s a h p m e o t d e s u o s l a s i g n i h c ti w

(29)

.

e Habtiua lexpeirence

d e x if n i s r u c c o n e tf o g n i h c ti w s e d o c “ t a h t t c a f e h t s tr e s s a ) 7 1 : 4 9 9 1 ( k il a M

n i ,t s e u q e r d n a s d n a m m o c , g n it r a p d n a g n it e e r g f o s e s a r h

p vtiaiton ,expression so f s n o i s s e r p x e e h t e s u a c e b h c ti w s e d o c e l p o e P ” .s r e k r a m e s r u o c s i d d n a , e d u ti t a r g

. e fi l y li a d n i e c n e ir e p x e l a u ti b a h a n e e b e v a h d e s u

.f Semanitcs igni ifcance

f o n o it p e c r e p s ’t n a p i c it r a p n o s d li u b t a h t e c r u o s e r e v it a c i n u m m o c a s i t I l o w

t anguages .I tmay also servea san i mpilci tpurposewhich i sonly known by .

n o it a m r o f n i c if i c e p s n i a tr e c n i s r e k a e p s r a l u c it r a p

.

g Tos howi denttiywtihagroup

s t n a r g i m m i n a il a tI t a h t s tr o p e r ) 4 9 9 1 ( k il a M n i d e ti c s a ) 7 7 9 1 ( o rt e i P i D

g n E n i e k o j a l l e t d l u o

w ilsh andgivet hepunch ilnei n tIailan ,no tonlybecausei t e m a s e h t o t g n o l e b l l a y e h t t a h t t c a f e h t w o h s o s l a t u b n a il a tI n i d i a s r e tt e b s a w

.s e c n e ir e p x e d n a s e u l a v d e r a h s h ti w , p u o r g y ti r o n i m

.

h Toaddres sadfiferen taudience

r e k a e p s e h t n e h w d e s u s i t

I intend sto addres s people from va irou s .s

d n u o r g k c a b c it s i u g n il

.i Pragmaitcr easons

e e r g e d t n e r e f fi d a s i e r e h t e s u a c e b s n e p p a h g n i h c ti w s e h t , e s a c s i h t n I

. e e s s e r d d a e h t o t t c e p s e r w o h s o t d e s u s i g n i h c ti w s s i h T . s r o t u c o lr e t n i n e e w t e

(30)

e n a v a J a , e l p m a x e n

a sestuden twho wast alkingt o hisf irendsi n Javanese ,when r e d r o n i n a i s e n o d n I o t n i e g a u g n a l e h t d e h c ti w s e h s u p m a c t a r e r u t c e l s i h o t g n i k l a t . e ti l o p e r o m e b o t

.j Toatrtac tatteniton

d o c , ) n e tt ir w d n a l a r o n i h t o b ( t n e m e s it r e v d a n i t a h t s w o h s ) 4 9 9 1 ( k il a M . s r e n e t s il r o s r e d a e r f o n o it n e tt a t c a rt t a o t d e s u s i g n i h c ti w s t i f I . n o it a u ti s l a m r o f n i n i s n e p p a h g n i x i m e d o c , e m it e h t f o t s o M “ o t e c n a r e tt u r o d r o w e l b a ti u s o n s i e r e h t e s u a c e b s i ti , n o it a u ti s l a m r o f n i s n e p p a h g n i e b s i h c i h w e g a u g n a l a n i ti y a

s used”( Nababan ,1984 :32 .)

.

6 Languageandt heI nternet

e g n a h c l a i c o s f o x e d n i e v it i s n e s a h c u s g n i e b e g a u g n a L

“ … .Languagei s a y ll a e r s i t e N e h T ‘ . y ti v it c a r e t n i s i y ti v it c a t e N r o f , t e n r e t n I e h t f o t r a e h e h t t a s r e t u p m o c f o r e b m u n t s a v a r e h t e g o t s k n il h c i h w m e t s y

s and t hepeoplewho use m

e h

t ’( Naughton ,1999 :40 )… .TheI nterneti snotj us tat echnologicalf ac;t tii sa k c o t s f e i h c s ti d n a , t c a f l a i c o

s - ni -rtadei sl anguage”( Crystal ,2001 :237 .)

s i t e n r e t n I e h t f o n o it a c i n u m m o c e h t , ) 8 3 2 : 1 0 0 2 ( l a t s y r C o t g n i d r o c c A i n o it a t p a d a c if i c e p s f o s t e s y b d e z ir e t c a r a h

c n graphology ,grammar ,semanitc , h t o t , e s r u o c s i d d n

a eproperite soft het echnologyandt heneed soft heuse .r

t e n r e t n I e h t f o s e r u t a e f e g a u g n a l d e k r a m e r t s o m e h t f o e n O / n o it a i v e r b b a f o s e p y t s u o ir a v f o e s u e h t s i , k a e p s t e N s a n w o n k , n o it a c i n u m m o c o r c

(31)

n e v e n a f o n o it u l o v e e h t d e t a v it o m s a h , y g r e n e d n a e m it f o l a e d t a e r g a g n i v a s d n a r o s d r o w o t d e t c ir t s e r r e g n o l o n e r a s m y n o r c a e h T . e g a u g n a l d e t a i v e r b b a e r o m e c n e t n e s e b n a c t u b , s e s a r h p t r o h

s -length :CIO [‘Check i tou ’t] ,GTG [‘Go tto e e r h t r o o w t o t d e c u d e r e b n a c s d r o w l a u d i v i d n I . ] ’ n o i n i p o y m n I ‘ [ O M I , ] ’ o g e k il e r a e m o S . ] ’ r e v e t a h w ‘ [ E W , ] ’ s k n a h t‘ [ X T r o X H T , ]’ e s a e l p ‘ [ S L P : s r e tt e l a f o e l b a ll y s a s a s t c a l a r e m u n r o r e tt e l e h t f o e u l a v d n u o s e h t t a h t n i , s e s u b e r m o c e r a r o , d r o

w binaiton so frebu sand lette riniital :L8R [l‘ater’] ,CU [‘See e c a F ‘ [ F 2 F , ] ’ u o

y - oT -Face’] . However ,there mus tbe a seirou s ilmi tto the k s ir l a e r a d n a , n o it a i v e r b b a g n i s u d e y e v n o c e b n a c h c i h w n o it a m r o f n i f o t n u o m a 4 8 : 1 0 0 2 , l a t s y r C ( y ti u g i b m a f

o -86 ,229-230 ,237-238) .

k r o w e m a r F l a c it e r o e h T . C r e ti r w e h t , h c r a e s e r s i h t f o m e l b o r p t s ri f e h t r e w s n a o t r e d r o n

I used t he

e d o c f o s e p y t f o y r o e h

t -mixingbyKachru( 1982)t o ifndoutt hecode-mixingused r e tt i w T e h t y

b user .s

e li h

W Hoffmann’ s (1991) ; Oksaar’s (1974) , Poplack’ s (1980) , and s u T d n a a il g i m a s l a

C ón’ s(1984) ;and McClure’ s(1977 )theori es a sctied by k il a M o s l a d n a ) 6 1 1 : 1 9 9 1 ( n n a m f f o

H ’ s(1994 )theoryaboutt her eason soft heuse e

d o c f

o -mixingwli lbeusedt oanswert hes econdproblem soft hisr esearch.

e d o c f o s e p y t e v if e r a e r e h t ) 9 3 : 2 8 9 1 ( u r h c a K o t g n i d r o c c a , t s ri

F -mixing .

h t i n u , n o it r e s n i t i n u e r a y e h

(32)

e r a e r e h t , d n o c e

S twelvepossibler eason swhichwli lbeusedt oexplaint he h

s il g n

E -Indonesiancode-mixingusedbyI ndonesianTwitte rusersi npositngt hei r e

h T . s t e e w

t twelve possiblereason sare :( 1) talking abou ta paritcular t opic ,(2 ) e h t s w o h s d n a g n i h t e m o s t u o b a c it a h p m e g n i e b ) 3 ( , e s l e y d o b e m o s g n it o u q

p

s eaker’ sdesrie to be wel lunderstood (Hoffmann ,1991 :115-116) ,(4 )expres s d n a a il g i m a s l a C d n a , ) 0 8 9 1 ( k c a l p o P , ) 4 7 9 1 ( r a a s k O ( y ti r a d il o s d n a y ti t n e d i p u o r g

s u

T ón (1984 )a sctied by Hoffmann ,1991 :116) ,and (5 )clarfiying the speech r

e t n i e h t r o f t n e t n o

c locuto r(McClure ,1977 a sctied by Hoffmann ,1991 :116 ) . e h t l l a e s u t o n l li w r e ti r w e h T . ) 4 9 9 1 ( k il a M y b d e s o p o r p e r a s n o s a e r r e h t O

e s u a c e b k il a M y b d e s o p o r p s n o s a e

r thereare some reason swhich are simliar t o e

h t f o e m o S . n a m f f o H y b d e tr e s s a s n o s a e r e h

t reasonsf rom Mailk (1994 )which , t n i o p a e z i s a h p m e o t ) 7 ( ,r e k a e p s e h t f o d o o m ) 6 ( e r a h c r a e s e r s i h t n i d e s u e b l li w

t n e r e f fi d s s e r d d a o t ) 0 1 ( , e c n a c if i n g i s c it n a m e s ) 9 ( , e c n e ir e p x e l a u ti b a h ) 8 (

t n e tt a t c a rt t a o t ) 2 1 ( d n a , s n o s a e r c it a m g a r p ) 1 1 ( , e c n e i d u

a i on.

d e s u s i ’ g n i x i m e d o c ‘ m r e t e h t t a h t ) 2 1 5 : 6 0 0 2 ( n a it o o h a M y b d e t a t s s A

, ’ g n i h c ti w s e d o c ‘ h ti w y l b a e g n a h c r e t n

i fort hepresen tstudy ,code-mixing wli lbe .

(33)

0 2

I I I R E T P A H C

Y G O L O D O H T E M

s i h t d n a , y d u t s s i h t t c u d n o c o t y g o l o d o h t e m n i a tr e c a d e s u r e h c r a e s e r e h T

r e t p a h

c provides t heapproach oft hestudy and t he descirpiton oft he procedure s

.s i s y l a n a a t a d f o s d o h t e m e h t d n a n o it c e ll o c a t a d n i d e s u

.

A Objec toft heStudy

e h

T objec to fthe study w as the sentence sused in the status ,o rusually

d e ll a

c tweets ,w irttenbyt heuser so fas ocial-networkingwebstie ,Twitte.r

.

B Approachoft heStudy

b o r e ti r w e h

T served code-mixingon Twitte randi twa ssrtongly r elated t o

s e i d u t s s c it s i u g n il f o d l e if a s i s c it s i u g n il o i c o S . s c it s i u g n il o i c o

s which t irestosee

e n n o c e h

t citon between l anguageand society ,and t heway weuse ti i n dfiferen t

.s n o it a u ti s l a i c o s

r e ti r w e h

T chosequaltiaitve-explanatory method because thegoa loft hi s

e d o c e s u n e tf o e l p o e p y h w s n o s a e r e h t n i a l p x e d n a t u o d n if o t s a w h c r a e s e

r

-c i n u m m o c n i g n i x i

m aitng wtih the others .The approach o fthi sresearch wa s

s e r e v it a ti l a u

q earch because thi s research aimed to acqurie an in-depth

(34)

.

C Methodoft heStudy

.

1 Popula itonandSample

.

a Popula iton

p e h

T opulaiton of t hestudy was t het weetsposted by Indonesian Twitte r

h s il g n E d e n i a t n o c h c i h w s r e s

u – Indonesiancode-mixingint heris entences.

.

b Sample

o S . g n il p m a s e v i s o p r u p d e s u r e ti r w e h

T t hesampleoft hestudy consisted

f

o 1 00statuses, o rusuallycalledt weets ,onTwitterwhich containedcode-mixing

a i s e n o d n I d n a h s il g n E n e e w t e

b n language .Thewrtie ralso ilmtiedt heageandt he

d e s u y l n o r e ti r w e h T . c if i c e p s e r o m t i e k a m o t s r e s u e h t f o d n u o r g k c a b n o it a c u d e

d o c d e n i a t n o c s t e e w t e h

t e-mixing which were posted by 1 -9 untli-25-y - earold

n a i s e n o d n

I user swhoarestudying ni o rhavegraduated f romtheuniverstiy. The

e s o h c r e ti r

w thi sdatabecausemanyofI ndonesian Twitte ruser so tfen mixe dtwo

d n a h s il g n E ( s e g a u g n a

l Indonesian )in w iritng thei rtweets ,especially the user s

. d n u o g k c a b n o it a c u d e d n a e g a n i a tr e c m o r f e m a c o h w

.

2 Instrument sandDataCo lleciton

.

a Instrument s

e r o f e r e h t ,r e h c r a e s e r e h t s a w t n e m u rt s n i n i a m e h t , h c r a e s e r e v it a ti l a u q n I

the main insrtumen tfor t hi sresearch was the wrtie rherse .fl The wrtie rd id no t

a t a d r o e c r u o s e h t n i a g o t s e ri a n n o it s e u q y n a d e e

(35)

k r a m d n a d a e r r e ti r w e h t e s u a c e

b e d the data taken from a social-networking

. e ti s b e

w The wrtie rdid al lthe data colleciton and data analysi sby using the

d n a ) 2 8 9 1 ( u r h c a K y b d e s o p o r p g n i x i m e d o c f o s e p y t f o y r o e h

t also Hoffmann’ s

s u T d n a a il g i m a s l a C d n a , ) 0 8 9 1 ( s ’ k c a l p o P , ) 4 7 9 1 ( s ’ r a a s k O ; ) 1 9 9 1

( ón’ s(1984) ;

r o e h t ) 7 7 9 1 ( s ’ e r u l C c M d n

a i aes sctiedbyHoffmann ( 1991 :116) ,and also t heory

) 4 9 9 1 ( k il a M m o r

f aboutt her eason soft heusingo fcode-mixing.Theexampleo f

. w o l e b n w o h s s a w a t a d n i a t b o o t s n a e m e h t

. o

N Tweets Type so fCode-Mixing I

U U H S I I CI R

f o s e p y T e h t f o m r o F n o it a v r e s b O . 1 . 3 e l b a

T Code-mixing

I

U =UntiI nseriton H

U =Uni tHyb irdizaiton I

S =SentenceI nseriton I

C

(36)

. o

N Tweets PossibleReasons 1

0 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 0 1 1 1 32 1

s i s y l a n A f o s n o s a e R e l b i s s o P e h t f o m r o F n o it a v r e s b O . 2 . 3 e l b a T

1

0 =Talkingabou taparitculart opic 2

0 =Quoitngs omebodyelse 3

0 =Being emphaitc abou tsomething and showst he speaker’ sdesrie t o e

b wel lunderstood 4

0 =Expres sgroupi denttiyands oildartiy 5

0 =Clarfiyingt hes peechcontentf ort hei ntelrocutor 6

0

Referensi

Dokumen terkait

Analysis : As what Wardaugh says that intra-sential code mixing is found when a word, a phrase, or a clause, of a foreign language is found within the sentence in a base

It relates to the notion of sociolinguistics, scope of sociolinguistics, bilingualism, code mixing, the definition of code mixing, the characteristics of code mixing, the

Based on those facts, the researcher is interested in doing a research entitles: A Sociolinguistic Analysis of Indonesian – English Code Mixing Used in KRIIING SOLOPOS 2008..

A/DN-3 Kalau sampai tertangkap saya akan lakukan ini, dan itu sudah clear dengan mereka semua dan mereka juga ada yang bahas akan announce di negerinya, duta

sosial Facebook melakukan code mixing berdasarkan teori SPEAKING dari Dell.. Hymes dalam

language nowadays which is often used in daily activities by mixing Bahasa. Indonesia

Situational Code Switching occurs when the language used change according. to the situations in which the conversant find themselves: they speak one

Metode Penelitian Sosial: Format-Format Kuantitatif