• Tidak ada hasil yang ditemukan

Types, Behavior, and Strength Calculations

N/A
N/A
MUHAMMAD RIZKI RAIHAN

Academic year: 2024

Membagikan " Types, Behavior, and Strength Calculations"

Copied!
60
0
0

Teks penuh

(1)

Timber Connection

14 Maret 2024

Mata Kuliah RKK

(2)

LEA R N IN G OUT COM E S § Mampu mengenali berbagai jenis sambungan pada struktur kayu

§ Mampu mengenali perilaku dan pola

kegagalan berbagai jenis sambungan pada struktur kayu

§ Mampu menghitung kapasitas sambungan kayu

Source :

https://images.app.goo.gl/MWY9GbXJS24pRkSc6

(3)

OUTL INE

§ UMUM

§ JENIS SAMBUNGAN

§ PERHITUNGAN KEKUATAN SAMBUNGAN

§ FURTHER STUDIES

(4)

Sebuah struktur dari kayu dibangun dengan menggabungkan beberapa elemen (member), di mana terdapat joint/buhul pada pertemuan antar elemen tersebut.

Joint ini menjadi faktor kritis/penentu pada desain sebuah sistem struktur.

Kapasitas/kekuatan dari sambungan akan menentukan keandalan sebuah sistem struktur secara keseluruhan, alih-alih kapasitas/kekuatan dari elemen yang disambung.

UMUM

(5)

UMUM

Beban-beban luar pada sistem struktur rangka bekerja pada elemen-elemen

struktur.

Gaya-gaya dalam akibat beban luar akan ditransfer dari elemen satu ke

elemen lain pada titik-titik nodal.

Transfer gaya pada nodal akan terjadi melalui joint.

1. Pinned joint 2. Semi-rigid

joint 3. Rigid joint

(6)

UMUM

Source :

https://images.app.goo.gl/MWY9GbXJS24pRkSc6

1. Sambungan balok-kolom

Vista Engineering

2. Splice joint untuk menambah panjang elemen

James Wescott Bott

yamazonehome.net WoodWorks

(7)

UMUM

3. Sambungan perekat

Martin Svitak

4. Sambungan dowel

etsy.com

5. Sambungan Baut 6. Sambungan Pelat

(8)

Dowel-Type Fastener

images.app.goo.gl/chbLVCXfcBAcVJGg6

• Bolts

• Screw

• Nails

• Steel Dowel

• Wooden Dowel

(9)

Sa mb un ga n Pel at Be si

Sambungan kayu dengan pelat besi adalah metode untuk menggabungkan potongan kayu menggunakan pelat besi sebagai elemen penyambung.

Proses ini melibatkan pemotongan pelat besi sesuai dengan ukuran dan bentuk yang diperlukan, kemudian pelat besi tersebut ditempatkan di antara dua potongan kayu yang akan disambungkan. Setelah itu, lubang-lubang bor dibuat di pelat besi dan kayu, dan baut dipasang untuk menahan kedua bahan

https://ecoroofing.co.za/ideas/steel-connections-make-

strong-impression https://pryda.com.au/product/joist-hangers-heavy-duty-

split/

(10)

Dow el -Typ e Fas tener

• Nails

Round nails

Threaded nails

• Screws • Dowels and bolts

(11)

Ku rv a beban -se sa ra n al at sa mb un g (R ac he r, 1995)

Jenis alat sambung (a): Lem (12,5 103 mm2) (b): Cincin belah 100 mm (c): Kokot Buldog 62 mm (d):Dowel 14 mm

(e): Baut 14 mm

(f): Punched plate 104 mm2 (g): Paku 4,4 mm

(12)

DESAIN

SAMBUNGAN

Source : https://www.imegcorp.com/wp-content/uploads/2022/07/1040-W-Fulton-glulam-4_medium.jpg

• Wood-steel-wood Joint

• Steel-wood-steel Joint

• Wood-to-wood Joint

(13)

Joi nt Load - sl ip cu rv e

Joint Load-slip curve

Ø

I : Initially steep, kayu dan

sambungan masih dalam kondisi elastis.

Ø

II : Less steep, setelah sambungan atau kayu mencapai batas elastis, kekakuan menurun yang ditandai dengan kemiringan kurva yang semakin landai.

Ø

III : Kemiringan kurva melandai ke bawah, yaitu ketika sistem

sambungan sudah mengalami kegagalan. Kegagalan dapat berupa

splitting

pada kayu atau tercapainya kapasitas sambungan

yang yang digunakan.

Ductility = δu / δu
(14)

Wood -ste el - wo od Joi nt

Inserted steel plate

Steel dowel

Timber element

Joint yield load:

A. Wood-steel-wood Joint (Inserted steel plate timber joint)

Source :Design of timber structures (Swedish Wood)

(15)

Wood -ste el - wo od Joi nt

Joint yield load: (Eurocode 5)

𝐹 = 𝑓𝑒𝑡1𝑑

∗ 𝐹 = 𝑓 𝑡 𝑑𝑒 1 2 + 4𝑀𝑦

𝑓𝑒𝑑𝑡12

𝐹𝑎𝑥,𝑅𝑘

− 1 + 4

A. Wood-steel-wood Joint (Inserted steel plate timber joint)

Failure mode Equation Sketch

∗ 𝐹 = 2,3 𝑀𝑦𝑓𝑒𝑑 +𝐹𝑎𝑥,𝑅𝑘 4 Mode I

(wood embedding failure)

Mode II

(dowel bent failure)

Mode III

(dowel bent failure)

(16)

Lab Test Inserted plate connector

Awaludin A.,

-10 -20 30 20 10

0

-5 0 5 10 15 20

Slip (mm)

Load(kN)

(17)

Ste el -wo od - steel Joi nt

Joint yield load: (Eurocode 5)

B. Steel-wood-steel Joint

Single shear, where t

s

≥ d (thick steel plate)

Failure mode Equation Sketch

𝐹 = 𝑓𝑒𝑡1𝑑

∗ 𝐹 = 𝑓 𝑡 𝑑𝑒 1 2 + 4𝑀𝑦

𝑓𝑒𝑑𝑡12

𝐹𝑎𝑥,𝑅𝑘

− 1 + 4

∗ 𝐹 = 2,3 𝑀𝑦𝑓𝑒𝑑 +𝐹𝑎𝑥,𝑅𝑘 4 Mode I

(wood embedding failure)

Mode II

(dowel bent failure)

Mode III

(dowel bent failure)

(18)

Ste el -wo od - steel Joi nt

Joint yield load: (Eurocode 5)

B. Steel-wood-steel Joint

Single shear, where t

s

≤ 0,5d (thin steel plate)

Failure mode Equation Sketch

𝐹 = 0,4𝑓𝑒𝑡1𝑑

∗ 𝐹 = 1,15 2𝑀𝑦𝑓𝑒𝑑 +𝐹𝑎𝑥,𝑅𝑘 4 Mode I

(dowel rotation failure)

Mode II

(dowel bent failure)

Source :Design of timber structures (Swedish Wood)

(19)

Ste el -wo od - steel Joi nt

Joint yield load: (Eurocode 5)

B. Steel-wood-steel Joint

Double shear, where t

s

≥ d (thick steel plate)

Failure mode Equation Sketch

𝐹 = 0,5𝑓𝑒𝑡2𝑑

∗ 𝐹 = 2,3 𝑀𝑦𝑓𝑒𝑑 +𝐹𝑎𝑥,𝑅𝑘 4 Mode I

(wood embedding failure)

Mode II

(dowel bent failure)

(20)

Ste el -wo od - steel Joi nt

Joint yield load: (Eurocode 5)

B. Steel-wood-steel Joint

Double shear, where t

s

≤ 0,5d (thin steel plate)

Failure mode Equation Sketch

𝐹 = 0,5𝑓𝑒𝑡2𝑑

∗ 𝐹 = 1,15 2𝑀𝑦𝑓𝑒𝑑 +𝐹𝑎𝑥,𝑅𝑘 4 Mode I

(wood embedding failure)

Mode II

(dowel bent failure)

Source :Design of timber structures (Swedish Wood)

(21)

Ste el -wo od - steel Joi nt

Fastener secondary axial force is well indicated by the slope of final stiffness of experimental load-slip curves. Some researches associated this mechanism as

Joint yield load:

B. Steel-wood-steel Joint

(22)

Wood -to - wo od Joi nt

Joint yield load: (Eurocode 5; SNI 2013)

C. Wood-to-wood Joint (Single Shear)

Im Is II

IIIm IIIs IV

Source :Design of timber structures (Swedish Wood)

(23)

Wood -to - wo od Joi nt

Joint yield load: (Eurocode 5; SNI 2013)

C. Wood-to-wood Joint (Double Shear)

Im Is

IIIs IV

(24)

Wood -to - wo od Joi nt

Joint yield load: (Eurocode 5; SNI 2013)

C. Wood-to-wood Joint

Single Shear Failure Mode Double Shear

Mode Im

Mode Is

Mode II

Mode IIIm

Mode IIIs

Mode IV

Tidak berlaku

Tidak berlaku

(25)

Wood -to - wo od Joi nt

Joint yield load: (Eurocode 5; SNI 2013)

C. Wood-to-wood Joint (Single Shear)

Failure mode Equation Sketch

𝐹 = 𝑓𝑒𝑡2𝑑 Mode Im

𝐹 = 𝑓𝑒𝑡1𝑑 Mode Is

∗ 𝐹 =𝑓 𝑡 𝑑𝑒𝑠 1

1 + 𝛽 𝛽 + 2𝛽2 1 +𝑡2+ 𝑡2 𝑡1 𝑡1

2

+ 𝛽3 𝑡2 𝑡1

2 − 𝛽 1 +𝑡2 𝑡1

+𝐹𝑎𝑥,𝑅𝑘

Mode II 4

(26)

Wood -to - wo od Joi nt

Joint yield load: (Eurocode 5; SNI 2013)

C. Wood-to-wood Joint (Single Shear)

Failure mode Equation Sketch

Mode IIIm

Mode IIIs

Mode IV

𝑓𝑒𝑠𝑡2𝑑

∗ 𝐹 = 1 + 2𝛽 2𝛽2 1 + 𝛽

𝑓𝑒𝑠𝑡22𝑑 4𝛽(1 + 2𝛽)𝑀𝑦

+ − 𝛽 𝐹𝑎𝑥,𝑅𝑘

+ 4

𝑓𝑒𝑠𝑡1𝑑

∗ 𝐹 = 2 + 𝛽 2𝛽 1 + 𝛽

𝑓𝑒𝑠𝑡12𝑑 4𝛽(2 + 𝛽)𝑀𝑦

+ − 𝛽 𝐹𝑎𝑥,𝑅𝑘

+ 4

∗ 𝐹 = 1,15 2𝛽

1 + 𝛽 2𝑀 𝑓𝑦 𝑒𝑠 𝐹𝑎𝑥,𝑅𝑘 𝑑 + 4

Source :Design of timber structures (Swedish Wood)

(27)

Wood -to - wo od Joi nt

Joint yield load: (Eurocode 5; SNI 2013)

C. Wood-to-wood Joint (Double Shear)

Failure mode Equation Sketch

Mode Im

Mode Is 𝐹 = 𝑓𝑒𝑡1𝑑

𝐹 = 0,5𝑓𝑒𝑡2𝑑

(28)

Wood -to - wo od Joi nt

Joint yield load: (Eurocode 5; SNI 2013)

C. Wood-to-wood Joint (Double Shear)

Failure mode Equation Sketch

Mode IIIs

Mode IV

𝑓𝑒𝑠𝑡1𝑑

∗ 𝐹 = 2 + 𝛽 2𝛽 1 + 𝛽

𝑓𝑒𝑠𝑡12𝑑 4𝛽(2 + 𝛽)𝑀𝑦

+ − 𝛽 𝐹𝑎𝑥,𝑅𝑘

+ 4

∗ 𝐹 = 1,15 2𝛽

1 + 𝛽 2𝑀 𝑓𝑦 𝑒𝑠 𝐹𝑎𝑥,𝑅𝑘 𝑑 + 4

Source :Design of timber structures (Swedish Wood)

(29)

Rope Effe ct

In all failure modes in shear where the dowel is bent (marked with * in previous slides), some part of the load uptake also occurs in tension. Depending on the surface and end anchorage of the dowel, the part carried in tension can be larger or smaller. The surface of the dowel can have higher anchorage resistance (Fax) due to:

• twisted dowels

• annular rings

• threading

In Eurocode 5, the rope effect is taken into Fax,Rk/4

account by adding the term to the expression for the shear capacity of dowel. The contribution from the “rope effect” is limited to given percentages of the shear capacity.

Fastener type Percentage

Round nails 15 %

Square and grooved nails 25 %

Other nails 50 %

Screws 100 %

Bolts 25 %

Dowels 0 %

(30)

Yi el d Mo m en t (M y, Rk )

(31)

Sa mb un ga n Baut

Sumber : https://seblog.strongtie.com/2015/01/dont-get-washed-away-the-next- wave-of-pile-fastener-innovation-has-arrived/

Sambungan kayu dengan baut adalah metode penggabungan dua atau lebih potongan kayu menggunakan baut dan mur. Proses ini melibatkan pengeboran lubang di kedua potongan kayu yang akan disambungkan, kemudian baut dimasukkan melalui lubang tersebut dan diikat dengan mur di bagian belakang.

Perhitungan kapasitas dan persyaratan pemasangan baut diatur dalam SNI

7973-2013.

(32)

Ko re ksi Nila i Desai n Acuan

Koreksi Nilai Desain Acuan

Menurut SNI 7973-2013, nilai desain acuan yang dihitung sebelumnya (F = Z) harus dikalikan dengan semua faktor koreksi yang berlaku untuk menentukan nilai desain terkoreksi (Z’). Adapun persamaan DFBK (LRFD) untuk sambungan jenis pasak (baut, sekrup, paku) adalah sebagai berikut.

𝒁

= 𝒁 × 𝑪

𝑴

× 𝑪

𝒕

× 𝑪

𝒈

× 𝑪

× 𝑪

𝒆𝒈

× 𝑪

𝒅𝒊

× 𝑪

𝒕𝒏

× 𝑲

𝑭

× 𝝋 × 𝝀

Keterangan:

Z = Nilai desain acuan sebelum dikoreksi (N) CM = Faktor layan basah (pasal 10.3.3)

Ct = Faktor temperature (pasal 10.3.4) Cg = Faktor aksi kelompok (pasal 10.3.6) CΔ = Faktor geometri (pasal 11.5.1)

Ceg = Faktor serat ujung (pasal 11.5.2)

Cdi = Faktor diafragma (pasal 11.5.3) Ctn = Faktor ujung paku (pasal 11.5.4) Kf = Faktor konversi format (pasal 10.3.7) φ = Faktor tahanan (pasal 2.3.6)

λ = Faktor efek waktu (pasal 2.3.7)

(33)

Nilai desain terkoreksi untuk baut atau sekrup kunci pada sambungan sambungan kayu-ke-kayu atau kayu-ke-metal:

Untuk sambungan kayu ke kayu dengan komponen struktur sampingdibebani sejajar serat,

Z|| = nilai desain lateral terkoreksi untuk sambungan sekrup kunci atau baut tunggal dengan komponen struktur kayu utama atau samping dibebani sejajar serat, Z||

Z⊥ = nilai desain lateral terkoreksi untuk sambungan sekrup kunci atau baut tunggal dengan komponen struktur samping dibebani sejajar serat dan komponen struktur utrama dibebani tegak lurus serat, Z⊥

Untuk sambungan kayu ke kayu dengan komponen struktur utamadibebani sejajar serat,

Z|| = nilai desain lateral terkoreksi untuk sambungan sekrup kunci atau baut tunggal dengan komponen struktur kayu utama atau samping dibebani sejajar serat, Z||

Z⊥ = nilai desain lateral terkoreksi untuk sambungan sekrup kunci atau baut tunggal

komponen struktur utama dan komponen sejajar serat

samping dibebani tegak lurus dengan

dibebani struktur serat, Z⊥

Nila iDes ai n Te rk ore ksi

(34)

Sa mb un ga n Baut

Persyaratan geometrik penempatan baut (SNI 7973-2013)

Untuk pengencang tipe pasak, Ketika D < 6.35mm. Faktor geometrik C

Δ

= 1.0

Ketika D ≥ 6.35 mm. Faktor geometrik C

Δ

diperhitungkan

pada kondisi (a), (b), atau (c).

(35)

Sa mb un ga n Baut

Kondisi (a)

Syarat jarak tepi

(36)

Sa mb un ga n Baut

Kondisi (b)

Untuk beban dengan sudut pada pengencang, ketika pengencang tipe pasak digunakan, luas geser minimum untuk C = 1,0 harus ekivalen dengan luas geser untuk komponen struktur sambungan sejajardengan jarak ujung minimum untuk C

=1,0. Luas geser minimum untuk C∆ = 0,5 harus ekivalen dengan 1/2 luas geser minimum untuk C∆ = 1,0. Ketika luas geser aktual lebih besar atau sama dengan luas geser minimum untuk C = 0,5, tetapi lebih kecil dari luas geser minimum untuk C = 1,0, faktor geometrik harus ditentukan sebagai berikut:

Arah Pembebanan

Jarak

Jarak minimum Jarak minimum untuk CΔ=1,0

Sejajar Serat 3D 4D

Tegak Lurus Serat

3D Kebutuhan jarak untuk komponenstruktur yang tersambung

Syarat jarak untuk pengencangan dalam satu baris

(37)

Sa mb un ga n Baut

Kondisi (c)

Ketika spasi aktual diantara baris pengencang tipe pasak untuk pembebanan searah atau tegak lurus serat lebih besar atau sama dengan spasi minimum, tetapi kurang dari spasi minimum untuk C

= 1,0, faktor geometrik, C

, harus ditentukan sebagai berikut:

Syarat jarak tepi

(38)

Ex amp le

Material Properties:

fe =26.62 N/mm2 t1 =47 mm

D = 12 mm fy= 413 N/mm2

Myb= fyD3/6 = 118.944 Nmm

Lateral Load (Z

e

), minimum of:

𝑍𝑒 = 𝑓𝑒𝑡1𝐷 = 30.03 𝑘𝑁

(1)

(2)

𝑍𝑒 = 𝑓𝑒𝐷𝑏1 = 𝑓𝑒𝐷𝑡1 2 + 𝑓 𝐷𝑡4𝑀𝑒 𝑦𝑏12 − 1 = 19.08 𝑘𝑁

(3)

𝑍𝑒 = 4𝑀𝑦𝑏𝑓𝑒𝐷 = 24.66 𝑘𝑁 -20

-10 0 10 20 30

-5 0 5 10 15 20

Slip (mm)

Load(kN)

(39)

SOLUSI PERSAMAAN HANKINSON

• Persamaan Kuat Tumpu

• Nilai Desain Terkoreksi

• Contoh Perhitungan

(40)

Nila i Emp irik

ASTM D5764 (half-hole test)

EN 383 (full-hole test)

𝑓

𝑒,0

= 77.25𝐺

𝑓

𝑒,90

= 212𝐺

1.45

𝑑

−0.5

𝑓

𝑒,𝛼

= 𝑓

𝑒,0

𝑓

𝑒,90

𝑓 𝑠𝑖𝑛

𝑒,0 2

𝛼 + 𝑓

𝑒,90

𝑐𝑜𝑠

2

𝛼

𝑓

𝑒,0

= 82(1 − 0,01𝑑)𝐺

𝑒,90

𝑓

𝑒,0

82(1 − 0,01𝑑)𝐺

𝑓 = ≫≫

𝑘

90

𝑘

90

𝑓

𝑒,𝛼

=

𝑘

90

= 1.35 + 0.015𝑑 𝑓𝑜𝑟 𝑠𝑜𝑓𝑡𝑤𝑜𝑜𝑑 𝑘

90

= 0.9 + 0.015𝑑 𝑓𝑜𝑟 ℎ𝑎𝑟𝑑𝑤𝑜𝑜𝑑

82(1 − 0,01𝑑)𝐺

𝑘 𝑠𝑖𝑛

90 2

𝛼 + 𝑐𝑜𝑠

2

𝛼

(41)

arah Kuat tumpu kayu bergantung pada

serat terhadap arah beban yang bekerja.

Nilai desain tumpu pasak dengan rumus Hankinson:

Ku at Tu mp u

(42)

FURTHER

STUDIES

(43)

Beam to Column Timber Joints with Pretensioned Bolts

Ali Awaludin, T. Hirai, Y. Sasaki, T. Hayashikawa, A. Oikawa (2011)

https://www.researchgate.net/publication/265011840_Beam_to_Column_Timber_Joints_with_Pretensioned_B

(a) Hyteresis loop, joint between steel plate and vertical member with 0 kN pretension force.

(b) Hyteresis loop, joint between steel plate and

(44)

Beam to Column Timber Joints with Pretensioned Bolts

Ali Awaludin, T. Hirai, Y. Sasaki, T. Hayashikawa, A. Oikawa (2011)

https://www.researchgate.net/publication/265011840_Beam_to_Column_Timber_Joints_with_Pretensioned_B

(45)

Beam to Column Timber Joints with Pretensioned Bolts

Ali Awaludin, T. Hirai, Y. Sasaki, T. Hayashikawa, A. Oikawa (2011)

https://www.researchgate.net/publication/265011840_Beam_to_Column_Timber_Joints_with_Pretensioned_B

The final hysteresis loop at 0.04 rads

Equivalent viscous damping ratio at cyclic rotation of 0.04 rads

(46)

Loading Resistance of Bolted Timber Joints beyond their Yield-Loads

Ali Awaludin, T. Hirai, Y. Sasaki, T. Hayashikawa (2010)

https://www.researchgate.net/publication/293251242_Loading_Resistance_of_Bolted_Timber_Joints_beyond_their_

Yield-Loads

Effect of Washer Dimension

(47)

Loading Resistance of Bolted Timber Joints beyond their Yield-Loads

Ali Awaludin, T. Hirai, Y. Sasaki, T. Hayashikawa (2010)

https://www.researchgate.net/publication/293251242_Loading_Resistance_of_Bolted_Timber_Joints_beyond_their_

Yield-Loads

Effect of Washer Dimension

(48)

SAMBUNGAN BALOK-KOLOM KERUING DENGAN TULANGAN GFRP DAN PERKUATAN PELAT BAJA SIKU AKIBAT BEBAN MONOTONIK

Emanuel Fadjari Gumelar Adisukma, Ali Awaludin, Andreas Triwiyono (2017) https://www.researchgate.net/publication/331522429_Beam-

column_connections_of_Keruing_using_GFRP_rods_and_Steel_Plate_under_Monotonic_Load

Kurva beban-perpindahan sambungan tipe 1

Kurva beban-perpindahan sambungan tipe 2

Pola kerusakan sambungan tipe 1

Pola kerusakan sambungan tipe 2 P-peak = 14.87 kN

P-peak = 11.37 kN

(49)

Bolted glulam beam-column connections under different combinations of shear and bending

Mingqian Wang, Xiaobin Song, Xianglin Gu, Jianyang Tang (2018)

https://www.researchgate.net/publication/329771941_Bolted_glulam_beam-column_connections_under_different_combinations_of_shear_and_bending

Avg. experimental result:

Peak point = 15.4 kNm Rotation = 2.8° Stiffness = 3.3 kNm / °

Finite element simulation result:

Peak point = 15.7 kNm Pola kerusakan

Finite element model

(50)

Hybrid connections wood-concrete

Master Thesis Efa Suriani

Pengujian Sambungan Komposit Kayu-Beton

Pengujian Kuat tumpu beton

(Kayu Surian dan f’c 15.93 MPa)

(Kayu Mahoni dan f’c 15.93 MPa)

(51)

Structural Timber Connections with Dowel-Type Fasteners and Nut-Washer Fixings

Manuel Domínguez , Jose G. Fueyo , Alberto Villarino ,and Natividad Anton

https://www.researchgate.net/publication/357415340_Structural_Timber_Connections_with_Dowel-Type_Fasteners_and_Nut- Washer_Fixings_Mechanical_Characterization_and_Contribution_to_the_Rope_Effect

(a) flat dowel; (b) threaded dowel; (c) threaded dowel with nut-washer fixing

flat dowel threaded dowel

(52)

Possible Failure Modes Steel-Wood-Steel Bolts Joints

Awaludin, A. and Saputro, D.N.

https://www.researchgate.net/publication/347337588_Effects_of_Loaded_End_Distance_and_Moisture_Content_on_the_Behavior_of_Bolted_Connections_in_Squared_and_Round_Timber_Subjected_to_Tension_Parallel_to_the_Grain

n is number of

fastener, and d is

fastener diameter.

(53)

Splitting Strength of Plybamboo-Reinforced Timber Joints under Loading Perpendicular-to-grain

Ali Awaludin, Toshiro Hayashikawa, Takuro Hirai, Yoshihisa Sasaki

https://www.researchgate.net/publication/293639849_Splitting_Strength_of_Plybamboo-Reinforced_Timber_Joints_under_Loading_Perpendicular-to-grain

(a) Un-reinforced joint; (b) Self-tapping screw reinforced joint; (c) Reinforced joint with plybamboo at dowel-hole; And (d) Reinforced joint with plybamboo at end

member.

0 2 4 10 8 6

0.0 0.5 1.0 1.5 2.0

Load,F,(kN)

The plybamboo-reinforced joints gave much higher splitting strength but the joint brittle characteristics was hardly improved.

In the screw-reinforced joints, splitting strength increase was small but brittle failure was postponed till some extents

(54)

Comparation between single and double plate connector

Awaludin A.,

-10 -20 30 20 10

0

-5 0 5 10 15 20

Slip (mm)

Load(kN)

(55)

Tahanan Lateral Sambungan Geser Ganda Kayu Karet Fjlb – Pelat Besi Dengan Alat Sambung Baut

Sherly Octavia, Ali Awaludin dan Urwatul Wusqo (2022)

https://jurnal.uns.ac.id/jrrs/article/view/62337/37017

Pola kerusakan uji lentur baut

Kurva momen-lendutan uji lentur baut

Kurva tahanan lateral-selip uji pembebanan tegak lurus serat

(56)

Uji geser pelat sambung Alumidi (kayu ulin)

11.95, 41 .573

P (kN)

Displacement (mm)

Pmaksimum = 41.6 kN

Uji Geser Alumidi

(57)

Uji monotonic pelat sambung Alumidi (kayu ulin)

Momen(kNm)

Kurva Momen-rotasi

5.433175

(58)

Uji lentur sambungan dowel &

Sikadur 31F (kayu bengkirai)

23.12 20.56

17.26

6.65

Beban(kN)

Perpindahan (mm)

Kurva Beban-Perpindahan

Sikadur 1 Sikadur 2 Sikadur 3 Sikadur 4

(59)

Uji lentur sambungan xepox (kayu bengkirai)

Beban(kN)

Kurva Beban-Perpindahan

13.125

Xepox 1 Xepox 2

Xepox 3 7.36

6.44

(60)

THANK

YOU

Referensi

Dokumen terkait

This document provides an overview of different types of reading questions and strategies for answering them

This document provides an overview of strategic management, including its definition, key concepts, and perspectives on

The document provides calculations and explanations for various chemistry concepts, including atomic mass, isotopic abundance, and the mole

The document provides an overview of descriptive statistics, including measures of central tendency and

This document provides an overview of India, including its history, government, flag, and other relevant

This document provides an overview of key motivation theories and concepts, including self-determination theory, goal-setting theory, self-efficacy theory, reinforcement theory, expectancy theory, and organizational

The document provides an overview of automotive powertrain components, including the clutch, transmission, and their

This document provides an infographic-style overview of dehydration, including its causes, symptoms, and