34 M. G. Elghdban et al.
A Systematic Review of the Technological Factors Affecting … 35
Table2Factorsanalysisderivedfromtheanalyzedstudies Technological factorsSignificantFrequencyInsignificantFrequencyTotal Compatibility[24–59]37[60–69]1047 Relative advantage[24,25,27–30,32–39,41,42,44,45,48,50,52,55,58,60–63,65,67,69–73]35[26,43,46,59,64,66,71,74]843 Complexity[7,25,27,29–35,39,42–46,48,50,51,54,59–62,67,73,75–78]30[24,26,36,38,47,53,55,58,64,69,74]1141 Perceived benefits[31,40,57,75,79–86]12[68,87]214 IT infrastructure[28,47,49,50,57,61,74,79,81,88]11[89,90]213 Securityand privacyconcern[29,32,37,49,53,63,65,70,75,91,92]11[26,66]213 Financialcosts[37,50,53,54,63,68,93,94]8[70,78,87,88]412 Trialability[29,30,42,51,52,54]7[59,61,63,64,73]512 Costsavings[7,8,32,44,52,54,91]9[71]110 Technology competence[24,27,37,40,54,62,72,75,85]9[95]110 Technology readiness[25,41,44,65,67,96]6[26,62,97]39 Observability[29,59,61,63]4[64]15 Risks[43,83,86]3[73]14 Technical barriers[26,81,82]3[47]14 Reliability[92,94]2[54]13 Perceived directbenefits[78]1[53,93]23 Perceived usefulness[98]1[54]12 (continued)
36 M. G. Elghdban et al.
Table2(continued) Technological factorsSignificantFrequencyInsignificantFrequencyTotal Perceived indirect benefits
[78]1[93]12 Perceivedease ofuse0[63,98]22 Applicabilityto data management
[98]101 Business concerns[80]101 Dataquality andintegration[99]101 ITsupport[100]101 ITeffectiveness[100]101 Interoperability[96]101 Legalconcern[94]101 Network externality[58]101 Organisational fit[82]101 Perceived availability[101]101 Perceived simplicity[56]101 Perceived values[56]101 (continued)
A Systematic Review of the Technological Factors Affecting … 37
Table2(continued) Technological factorsSignificantFrequencyInsignificantFrequencyTotal Strategic flexibility[54]101 Systemsquality[101]101 Technology integration[90]101 Technology maturity[77]101 Useof standardsand platforms
[47]101 Ubiquity[53]101 Uncertainty[30]101 Valuecreation[26]101 Datasize0[73]11 License concern0[94]11 Industry-wide technology readiness
[96]101
38 M. G. Elghdban et al.
Science) were critically analyzed in the period between 2015 and October 2019.
A total of 42 technological factors were extracted and the most common extracted technological factors were Compatibility, Relative advantage (Perceived Benefits), Complexity, IT infrastructure, Security and Privacy concern, Financial costs, Triala- bility, Cost savings, Technology competence, and Technology readiness. Identifying the technological factors that affect the adoption and use of advanced IT is crucial for the decision-makers in the AEC industry to adopt BIM properly and overcome the challenges of BIM implementation.
There are insufficient studies related to the adoption of BIM technology in the AEC industry. Therefore, the outcome of this study will contribute significantly to the existing literature on IT adoption and will be helpful to the decision-makers in the AEC industry during the formulation of the grand strategies for BIM technology adoption. This study also contributes by providing the most commonly extracted technological factors used in the previous works which can be used by experts and professionals in determining the most important factors affecting BIM adoption.
Besides, the factors that will be chosen and validated by the experts will help in building future conceptual models for BIM adoption in the AEC industry.
References
1. World Economic Forum: Shaping the Future of Construction: A Breakthrough in Mindset and Technology (2016)
2. Murray, M.: Rethinking construction: the egan report (1998), pp. 178–195. Blackwell Science, Oxford, UK (2003)
3. Mitropoulos, P., Tatum, C.B.: Technology adoption decisions in construction organizations.
J. Prof. Nurs.30(4), 292–299 (1999)
4. Lee, H.W., Oh, H., Kim, Y., Choi, K.: Quantitative analysis of warnings in building information modeling (BIM). Autom. Constr.51(C), 23–31 (2015)
5. Eastman, C.M.: BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, vol. 12, no. 3 (2011)
6. Baharuddin, H.E.A., Othman, A.F., Adnan, H., Ismail, W.N.W.: BIM training: the impact on BIM adoption among quantity surveyors in government agencies. In: IOP Conference Series:
Earth and Environmental Science, vol. 233, no. 2, p. 022036. IOP Publishing (2019) 7. Gerges, M., Austin, S., Mayouf, M., Ahiakwo, O., Jaeger, M., Saad, A.: An investigation
into the implementation of building information modeling in the Middle East. J. Inf. Technol.
Constr.22(2), 1–15 (2017)
8. NBS: International BIM Report 2016—The International Picture, p. 24. NBS (2016) 9. Howard, R., Restrepo, L., Chang, C.-Y.: Addressing individual perceptions: an application
of the unified theory of acceptance and use of technology to building information modelling.
Int. J. Proj. Manage.35(2), 107–120 (2017)
10. Kim, S., Park, C.H., Chin, S.: Assessment of BIM acceptance degree of Korean AEC participants. KSCE J. Civ. Eng.20(4), 1163–1177 (2016)
11. Acquah, R., Eyiah, A.K., Oteng, D.: Acceptance of building information modelling: a survey of professionals in the construction industry in Ghana. J. Inf. Technol. Constr.23, 75–91 (2018)
12. Xu, H., Feng, J., Li, S.: Users-orientated evaluation of building information model in the Chinese construction industry. Autom. Constr.39, 32–46 (2014)
A Systematic Review of the Technological Factors Affecting … 39
13. Tsai, M.-H., Kang, S.-C., Hsieh, S.-H.: Lessons learnt from customization of a BIM tool for a design-build company. J. Chin. Inst. Eng.37(2), 189–199 (2014)
14. Davis, F.D.: A technology acceptance model for empirically testing new end-user information systems: theory and results (1986)
15. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q.13(3), 319 (1989)
16. Schifter, D.E., Ajzen, I.: Intention, perceived control, and weight loss: an application of the theory of planned behavior. J. Pers. Soc. Psychol.49(3), 843 (1985)
17. Ajzen, I.: The theory of planned behavior. Organ. Behav. Hum. Decis. Process.50(2), 179–211 (1991)
18. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view. MIS Q. 425–478 (2003)
19. Rogers, E.M.: Diffusion of Innovations. The Free Press, New York (1995)
20. Wu, Y.W., Hsu, I.T., Lin, H.Y.: Using TAM to explore vocational students’ willingness to adopt a web-based BIM cost estimating system. Adv. Mater. Res.1079(1080), 1098–1102 (2015)
21. Batarseh, S., Kamardeen, I.: The impact of individual beliefs and expectations on BIM adoption in the AEC industry, vol. 1, pp. 466–475 (2017)
22. Al-Emran, M., Mezhuyev, V., Kamaludin, A.: Technology acceptance model in m-learning context: a systematic review. Comput. Educ.125, 389–412 (2018)
23. Al-Emran, M., Mezhuyev, V., Kamaludin, A., Shaalan, K.: The impact of knowledge manage- ment processes on information systems: a systematic review. Int. J. Inf. Manage.43, 173–187 (2018)
24. Junior, C.H., Oliveira, T., Yanaze, M.: The adoption stages (evaluation, adoption, and routini- sation) of ERP systems with business analytics functionality in the context of farms. Comput.
Electron. Agric.156, 334–348 (2019)
25. Bhuyan, S., Dash, M.: Exploring cloud computing adoption in private hospitals in India: an investigation of DOI and TOE model. J. Adv. Res. Dyn. Control Syst.10(8), 443–451 (2018) 26. AL-Shboul, M.A.: Towards better understanding of determinants logistical factors in SMEs for cloud ERP adoption in developing economies. Bus. Process Manag. J.25(5), 889–907 (2018).https://doi.org/10.1108/BPMJ-01-2018-0004
27. Martins, R., Oliveira, T., Thomas, M.A.: An empirical analysis to assess the determinants of SaaS diffusion in firms. Comput. Hum. Behav.62, 19–33 (2016)
28. Yang, Z., Sun, J., Zhang, Y., Wang, Y.: Understanding SaaS adoption from the perspective of organizational users: a tripod readiness model. Comput. Hum. Behav.45, 254–264 (2015) 29. Safari, F., et al.: The adoption of software-as-a-service (SaaS): ranking the determinants. J.
Enterp. Inf. Manage.28(3), 400–422 (2015)
30. Alshamaila, Y., Papagiannidis, S., Li, F.: Cloud computing adoption by SMEs in the north east of England: a multi-perspective framework. J. Enterp. Inf. Manage.26(3), 250–275 (2013) 31. Rosli, K., Yeow, P.H.P., Siew, E.-G.: Adoption of audit technology among audit firms. In:
24th Australasian Conference on Information Systems (ACIS) (2013)
32. Chong, A.Y.L., Chan, F.T.S.: Structural equation modeling for multi-stage analysis on Radio Frequency Identification (RFID) diffusion in the health care industry. Expert Syst. Appl.
39(10), 8645–8654 (2012)
33. Henderson, D., Sheetz, S.D., Trinkle, B.S.: The determinants of inter-organizational and internal in-house adoption of XBRL: a structural equation model. Int. J. Account. Inf. Syst.
13(2), 109–140 (2012)
34. Ifinedo, P.: An empirical analysis of factors influencing internet/e-business technologies adoption by SMEs in Canada. Int. J. Inf. Technol. Decis. Making10(04), 731–766 (2011) 35. Wang, Y.M., Wang, Y.S., Yang, Y.F.: Understanding the determinants of RFID adoption in
the manufacturing industry. Technol. Forecast. Soc. Change77(5), 803–815 (2010) 36. Doolin, B., Al Haj Ali, E.: Adoption of mobile technology in the supply chain. Int. J. eB. Res.
4(4), 1–15 (2008)
40 M. G. Elghdban et al.
37. Zhu, K., Dong, S., Xu, S.X., Kraemer, K.L.: Innovation diffusion in global contexts: determi- nants of post-adoption digital transformation of European companies. Eur. J. Inf. Syst.15(6), 601–616 (2006)
38. Hassan, H., Tretiakov, A., Whiddett, D.: Factors affecting the breadth and depth of e- procurement use in small and medium enterprises. J. Organ. Comput. Electron. Commer.
27(4), 304–324 (2017)
39. Azmi, A., Sapiei, N.S., Mustapha, M.Z., Abdullah, M.: SMEs’ tax compliance costs and IT adoption: the case of a value-added tax. Int. J. Account. Inf. Syst.23, 1–13 (2016)
40. Wang, Y.M., Wang, Y.C.: Determinants of firms’ knowledge management system implemen- tation: an empirical study. Comput. Hum. Behav.64, 829–842 (2016)
41. Alharbi, F., Atkins, A., Stanier, C.: Understanding the determinants of cloud computing adoption in Saudi healthcare organisations. Complex Intell. Syst.2(3), 155–171 (2016) 42. Gangwar, H., Date, H., Ramaswamy, R.: Developing a cloud-computing adoption framework.
Glob. Bus. Rev.16(4), 632–651 (2015)
43. Van Huy, L., Rowe, F., Truex, D., Huynh, M.Q.: An empirical study of determinants of e-commerce adoption in SMEs in Vietnam. J. Glob. Inf. Manage.20(3), 23–54 (2012) 44. Haberli, C., Oliveira, T., Yanaze, M.: Understanding the determinants of adoption of enterprise
resource planning (ERP) technology within the agrifood context: the case of the Midwest of Brazil. Int. Food Agribusiness Manage. Rev.20(5), 729–746 (2017)
45. Ali, O., Soar, J., Yong, J., McClymont, H., Angus, D.: Collaborative cloud computing adop- tion in Australian regional municipal government: an exploratory study. In: 2015 IEEE 19th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 540–548. IEEE (2015)
46. Agrawal, K.P.: Investigating the determinants of Big Data Analytics (BDA) adoption in emerging economies. Acad. Manage. Proc.2015(1), 11290 (2016)
47. MacLennan, E., Van Belle, J.P.: Factors affecting the organizational adoption of service- oriented architecture (SOA). Inf. Syst. eB. Manage.12(1), 71–100 (2014)
48. Hwang, B.N., Huang, C.Y., Wu, C.H.: A TOE approach to establish a green supply chain adoption decision model in the semiconductor industry. Sustainability8(2), 168 (2016) 49. Awa, H.O., Ojiabo, O.U.: A model of adoption determinants of ERP within T-O-E framework.
Inf. Technol. People29(4), 901–930 (2016)
50. Alam, M.G.R., Masum, A.K.M., Beh, L.S., Hong, C.S.: Critical factors influencing decision to adopt human resource information system (HRIS) in hospitals. PLoS One11(8) (2016) 51. Ahuja, R., Jain, M., Sawhney, A., Arif, M.: Adoption of BIM by architectural firms in India:
technology–organization–environment perspective. Archit. Eng. Des. Manage.12(4), 311–
330 (2016)
52. Al Isma’ili, S., Li, M., Shen, J., He, Q.: Cloud computing adoption determinants: an analysis of Australian SMEs. In: Pacific Asia Conference on Information Systems 2016 Proceedings, pp. 1–17 (2016)
53. Lai, H.M., Lin, I., Tseng, L.T.: High-Level Managers’ Considerations for RFID Adoption in Hospitals: An Empirical Study in Taiwan. J Med Syst38(2), 1–17 (2014)
54. Chauhan, S., Jaiswal, M., Rai, S., Motiwalla, L., Pipino, L.: Determinants of adoption for open-source office applications: a plural investigation. Inf. Syst. Manage.35(2), 80–97 (2018) 55. Gangwar, H.: Understanding the determinants of big data adoption in India. Inf. Resour.
Manage. J.31(4), 1–22 (2018)
56. Awa, H.O., Ojiabo, O.U., Orokor, L.E.: Integrated technology-organization-environment (T- O-E) taxonomies for technology adoption. J. Enterp. Inf. Manage.30(6), 893–921 (2017) 57. Lin, H.F., Lin, S.M.: Determinants of e-business diffusion: a test of the technology diffusion
perspective. Technovation28(3), 135–145 (2008)
58. Zhai, C.: Research on post-adoption behavior of B2B e-marketplace in China. In: 2010 International Conference on Management and Service Science, MASS 2010, no. 1 (2010) 59. Mangula, I.S., Van De Weerd, I., Brinkkemper, S.: The adoption of software-as-a-service: an
Indonesian case study. In: Proceedings—Pacific Asia Conference on Information Systems, PACIS 2014 (2014)
A Systematic Review of the Technological Factors Affecting … 41
60. Chen,Y.,Yin,Y., Browne, G.J., Li, D.: Adoption of building informationmodeling in Chinese construction industry: The technology organization environment framework. Eng. Constr.
Archit. Manage.26(9), 1878–1898 (2019)
61. AlBar, A.M., Hoque, M.R.: Factors affecting cloud ERP adoption in Saudi Arabia: an empirical study. Inf. Dev.35(1), 150–164 (2019)
62. Khan, M.J., Mahmood, S.: Assessing the determinants of adopting component-based development in a global context: a client-vendor analysis. IEEE Access6, 79060–79073 (2018)
63. Hsu, C.L., Lin, J.C.C.: Factors affecting the adoption of cloud services in enterprises. Inf.
Syst. eB. Manage.14(4), 791–822 (2016)
64. Simamora, B.H., Sarmedy, J.: Improving services through adoption of cloud computing at PT XYZ in Indonesia. J. Theor. Appl. Inf. Technol.73(3), 395–404 (2015)
65. Senyo, P.K., Effah, J., Addae, E.: Preliminary insight into cloud computing adoption in a developing country. J. Enterp. Inf. Manage.29(4), 505–524 (2016)
66. Yoon, T.E., George, J.F.: Why aren’t organizations adopting virtual worlds? Comput. Hum.
Behav.29(3), 772–790 (2013)
67. Tarhini, A., Al-Gharbi, K., Al-Badi, A., AlHinai, Y.S.: An analysis of the factors affecting the adoption of cloud computing in higher educational institutions. Int. J. Cloud Appl. Comput.
8(4), 49–71 (2018)
68. Ajjan, H., Kumar, R.L., Subramaniam, C.: Understanding differences between adopters and nonadopters of information technology project portfolio management. Int. J. Inf. Technol.
Decis. Making12(06), 1151–1174 (2013)
69. Xu, W., Ou, P., Fan, W.: Antecedents of ERP assimilation and its impact on ERP value: a TOE-based model and empirical test. Inf. Syst. Front.19(1), 13–30 (2017)
70. Ilin, V., Iveti´c, J., Simi´c, D.: Understanding the determinants of e-business adoption in ERP- enabled firms and non-ERP-enabled firms: a case study of the Western Balkan Peninsula.
Technol. Forecast. Soc. Change125, 206–223 (2017)
71. Puklavec, B., Oliveira, T., Popoviˇc, A.: Understanding the determinants of business intelli- gence system adoption stages an empirical study of SMEs. Ind. Manage. Data Syst.118(1), 236–261 (2018)
72. Chandra, S., Kumar, K.N.K.N., Road, H., Kumar, K.N.K.N., Road, H.: Exploring factors influencing organizational adoption of augmented reality in e-commerce: empirical analysis using technology–organization–environment model. J. Electron. Commer. Res.19(3), 237–
265 (2018)
73. Alkhalil, A., Sahandi, R., John, D.: An exploration of the determinants for decision to migrate existing resources to cloud computing using an integrated TOE-DOI model. J. Cloud Comput.
6(1) (2017)
74. Wei, J., Lowry, P.B., Seedorf, S.: The assimilation of RFID technology by Chinese companies:
a technology diffusion perspective. Inf. Manage.52(6), 628–642 (2015)
75. Chana, F.T.S., Chong, A.Y.L.: Determinants of mobile supply chain management system diffusion: a structural equation analysis of manufacturing firms. Int. J. Prod. Res.51(4), 1196–1213 (2013)
76. Sila, I., Dobni, D.: Patterns of B2B e-commerce usage in SMEs. Ind. Manage. Data Syst.
112(8), 1255–1271 (2012)
77. Wu, X., Subramaniam, C.: Understanding and predicting radio frequency identification (RFID) adoption in supply chains. J. Organ. Comput. Electron. Commer.21(4), 348–367 (2011)
78. Rouhani, S., Ashrafi, A., Ravasan, A.Z., Afshari, S.: Business intelligence systems adoption model. J. Organ. End User Comput.30(2), 43–70 (2018)
79. Ammar, A., Ahmed, E.M.: Factors influencing Sudanese microfinance intention to adopt mobile banking. Cogent Bus. Manage.3(1), 1–20 (2016)
80. Hsu, P.F., Ray, S., Li-Hsieh, Y.Y.: Examining cloud computing adoption intention, pricing mechanism, and deployment model. Int. J. Inf. Manage.34(4), 474–488 (2014)
42 M. G. Elghdban et al.
81. Cao, Q., Baker, J., Wetherbe, J., Gu, V.: Organizational adoption of innovation: identifying factors that influence RFID adoption in the healthcare industry. In: European Conference on Information Systems 2012, pp. 5–15 (2012)
82. Troshani, I., Rampersad, G., Plewa, C.: Organisational adoption of e-business: the case of an innovation management tool at a university and technology transfer office. Int. J. Netw.
Virtual Organ.9(3), 265 (2011)
83. Cao, Y., Ajjan, H., Hong, P., Le, T.: Using social media for competitive business outcomes:
an empirical study of companies in China. J. Adv. Manage. Res.15(2), 211–235 (2018) 84. Ifinedo, P.: Internet/e-business technologies acceptance in Canada’s SMEs: an exploratory
investigation. Internet Res.21(3), 255–281 (2011)
85. Zhang, H., Xiao, J.: Assimilation of social media in local government: an examination of key drivers. Electron. Libr.35(3), 427–444 (2017)
86. Shim, S., Lee, B., Kim, S.L.: Rival precedence and open platform adoption: an empirical analysis. Int. J. Inf. Manage.38(1), 217–231 (2018)
87. Lin, H.F.: Understanding the determinants of electronic supply chain management system adoption: using the technology-organization-environment framework. Technol. Forecast. Soc.
Change86, 80–92 (2014)
88. Maditinos, D., Chatzoudes, D., Sarigiannidis, L.: Factors affecting e-business successful implementation. Int. J. Commer. Manage.24(4), 300–320 (2016)
89. Rondovi´c, B., Djuriˇckovi´c, T., Kaš´celan, L.: Drivers of e-business diffusion in tourism: a decision tree approach. J. Theor. Appl. Electron. Commer. Res.14(1), 30–50 (2019) 90. Wolf, M., Beck, R., König, W.: Environmental dynamics as driver of on-demand computing
infrastructures—empirical insights from the financial services industry in UK. ECIS 1–14 (2012)
91. Ali, O., Soar, J., Shrestha, A.: Perceived potential for value creation from cloud computing: a study of the Australian regional government sector. Behav. Inf. Technol.37(12), 1157–1176 (2018)
92. Sulaiman, H., Magaireh, A., Ramli, R.: Adoption of cloud-based e-health record through the technology, organization and environment perspective. Int. J. Eng. Technol.7(4.35), 609 (2018)
93. Nam, D.W., Kang, D.W., Kim, S.: Process of big data analysis adoption: defining big data as a new IS innovation and examining factors affecting the process. In: Proceedings of Annual Hawaii International Conference on System Sciences, pp. 4792–4801. IEEE (2015) 94. Ramanathan, L., Krishnan, S.: An empirical investigation into the adoption of open source
software in information technology outsourcing organizations. J. Syst. Inf. Technol.17(2), 167–192 (2015)
95. Martins, R., Oliveira, T., Thomas, M., Tomás, S.: Firms’ continuance intention on SaaS use—an empirical study. Inf. Technol. People32(1), 189–216 (2019)
96. Hossain, M.A., Standing, C., Chan, C.: The development and validation of a two-staged adoption model of RFID technology in livestock businesses. Inf. Technol. People30(4), 785–808 (2017)
97. Indriasari, E., Wayan, S., Gaol, F.L.: Intelligent Information and Database Systems, vol. 7803.
Springer International Publishing, Cham (2013)
98. Kim, D.J., Hebeler, J., Yoon, V., Davis, F.: Exploring determinants of semantic web tech- nology adoption from IT professionals’ perspective: industry competition, organization innovativeness, and data management capability. Comput. Hum. Behav.86, 18–33 (2018) 99. Cruz-Jesus, F., Pinheiro, A., Oliveira, T.: Understanding CRM adoption stages: empirical
analysis building on the TOE framework. Comput. Ind.109, 1–13 (2019)
100. Lin, H.F.: Contextual factors affecting knowledge management diffusion in SMEs. Ind.
Manage. Data Syst.114(9), 1415–1437 (2014)
101. Schwarz, C., Schwarz, A.: To adopt or not to adopt: a perception-based model of the EMR technology adoption decision utilizing the technology-organization-environment framework.
J. Organ. End User Comput.26(4), 57–79 (2014)