• Tidak ada hasil yang ditemukan

contoh soal analisa struktur 2.xlsx

N/A
N/A
Protected

Academic year: 2021

Membagikan "contoh soal analisa struktur 2.xlsx"

Copied!
8
0
0

Teks penuh

(1)

13 Batang 1,2 b = 0.30 m P = 18 ton P h = 0.35 m q = 15.5 ton/m' A1 = 0.105 m2 A2 = 0.105 m2 I1 = 0.001072 m4 1 2 L2 I2 = 0.001072 m4 Y E = 20000000 ton/m2 L3 = 2 m L2 = 3 m X q L1 = 1 m L1 L3

Batang i j α Sin α Cos α

1 1 2 56.31 0.8321 0.5547

2 2 3 90 1 0

1. Menentukan matriks kekakuan tiap elemen a. Batang 1 (elemen 1) A1E/L1 0 0 -A1E/L1 0 0 1050000 0 0 -1050000 0 0 0 12EI1/L1 3 6EI1/L1 2 0 -12EI1/L1 3 6EI1/L1 2 0 32156.3 32156.3 0 -32156.3 32156.3

0 6EI1/L12 4EI1/L1 0 -6EI1/L12 2EI1/L1 0 32156.3 42875 0 -32156.3 21437.5

-A1E/L1 0 0 A1E/L1 0 0 -1050000 0 0 1050000 0 0 0 -12EI1/L1 3 -6EI1/L1 2 0 12EI1/L1 3 -6EI1/L1 2 0 -32156.3 -32156.3 0 32156.3 -32156.3

0 6EI1/L12 2EI1/L1 0 -6EI1/L12 4EI1/L1 0 32156.3 21437.5 0 -32156.3 42875

Cos α Sin α 0 0 0 0 0.554700196 0.83205 0 0 0 0 -Sin α Cos α 0 0 0 0 -0.83205029 0.5547 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 Cos α Sin α 0 0 0 0 0.5547002 0.83205 0 0 0 0 -Sin α Cos α 0 0 0 0 -0.83205 0.5547 0 0 0 0 0 0 1 0 0 0 0 0 1 0.55470 -0.83205 0 0 0 0 0.83205 0.55470 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0.55470 -0.83205 0 0 0 0 0.83205 0.55470 0 0 0 0 0 0 1.0 [ KL(1) ] = = [ T(1) ] = =

Soal MID TEST

3 digit akhir stambuk =

[ T (1)]T =

1

2

(2)

[ KG (1) ] = [ T(1) ]T x [ K L (1) ] x [ T(1) ] 582435.206 -26755.617 -26755.617 -582435.206 26755.61728 -26755.61728 0.554700196 0.83205 0 0 0 0 873652.8091 17837.0782 17837.078 -873652.809 -17837.07818 17837.07818 -0.83205029 0.5547 0 0 0 0 0 32156.25 42875 0 -32156.25 21437.5 0 0 1 0 0 0 -582435.206 26755.6173 26755.617 582435.206 -26755.61728 26755.61728 0 0 0 0.5547002 0.83205 0 -873652.8091 -17837.078 -17837.078 873652.809 17837.07818 -17837.07818 0 0 0 -0.83205 0.5547 0 0 32156.25 21437.5 0 -32156.25 42875 0 0 0 0 0 1 1 1 1 2 2 2 345338.9423 469774.038 -26755.617 -345338.942 -469774.0385 -26755.61728 1 469774.0385 736817.308 17837.078 -469774.038 -736817.3077 17837.07818 1 -26755.61728 17837.0782 42875 26755.6173 -17837.07818 21437.5 1 -345338.9423 -469774.04 26755.617 345338.942 469774.0385 26755.61728 2 -469774.0385 -736817.31 -17837.078 469774.038 736817.3077 -17837.07818 2 -26755.61728 17837.0782 21437.5 26755.6173 -17837.07818 42875 2 b. Batang 2 (elemen 2) A2E/L2 0 0 -A2E/L2 0 0 700000 0 0 -700000 0 0

0 12EI2/L23 6EI2/L22 0 -12EI2/L23 6EI2/L22 0 9527.78 14291.7 0 -9527.78 14291.7

0 6EI2/L22 4EI2/L2 0 -6EI2/L22 2EI2/L2 0 14291.7 28583.3 0 -14291.7 14291.7

-AE/L 0 0 A2E/L2 0 0 -700000 0 0 700000 0 0 0 -12EI2/L2 3 -6EI 1/L1 2 0 12EI 2/L2 3 -6EI 2/L2 2 0 -9527.78 -14291.7 0 9527.78 -14291.7

0 6EI2/L22 2EI2/L2 0 -6EI2/L22 4EI2/L2 0 14291.7 14291.7 0 -14291.7 28583.3

Cos α Sin α 0 0 0 0 0 1 0 0 0 0 -Sin α Cos α 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 Cos α Sin α 0 0 0 0 0 1 0 0 0 0 -Sin α Cos α 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 1 [ T(1) ] [ KG(1) ] = x [ KL(2) ] = = [ T(1) ]T x [ K L (1) ] [ KG(1) ] = [ T(2) ] = = [ T(2) ]T =

(3)

[ KG (2) ] = [ T(2) ]T x [ K L (2) ] x [ T(2) ] [ T(2) ] 0 -9527.7778 -14291.667 0 9527.777778 -14291.66667 0 1 0 0 0 0 700000 0 0 -700000 0 0 -1 0 0 0 0 0 0 14291.6667 28583.333 0 -14291.66667 14291.66667 0 0 1 0 0 0 0 9527.77778 14291.667 0 -9527.777778 14291.66667 0 0 0 0 1 0 -700000 0 0 700000 0 0 0 0 0 -1 0 0 0 14291.6667 14291.667 0 -14291.66667 28583.33333 0 0 0 0 0 1 2 2 2 3 3 3 9527.777778 0 -14291.667 -9527.77778 0 -14291.66667 2 0 700000 0 0 -700000 0 2 -14291.66667 0 28583.333 14291.6667 0 14291.66667 2 -9527.777778 0 14291.667 9527.77778 0 14291.66667 3 0 -700000 0 0 700000 0 3 -14291.66667 0 14291.667 14291.6667 0 28583.33333 3 x [ KG(2) ] = [ T(2) ]T x [ K L(1) ] [ KG(2) ] =

(4)

a. Tinjau Batang 1 (nodal 1 ke nodal 2) Matrik diisi sesuai dengan nodal batang

1 1 1 2 2 2 3 3 3 F1 345338.9423 469774.038 -26755.617 -345338.942 -469774.0385 -26755.61728 G1 469774.0385 736817.308 17837.078 -469774.038 -736817.3077 17837.07818 M1 -26755.61728 17837.0782 42875 26755.6173 -17837.07818 21437.5 F2 -345338.9423 -469774.04 26755.617 345338.942 469774.0385 26755.61728 G2 = -469774.0385 -736817.31 -17837.078 469774.038 736817.3077 -17837.07818 M2 -26755.61728 17837.0782 21437.5 26755.6173 -17837.07818 42875 F3 G3 M3

b. Tinjau Batang 2 (nodal 2 ke nodal 3)

1 1 1 2 2 2 3 3 3 F1 G1 M1 F2 9527.77778 0 -14291.66667 -9527.77778 0 -14291.7 G2 = 0 700000 0 0 -700000 0 M2 -14291.6667 0 28583.33333 14291.66667 0 14291.7 F3 -9527.77778 0 14291.66667 9527.777778 0 14291.7 G3 0 -700000 0 0 700000 0 M3 -14291.6667 0 14291.66667 14291.66667 0 28583.3 c. Penjumlahan matriks 1 1 1 2 2 2 3 3 3 F1 345338.9423 469774.038 -26755.617 -345338.942 -469774.0385 -26755.61728 0 0 0 U1 G1 469774.0385 736817.308 17837.078 -469774.038 -736817.3077 17837.07818 0 0 0 V1 M1 -26755.61728 17837.0782 42875 26755.6173 -17837.07818 21437.5 0 0 0 Ө1 F2 -345338.9423 -469774.04 26755.617 354866.72 469774.0385 12463.95061 -9527.77778 0 -14291.7 U2 G2 = -469774.0385 -736817.31 -17837.078 469774.038 1436817.308 -17837.07818 0 -700000 0 x V2 M2 -26755.61728 17837.0782 21437.5 12463.9506 -17837.07818 71458.33333 14291.66667 0 14291.7 Ө2 F3 0 0 0 -9527.77778 0 14291.66667 9527.777778 0 14291.7 U3 G3 0 0 0 0 -700000 0 0 700000 0 V3 M3 0 0 0 -14291.6667 0 14291.66667 14291.66667 0 28583.3 Ө3

(5)

Lokal Global Lokal Global F1 4.9923 9.0000 F1 345338.9423 469774.0385 -26755.6 -345339 -469774 -26755.6 0 0 0 0 G1 -7.48845 0.0000 G1 469774.0385 736817.3077 17837.1 -469774 -736817.3 17837.1 0 0 0 0 M1 -6.7499 -6.7499 M1 -26755.6173 17837.07818 42875 26755.6 -17837.08 21437.5 0 0 0 0 F2 0 7.75 4.9923 9.0000 0 16.7500 -345338.942 -469774.038 26755.6 354867 469774.04 12464 -9527.78 0 -14291.66667 U2 G2 -7.75 0.00 -7.48845 0.0000 0 0.0000 = -469774.038 -736817.308 -17837.1 469774 1436817.3 -17837.1 0 -700000 0 x V2 M2 -4.65 -4.65 6.7499 6.7499 0 2.0999 -26755.6173 17837.07818 21437.5 12464 -17837.08 71458.3 14291.7 0 14291.66667 Ө2 F3 0 15.50 F3 0 0 0 -9527.78 0 14291.7 9527.78 0 14291.66667 0 G3 -15.5 0.00 G3 0 0 0 0 -700000 0 0 700000 0 0 M3 6.975 6.98 M3 0 0 0 -14291.7 0 14291.7 14291.7 0 28583.33333 0

3. Unknown displacements and reacions

16.75 354866.7201 469774.038 12463.951 U2 0 = 469774.0385 1436817.31 -17837.078 x V2 2.0999 12463.95061 -17837.078 71458.333 Ө2 -1 U2 354866.7201 469774.038 12463.951 16.74999682 V2 = 469774.0385 1436817.31 -17837.078 x 0 Ө2 12463.95061 -17837.078 71458.333 2.0999

U2 5.08717E-06 -1.679E-06 -1.307E-06 16.74999682

V2 = -1.67949E-06 1.2526E-06 6.056E-07 x 0

Ө2 -1.30654E-06 6.0561E-07 1.437E-05 2.0999

LENDUTAN U2 8.247E-05 V2 = -2.686E-05 Ө2 8.298E-06 F1 -345338.9423 -469774.04 -26755.617 G1 -469774.0385 -736817.31 17837.078 M1 26755.61728 -17837.078 21437.5 8.24665E-05 F3 -9527.777778 0 14291.667 -2.68598E-05 G3 0 -700000 0 8.29773E-06 M3 -14291.66667 0 14291.667 REAKSI F1 -16.082863 9.0000 -25.08286 F1 G1 -18.801843 0.0000 -18.80184 G1 M1 2.863423 -6.7499 9.61332 M1 F3 -0.667134 15.500 -16.16713 F3 G3 18.801843 0.000 18.80184 G3 M3 -1.059995 6.975 -8.03499 M3 = -= x

Beban Batang Beban

Nodal Gaya

Kondisi Jepit

Kondisi Jepit

(6)

4. Member forces a. Elemen 1 f 1 g 1 m 1 f 2 g 2 m 2 f 1 0.55470 0.83205 0 0 0 0 345338.9423 469774 -26755.6 -345338.9 -469774 -26755.6 0 g 1 -0.83205 0.55470 0 0 0 0 469774.0385 736817 17837.1 -469774 -736817 17837.1 0 m 1 0 0 1 0 0 0 -26755.6173 17837.1 42875 26755.617 -17837.1 21437.5 0 f 2 0 0 0 0.55470 0.83205 0 -345338.942 -469774 26755.6 345338.94 469774 26755.6 8.24665E-05 g 2 0 0 0 -0.83205 0.55470 0 -469774.038 -736817 -17837.1 469774.04 736817 -17837.1 -2.68598E-05 m 2 0 0 0 0 0 1 -26755.6173 17837.1 21437.5 26755.617 -17837.1 42875 8.29773E-06 f 1 0.55470 0.83205 0 0 0 0 -16.0828632 g 1 -0.83205 0.55470 0 0 0 0 -18.8018435 m 1 0 0 1 0 0 0 2.86342348 f 2 0 0 0 0.55470 0.83205 0 16.08286323 g 2 0 0 0 -0.83205 0.55470 0 18.80184347 m 2 0 0 0 0 0 1 3.04130616 GAYA BATANG 1 f 1 -24.56525 4.9923 -29.55755 g 1 2.95236 -7.48845 10.44081 m 1 2.86342 -6.7499 9.61332 f 2 24.56525 4.9923 19.57295 g 2 -2.95236 -7.48845 4.53609 m 2 3.04131 6.7499 -3.70859 [ T(1) ] x [ K G(1) ] x { U } x x = x = = - = =

(7)

b. Elemen 2 f 2 g 2 m 2 f 3 g 3 m 3 f 2 0 1 0 0 0 0 9527.777778 0 -14291.7 -9527.778 0 -14291.7 8.24665E-05 g 2 -1 0 0 0 0 0 0 700000 0 0 -700000 0 -2.68598E-05 m 2 0 0 1 0 0 0 -14291.6667 0 28583.3 14291.667 0 14291.7 8.29773E-06 f 3 0 0 0 0 1 0 -9527.77778 0 14291.7 9527.7778 0 14291.7 0 g 3 0 0 0 -1 0 0 0 -700000 0 0 700000 0 0 m 3 0 0 0 0 0 1 -14291.6667 0 14291.7 14291.667 0 28583.3 0 f 2 0 1 0 0 0 0 0.66713 g 2 -1 0 0 0 0 0 -18.80184 m 2 0 0 1 0 0 0 -0.94141 f 3 0 0 0 0 1 0 -0.66713 g 3 0 0 0 -1 0 0 18.80184 m 3 0 0 0 0 0 1 -1.05999 GAYA BATANG 2 f 2 -18.80184 0 -18.80184 g 2 -0.66713 -7.75 7.08287 m 2 -0.94141 -4.65 3.70859 f 3 18.80184 0 18.80184 g 3 0.66713 -15.5 16.16713 m 3 -1.05999 6.975 -8.03499 - = = = x x = x = [ T(2) ] x [ K G(2) ] x { U }

(8)

REKAPITULASI HASIL PERHITUNGAN : Portal ---Lendutan ---Nodal dx (m) dy (m) rz (rad) 1 0 0 0 2 0.00008247 -0.00002686 0.00000830 3 0 0 0 ---Gaya Aksial, ---Gaya Geser dan Momen

---Batang N (kN) D (kN) M (kN.m) 1 -29.55755 10.44081 9.61332 Join 1 1 19.57295 4.53609 -3.70859 Join 2 2 -18.80184 7.08287 3.70859 Join 2 2 18.80184 16.16713 -8.03499 Join 3 --- ---Reaksi Tumpuan ---Nodal H V M 1 -25.08 -18.80 9.61 3 -16.17 18.80 -8.03

Referensi

Dokumen terkait

Dengan menambahkan Kekakuan kontak dan koefisien gesek pada matrik kekakuan struktur, mengakibatkan matriks kekakuan menjadi tidak simetri yang pada

- Sedangkan, jika suatu matriks berordo n dengan elemen-elemen pada diagonal utama bernilai 1, maka matriks diagonal semacam ini disebut matriks Identitas atau matriks satuan.

matrik transfom1asi menjadi matrik yang elemen-elemenya mengacu sumbu global. Dengan adanya matrik transformasi CRr), matrik kekakuan batang lokal (SM) dapat.

Untuk penyelesaian persamaan eigen dalam analisis getaran dengan elemen hingga, matriks kekakuan maupun matriks massa mempunyai bentuk simetris. Bentuk ini memberi kemudahan

horizontal, jika tidak menggunakan kekakuan sambungan sebagai kekakuan elemen tetapi menggunakan kekakuan sambungan yang dipasang seri dengan kekakuan balok atau

 ELEMEN & NODE PADA STRUKTUR  SISTEM KOORDINAT LOKAL & GLOBAL  PRINSIP KEKAKUAN DAN FLEKSIBILITAS.. by Erwin Rommel

Untuk perhitungan dengan menggunakan Elemen segitiga (Constant Strain Triangle), matriks kekakuan dan matriks beban nodal konsisten dari elemen ini dapat diturunkan

Metode kekakuan adalah metode yang terutama dipakai dalam analisa struktur dengan matriks yang sering digunakan dalam analisa struktur dengan metode elemen hingga