جاﺮﺨﺘﺳا ﻊﺑﺎﻨﻣ ﻦﯿﺑ ﯽﻧﺎﮑﻣ و ﯽﻧﺎﻣز ﻪﻄﺑار ﯽﯾﺎﻤﻧزﺎﺑ رد ﻪﻧﺎﮔود ﻦﻤﻟﺎﮐ ﺮﺘﻠﯿﻓ زا هدﺎﻔﺘﺳا ﺰﻐﻣ ﯽﮑﯾﺮﺘﮑﻟا لﺎﻨﮕﯿﺳ زا هﺪﺷ
ﮑﭼ ﯿ هﺪ زاﯽﮑﯾﺮﯿﺛﺎﺗدرﻮﻣردوهدﻮﺑﺐﺳﺎﻨﻣرﺎﯿﺴﺑيﺰﻐﻣﯽﺣاﻮﻧﻦﯿﺑيﺎﻬﺘﯿﻟﺎﻌﻓوﺎﻬﻤﺴﯿﻧﺎﮑﻣﻪﻌﻟﺎﻄﻣياﺮﺑﻪﮐﺖﺳاﯽﺗﺎﻋﻮﺿﻮﻣزاﺮﺛﻮﻣطﺎﺒﺗرا-
ﯽﻣﺚﺤﺑﺮﮕﯾدﺶﺨﺑيورﺮﺑﺰﻐﻣلﺎﻌﻓيﺎﻬﺸﺨﺑ يﺰﻐﻣﻒﻠﺘﺨﻣيﺎﻬﺸﺨﺑﻦﯿﺑﺮﺛﻮﻣطﺎﺒﺗراﻦﯿﻤﺨﺗياﺮﺑﯽﻔﻠﺘﺨﻣيﺎﻬﺷور .ﺪﻨﮐ
ﻒﻠﺘﺨﻣتﻻﺎﻘﻣرد
ﺷﻪﺋارا ﺖﺳاهﺪ يﺪﯾﺪﺟشورﻪﻟﺎﻘﻣﻦﯾاردﻪﮐ ﻦﻤﻟﺎﮐﺮﺘﻠﯿﻓزاهدﺎﻔﺘﺳاﺎﺑ
ﻪﻧﺎﮔود شورﻦﯾارد .ﺖﺳاهﺪﺷدﺎﻬﻨﺸﯿﭘ اﺪﺘﺑا
ﺎﺑيﺰﻐﻣلﺎﻌﻓيﺎﻬﺸﺨﺑ
ﻦﯿﯿﻌﺗيﺎﻬﺷورزاهدﺎﻔﺘﺳا ﺣاﻮﻧ
ﯽ ﺰﻐﻣلﺎﻌﻓ هﺪﺷجاﺮﺨﺘﺳا و
ﺲﭙﺳ ﻊﺑﺎﻨﻣ ﺖﻟﺎﺣيﺎﻀﻓلﺪﻣﺎﺑ ﺎﻬﻧآﻦﯿﺑطﺎﺒﺗراوهﺪﺷهدادﻖﯿﺒﻄﺗ
ﻦﻤﻟﺎﮐﺮﺘﻠﯿﻓﺎﺑ
ﻪﻧﺎﮔود ﯽﻣهدزﻦﯿﻤﺨﺗ ﻮﺷ
ﻧ .ﺪ ﺖﺴﻨﯾايدﺎﻬﻨﺸﯿﭘشوريﺎﯾاﺰﻣزا ﻪﮐ
يﺎﻬﺸﺨﺑﺖﯿﻟﺎﻌﻓناﺰﯿﻣوﻪﻨﻣاد،لﺎﻌﻓﻖﻃﺎﻨﻣﻦﯿﺑﺮﺛﻮﻣطﺎﺒﺗراﻦﯿﻤﺨﺗﺎﺑهاﺮﻤﻫ
ﯽﻣهدزﻦﯿﻤﺨﺗﯽﮑﯿﻣﺎﻨﯾدترﻮﺼﺑﺰﯿﻧيﺰﻐﻣﻒﻠﺘﺨﻣ ﺪﻧﻮﺷ
ﺮﮕﯾدترﺎﺒﻌﺑ . ﻪﻈﺤﻟﺮﻫردﺰﯿﻧﻊﺑﺎﻨﻣﺖﯿﻟﺎﻌﻓ،لﺎﻌﻓيﺎﻬﺸﺨﺑﻦﯿﺑطﺎﺒﺗراﻦﯿﻤﺨﺗﺮﺑهوﻼﻋ
ﻣززا ﯽﻣزورﻪﺑنﺎ .دﻮﺷ
ﯽﺑﺎﯾزرا يدﺎﻬﻨﺸﯿﭘشور ﻂﺳﻮﺗ
اﺮﮔﻮﻟﺎﻔﺴﻧاوﺮﺘﮑﻟايﺎﻬﻟﺎﻨﮕﯿﺳ م
EEG) ﻪﯿﺒﺷ ( هﺪﺷيزﺎﺳ
،مﻮﻠﻌﻣتﺎﻃﺎﺒﺗرازاهدﺎﻔﺘﺳاﺎﺑ
مﺎﺠﻧا ﺖﺳا هﺪﺷ ﻪﮐ
ﻪﯿﺒﺷ زا هﺪﻣآ ﺖﺳﺪﺑ ﺞﯾﺎﺘﻧ طﺎﺒﺗرا ﻪﺴﯾﺎﻘﻣ و ﻒﻠﺘﺨﻣ يﺎﻬﯾزﺎﺳ
هﺪﺷ هدز ﻦﯿﻤﺨﺗ شور ﻂﺳﻮﺗ
يدﺎﻬﻨﺸﯿﭘ ﻒﯾﺮﻌﺗ ﺶﯿﭘزا راﺪﻘﻣ و
هﺪﺷ ردﻪﮐيا
،ﻢﯾدﻮﺑهدﺮﮐضﺮﻓلﺎﻨﮕﯿﺳﺪﯿﻟﻮﺗ ارشورﺐﺳﺎﻨﻣﺖﻗدوﺖﺤﺻ
ﯽﻣنﺎﺸﻧ .ﺪﻫد
هژاوﺪﯿﻠﮐ ماﻮﺗﻦﻤﻟﺎﮐﺮﺘﻠﯿﻓ،ﺰﻐﻣلﺎﻌﻓﯽﺣاﻮﻧﻦﯿﯿﻌﺗيﺎﻬﺷور،ﺮﺛﻮﻣطﺎﺒﺗرا -
1 ﻪﻣﺪﻘﻣ -
ﺮﺘﺸﯿﺑ ﺮـﯾززاﯽﮑﯾژﻮـﻟﻮﯿﺑيﺎﻬﻤﺘﺴﯿﺳ ﯽـﻔﻠﺘﺨﻣيﺎﻬﻤﺘـﺴﯿﺳ
هﺪﺷﻞﯿﮑﺸﺗ وﺎـﻬﻧآطﺎـﺒﺗراهﻮـﺤﻧﻢﻬﻓﻪﮐﺪﻨﻃﺎﺒﺗراردﻢﻫﺎﺑﻪﮐﺪﻧا
ردﺮﮕﯾﺪﻤﻫﺎﺑﺎﻬﻧآﻞﻣﺎﻌﺗ رﺎﯿـﺴﺑﻢﺘﺴﯿﺳدﺮﮑﻠﻤﻋكردوﯽﯾﺎﺳﺎﻨﺷ
ﻢﻬﻣ ﯽﮑﯾژﻮﻟﻮﯿﺑﻢﺘﺴﯿﺳزاﺶﺨﺑﮏﯾناﻮﻨﻌﺑﺰﻐﻣ .ﺖﺳا ﺮـﯾززاﺰﯿﻧ
ﺖﺳاهﺪﺷﻞﯿﮑﺸﺗﺮﮕﯾﺪﻤﻫﺎﺑﻂﺒﺗﺮﻣيﺎﻬﻤﺘﺴﯿﺳ دﺮـﮑﻠﻤﻋﻪﮐ
نآ
ﻦﯿﺑطﺎﺒﺗراﺎﺑ ﺮﯾز
وﺎﻬﻤﺘﺴﯿﺳ ﺗ
ﺛﺎ ﯿ
ﺮﮕﯾﺪـﻤﻫيورﻪـﺑﺎـﻬﻧآﺮ ﻒـﯾﺮﻌﺗ
ﺮــﯾزﻦﯿـﺑطﺎـﺒﺗراﯽﯾﺎـﺳﺎﻨﺷوﺰـﻐﻣدﺮـﮑﻠﻤﻋﻢـﻬﻓﻪـﮐدﻮـﺷﯽـﻣ
،ﺰﻐﻣيﺎﻬﻤﺘﺴﯿﺳ ﻪﻏﺪﻏدﻦﯾﺮﺘﻤﻬﻣزاﯽﮑﯾ
بﺎـﺼﻋاوﺰﻐﻣﻢﻠﻋيﺎﻫ
يﺰـﻐﻣطﺎـﺒﺗراﻪـﮐيﺰـﻐﻣيﺎﻬﻤﺘـﺴﯿﺳﺮﯾزﻦﯿﺑطﺎﺒﺗرارد .ﺖﺳا
1
ﯽﻣهﺪﯿﻣﺎﻧ ﯿـﻤﺨﺗيﺰﻐﻣﯽﺣاﻮﻧﻦﯿﺑتﺎﻋﻼﻃاﺮﯿﺴﻣوﻪﻨﻣاد،دﻮﺷ
ﻦ
وهﺪﺷهدز ﯽﻣﻪﺘﻓﺮﮔراﺮﻗﻞﯿﻠﺤﺗدرﻮﻣ
]ﺪﻧﻮﺷ 1،2 ﯽﻠﮐﺖﻟﺎﺣرد .[
عﻮﻧﻪﺳ ﻒﯿﺻﻮﺗ ﺎـﯾﯽﮑﯿﻣﻮﺗﺎـﻧآطﺎـﺒﺗرا :دراددﻮـﺟويﺰﻐﻣطﺎﺒﺗرا
يرﺎﺘﺧﺎﺳ ﺎـﯾﯽـﮑﯾﺰﯿﻓطﺎﺒﺗراﻪﺑﻪﮐ2
ﯽﮑﯿﻣﻮﺗﺎـﻧآ يﺎﻫﺪـﺣاوﻦﯿـﺑ
1 Brain Connectivity
2 Structural or anatomical connectivity
نﻮﯿﺒﺟريﺪﻬﻣ
*
يدﺎﺑآﺮﺼﻧﻊﯿﻄﻣﯽﻠﻋ،1
ﯽﻬﻟاﺲﻤﺷﺮﻗﺎﺑﺪﻤﺤﻣ،2
3
1 ﯽﮑﺷﺰﭘﯽﺳﺪﻨﻬﻣهﺪﮑﺸﻧاد . ناﺮﯾا،ناﺮﻬﺗ،تﺎﻘﯿﻘﺤﺗومﻮﻠﻋﺪﺣاوﯽﻣﻼﺳادازآهﺎﮕﺸﻧاد
2 هﺪﮑﺸﻧاد،ﯽﮑﺷﺰﭘﯽﺳﺪﻨﻬﻣرﺎﯿﺸﻧاد . ﯽﻨﻓ
ناﺮﯾا،ناﺮﻬﺗ،ﺪﻫﺎﺷهﺎﮕﺸﻧاد،
3 ﺸﻧاد،قﺮﺑهﺪﮑﺸﻧاد،ﯽﮑﺷﺰﭘﯽﺳﺪﻨﻬﻣدﺎﺘﺳا . هﺎﮕ
ناﺮﯾا،ناﺮﻬﺗ،ﻒﯾﺮﺷﯽﺘﻌﻨﺻ
ﯽﻣطﻮﺑﺮﻣصﺎﺧنﺎﻣزردﯽﻧوﺮﻧ ]دﻮﺷ
1،4،5 يدﺮـﮑﻠﻤﻋطﺎﺒﺗرا .[
1
ﺣاوﻦﯿﺑﯽﮕﺘﺴﺑاويرﺎﻣآطﺎﺒﺗراﻪﺑ ﻪﮐدﻮﺸﯿﻣطﻮﺑﺮﻣﯽﺒﺼﻋيﺎﻫﺪ
هزﻮﺣرديرﺎﻣآﯽﮕﺘﺴﺑاويﺎﻫرﺎﯿﻌﻣيﺮﯿﮔهزاﺪﻧاﺎﺑ ﺎـﯾﯽﻧﺎـﻣزيﺎﻫ
ﯽﻣﻪﺒﺳﺎﺤﻣﯽﺴﻧﺎﮐﺮﻓ ﺮﺛﻮﻣطﺎﺒﺗرا .دﻮﺷ
ﮏـﯾﺮﯿﺛﺎـﺗهﻮـﺤﻧﻪـﺑﻪﮐ2
]درادﺖـﻟﻻدﺮـﮕﯾدﺪﺣاوﻪﺑﯽﻧوﺮﻧﺪﺣاو 1
- 8 ﯽﺗوﺎـﻔﺘﻣيﺎﻬـﺷور.[
ﻪـﮐﺪـﻧراددﻮـﺟويﺰـﻐﻣﯽﺣاﻮـﻧﻦﯿـﺑﺮﺛﻮﻣطﺎﺒﺗراﻪﺒﺳﺎﺤﻣياﺮﺑ ﺮﮕﻧﺮﮔﺖﯿﻠﻋرﺎﯿﻌﻣﻪﺑناﻮﺘﯿﻣ ﯽﮑﯿﻣﺎﻨﯾدﯽﻠﻋيﺎﻬﻟﺪﻣو3
هرﺎـﺷا4
]دﺮﮐ 9 - 16 .[
ﺮﺛﻮﻣ طﺎﺒﺗرا ﻦﯿﻤﺨﺗ يﺎﻬﺷور زا ﯽﮑﯾ ﺮﮕﻧﺮﮔ ﺖﯿﻠﻋ شور
ﯽﻣ ﺮﻫ ﻪﮐﺖﺳاهﺪﺷﻪﺘﺷاﺬﮔنﺎﯿﻨﺑ ضﺮﻓﻦﯾاسﺎﺳاﺮﺑﻪﮐﺪﺷﺎﺑ
ﺮﺛا ﺖﻠﻋ ﮏﯾلﺎﺒﻧدﻪﺑ نﺎﻣز رد
ﯽﻣخر ﺪﻫد ﻪﺑ ﺮﺘﺸﯿﺑ شورﻦﯾا .
هﺮﯿﻐﺘﻣﺪﻨﭼ ﯽﻄﺧ يﺎﻬﻟﺪﻣ ﯽﺘﺸﮔزﺎﺑدﻮﺧ
زا ﺲﭘ و هﺪﺷ لﺎﻤﻋا 5
ﻂﺳﻮﺗتﺎﻋﻼﻃاندﺮﮐلﺪﻣ يﺎﻬﺷور
صﺎﺧ
، طﺎﺒﺗرا ﺮﺛﻮﻣ ﺎﻬﻧآ ﻦﯿﺑ
ﯽﺻﺎﺧيﺎﻫرﺎﯿﻌﻣﻂﺳﻮﺗ ﻦﯿﻤﺨﺗ
ﯽﻣهدز ﺪﻧﻮﺷ ﯾارد . اﺪﺘﺑاشورﻦ
ﺮﮕﯾد ﯽﺒﻄﻗود ﻪﺑ ﺖﺒﺴﻧ ﯽﺒﻄﻗود ﮏﯾ ﻦﯿﺑ ﯽﮕﺘﺴﺑاو نﺎﯿﺑ ياﺮﺑ و هدﺮﮐ ﻞﺣ ﺎﻬﯿﺒﻄﻗود ﻦﯿﺑ لﻼﻘﺘﺳا ضﺮﻓ ﺎﺑ رﺎﺒﮑﯾ ار ﻪﻟﺎﺴﻣ ﯽﻣﺖﺳﺪﺑ اﺮﻧآيﺎﻄﺧ ﺲﻧﺎﯾراﻮﮐ ﺲﯾﺮﺗﺎﻣ ﯽﮕﺘﺴﺑاو ﺲﭙﺳ .ﻢﯾروآ
ﯽﺒﻄﻗودﻦﯾا ﺖﻟﺎﺣ يﺎﻀﻓ رديﺮﮕﯾدﯽﺒﻄﻗودﺎﺑ
و هدﺮﮐ ضﺮﻓ
هرﺎﺑود ﯽﻣ ﺖﺳﺪﺑ ار ﻪﻟﺎﺴﻣ يﺎﻄﺧ ﯾروآ
ﻦﯾا ﻢﯿﺴﻘﺗ ﻞﺻﺎﺣ ﻢﺘﯾرﺎﮕﻟ .ﻢ
ﯽﻣ ﻒﯾﺮﻌﺗ ار ﯽﺒﻄﻗود ﻦﯿﺑ ﯽﮕﺘﺴﺑاو ﺮﮕﯾﺪﻤﻫ ﻪﺑ ﺎﻬﯿﺒﻄﻗود ﺪﻨﮐ
] 9 - ﺎﯾﯽﮑﯿﻣﺎﻨﯾدﺖﯿﻠﻋيﺎﻬﻟﺪﻣشوررد .[15 يﺎﻫﺮﺘﻣارﺎﭘDCM
هدﺎﻔﺘﺳاﺎﺑهداديورﺮﺑﻖﯿﺒﻄﺗياﺮﺑﯽﻔﻠﺘﺨﻣيﺎﻬﺷورﻂﺳﻮﺗلﺪﻣ ﯽﻣﻪﻨﯿﻬﺑﻦﯿﺸﯿﭘتﺎﻋﻼﻃازا ﻪﺑﺎﻨﺑﯽﻟﺪﻣاﺪﺘﺑاشورﻦﯾارد .دﻮﺷ
ﻼﻃا يدوﺪﺤﻣداﺪﻌﺗوهﺪﺷﻪﺘﺧﺎﺳﯽﮑﯾژﻮﻟﻮﯾﺰﯿﻓوﯽﮑﯿﻣﻮﺗﺎﻧآتﺎﻋ
1 Functional connectivity
2 Effective connectivity
3 Granger
4 Dynamic causal model
5 Linear Autoregressive models
ﯽﻣ راﺮﻗ ﺎﻬﻧﺎﮑﻣ نآ رد ﻊﺒﻨﻣ لﺪﻣيورﺮﺑ هداد ﺲﭙﺳ .ﺪﻧﺮﯿﮔ
ﻪﻨﯿﻬﺑيﺎﻬﺷورﻂﺳﻮﺗلﺪﻣيﺎﻫﺮﺘﻣارﺎﭘ و هﺪﺷهدادﻖﯿﺒﻄﺗ يزﺎﺳ
رﺎﻈﺘﻧاوﺪﯿﻣاندﺮﮐﻪﻨﯿﺸﯿﺑﺪﻨﻧﺎﻣ ﯽﻣهدزﻦﯿﻤﺨﺗ6
.ﺪﻧﻮﺷ
هﺮﯿﻐﺘﻣﺪﻨﭼﯽﺘﺸﮔزﺎﺑدﻮﺧ لﺪﻣﺪﻨﯾآﺮﻓ MVAR)
لﺪﻣضﺮﻓﺎﺑ(
ﻊﺑﺎﻨﻣ ﻦﯿﺑ طﺎﺒﺗرا ندﺮﮐ لﺪﻣ ﻪﺑ ردﺎﻗ يﺰﻐﻣ ﻊﺑﺎﻨﻣ ﻦﯿﺑ ﯽﻄﺧ ﯽﻣ ﯽﻠﺿﺎﻔﺗ تﻻدﺎﻌﻣ ﻞﮑﺷ ﻪﺑ يﺰﻐﻣ ]ﺪﺷﺎﺑ
و ﯽﮑﺴﻨﯿﻣﺎﮐ .[17
لﺪﻣيﺎﻫﺮﺘﻣارﺎﭘ ﻦﯿﻤﺨﺗياﺮﺑﯽﻔﯿﻃلﺪﻣزا ﮓﻧﺎﯿﻟ وMVAR
رد طﺎﺒﺗرا ﻦﯿﻤﺨﺗ رد نآ زا هدﺎﻔﺘﺳا هدﺮﮐ هدﺎﻔﺘﺳا EEG
]ﺖﺳا ﻞﯿﻠﺤﺗياﺮﺑﻪﻧﺎﮔودﻦﻤﻟﺎﮐﺮﺘﻠﯿﻓزاﺰﯿﻧﺎﯿﻧراوﺪﯿﻣايﺎﻗآ .[18
]ﺖﺳا هدﺮﮐ هدﺎﻔﺘﺳا رﻮﺴﻨﺳ يﺎﻀﻓ رد نادازﻮﻧ EEG 19
.[
وﺪﻟاﺮﯿﮔ يﺎﻗآ ﻦﯿﻨﭽﻤﻫ ﯽﮑﯿﻣﺎﻨﯾد ﻦﯿﻤﺨﺗ ياﺮﺑ ﺪﯾﺪﺟ شور 7
دﻦﻤﻟﺎﮐﺮﺘﻠﯿﻓزاهدﺎﻔﺘﺳاﺎﺑﻊﺑﺎﻨﻣﺖﯿﻟﺎﻌﻓ يﺎﻬﻟﺎﻨﮕﯿﺳيورﺮﺑﻪﻧﺎﮔو
]ﺖﺳا هدﺮﮐ ﻪﺋارا EEG 20
ﺎﺑ ﻪﻟﺎﻘﻣ ﻦﯾا يدﺎﻬﻨﺸﯿﭘ شور .[
ﺎﻬﯿﺒﻄﻗود طﺎﺒﺗراﻦﯿﻤﺨﺗ ﻪﺑماﺪﻗا ﻪﻧﺎﮔودﻦﻤﻟﺎﮐﺮﺘﻠﯿﻓ زا هدﺎﻔﺘﺳا طﺎﺒﺗراوﺎﻬﯿﺒﻄﻗودﺖﯿﻟﺎﻌﻓيزاﻮﻣترﻮﺼﺑوهدﺮﮐﻊﺒﻨﻣيﺎﻀﻓ رد ﯽﻣﻦﯿﻤﺨﺗارﺎﻬﻧآﻦﯿﺑ .ﺪﻧز
2 شور - يدﺎﻬﻨﺸﯿﭘ
رد زاﻪــﻟﺎﻘﻣيدﺎﻬﻨــﺸﯿﭘشور ياﺮــﺑﻪــﻧﺎﮔودﻦﻤﻟﺎــﮐﺮــﺘﻠﯿﻓ
ﯽـﻣهدﺎﻔﺘـﺳاﺰـﻐﻣلﺎﻌﻓﯽﺣاﻮﻧﻦﯿﺑﺮﺛﻮﻣطﺎﺒﺗراﻦﯿﻤﺨﺗ رد .دﻮـﺷ
تﻻﺎـﺣﺎـﻬﻨﺗﻪـﮐﯽﻟﻮـﻤﻌﻣﻦﻤﻟﺎـﮐفﻼﺧﺮـﺑﻪﻧﺎﮔودﻦﻤﻟﺎﮐﺮﺘﻠﯿﻓ ﺰـﯿﻧﯽـﺻﺎﺧنزوﻢﺘـﺴﯿﺳتﻻﺎﺣﺮﺑهوﻼﻋ،ﺖﺳالﻮﻬﺠﻣﻢﺘﺴﯿﺳ ﯽﻣلﻮﻬﺠﻣ ﺖـﺳﺪﺑﻪـﺑماﺪﻗايزاﻮﻣﻦﯿﻤﺨﺗزاهدﺎﻔﺘﺳاﺎﺑﻪﮐﺪﺷﺎﺑ
نازواندروآ و
تﻻﺎﺣ ﻢﺘﺴﯿﺳ ﯽﻣ شور .دﻮﺷ يدﺎﻬﻨﺸﯿﭘ
3 زا
6 Expectation Maximization
7 Evardo Giraldo
ﻦﯿﯿﻌﺗ شور لﺎﻤﻋا
ﺮﺑ ﺰﻐﻣ لﺎﻌﻓ ﯽﺣاﻮﻧ لﺎﻨﮕﯿﺳ يور EEG
ﻊﺑﺎﻨﻣ جاﺮﺨﺘﺳا ياﺮﺑ نﺎﻣزلﻮﻃلﺎﻌﻓ
ﻖﯿﺒﻄﺗ لﺪﻣ
ﺖﻟﺎﺣ يﺎﻀﻓ
ﺮﺑ نﺎﻣز ﺎﺑ ﺮﯿﻐﺘﻣ يور لﺎﻌﻓﻊﺑﺎﻨﻣ
لﺎﻤﻋا ﻦﻤﻟﺎﮐ ﺮﺘﻠﯿﻓ لﺪﻣيورﺮﺑﻪﻧﺎﮔود يور ﺮﺑ لﺎﻌﻓﻊﺑﺎﻨﻣ ﺮﺛﻮﻣطﺎﺒﺗراﻦﯿﻤﺨﺗ ﺎﻬﻧآﻦﯿﺑ
ﻞﮑﺷ 1 يﺎﻬﺷورزاﯽﮑﯾلواﻪﻠﺣﺮﻣرد .ﺖﺳاﻪﻠﺣﺮﻣﻪﺳﻞﻣﺎﺷﻪﮐﺰﻐﻣلﺎﻌﻓﻊﺑﺎﻨﻣﻦﯿﺑﺮﺛﻮﻣطﺎﺒﺗراﻦﯿﻤﺨﺗياﺮﺑيدﺎﻬﻨﺸﯿﭘشوررﺎﺘﺧﺎﺳوسﺎﺳا.
لﺎﻨﮕﯿﺳيورﺮﺑﺰﻐﻣلﺎﻌﻓﯽﺣاﻮﻧﻦﯿﯿﻌﺗ ﯽﻣجاﺮﺨﺘﺳانﺎﻣزلﻮﻃردلﺎﻌﻓﻊﺑﺎﻨﻣولﺎﻤﻋاEEG
ﺮﺑنﺎﻣزﺎﺑﺮﯿﻐﺘﻣﺖﻟﺎﺣيﺎﻀﻓلﺪﻣﺲﭙﺳ .ﺪﻧﻮﺷ
ﺒﻄﺗﺎﻬﯿﺒﻄﻗوديور ﯽﻣلﺎﻤﻋاﺖﻟﺎﺣيﺎﻀﻓلﺪﻣﻪﺑﻊﺑﺎﻨﻣﻦﯿﺑﺮﺛﻮﻣطﺎﺒﺗراجاﺮﺨﺘﺳاياﺮﺑﻪﻧﺎﮔودﻦﻤﻟﺎﮐﺮﺘﻠﯿﻓمﻮﺳﻪﻠﺣﺮﻣردوهﺪﺷهدادﻖﯿ
دﻮﺷ
ﻞﮑـﺷردﯽـﻠﮐرﻮـﻄﺑﻪﮐﺖﺳاهﺪﺷﻞﯿﮑﺸﺗﺶﺨﺑ 1
هدادنﺎـﺸﻧ
ﺪﻧﻮـﺷجاﺮﺨﺘﺳايﺰﻐﻣلﺎﻌﻓﯽﺣاﻮﻧﺪﯾﺎﺑلواﻪﻠﺣﺮﻣرد .ﺖﺳاهﺪﺷ ﺖﻟﺎﺣيﺎﻀﻓ لﺪﻣردوهﺪﺷجاﺮﺨﺘﺳاﺎﻬﯿﺒﻄﻗودزاﯽﻤﮐداﺪﻌﺗﺎﺗ
ﻦﯿـﯿﻌﺗيﺎﻬـﺷورزاهدﺎﻔﺘـﺳاﺎـﺑﺮﻣاﻦﯾا .ﺪﻧﺮﯿﮔراﺮﻗهدﺎﻔﺘﺳادرﻮﻣ ﻞـﺣﺮـﮕﯾدترﺎـﺒﻌﺑﺎـﯾﺰﻐﻣلﺎﻌﻓﻖﻃﺎﻨﻣ سﻮـﮑﻌﻣﻪﻟﺎـﺴﻣ
EEG
سﻮـﮑﻌﻣﻪﻟﺎـﺴﻣﻞـﺣ .ﺖﺳاﺮﯾﺬﭙﻧﺎﮑﻣا ﺖـﻟﺎﺣEEG
ill-posed
ﯽﻤﻧﺖﺳﺪﺑيدﺮﻔﺑﺮﺼﺤﻨﻣﺦﺳﺎﭘوهدﻮﺑ ﻦﯿـﯿﻌﺗياﺮﺑﻦﯾاﺮﺑﺎﻨﺑ .ﺪﻫد
هﺪﺷﻪﺋاراﯽﻔﻠﺘﺨﻣيﺎﻬﺷورﺰﻐﻣلﺎﻌﻓﯽﺣاﻮﻧ . ﺪﻧا
زاﻪـﻟﺎﻘﻣﻦـﯾارد
1 شور sLORETA ردﯽﻌـﺳشورﻦﯾارد .ﺖﺳاهﺪﺷهدﺎﻔﺘﺳا
ﻪﻨﯿﻤﮐ ﻢﯾرادارﺮﯾزﻊﺑﺎﺗيزﺎﺳ
) 1 (
=‖ − ‖ + ‖ ‖
( × 1) ﻪﮐ لﺎﻨﮕﯿﺳ
زا EEG ﻪﻧﻮﻤﻧ رد لﺎﻧﺎﮐ m
ماk
،
( × ) ﺲﯾﺮﺗﺎﻣ
leadfield ﻢﯿﻘﺘﺴﻣﻪﻟﺎﺴﻣﻞﺣزاﻞﺻﺎﺣ
هﺪﻧﺮﯿﮔﺮﺑردﺮﮕﯾدترﺎﺒﻌﺑﺎﯾEEG ﺎﻬﯿﺒﻄﻗودزاﮏﯾﺮﻫﺖﯿﻟﺎﻌﻓﺮﺛا
ﯽﻣ ﺎﻫرﻮﺴﻨﺳ يورﺮﺑ ﺑ
هدﺎﻔﺘﺳا ﺎﺑﻪﮐ ﺪﺷﺎ دوﺪﺤﻣ نﺎﻤﻟا يﺎﻬﺷور
ﺪﻨﻧﺎﻣ FEM2 3 و ﻂﺳﻮﺗ و BEM ﻦﯿﯿﻌﺗ ﺲﯿﻃﺎﻨﻐﻣوﺮﺘﮑﻟا ﻦﯿﻧاﻮﻗ
]ﺪﻧﻮﺷﯽﻣ 21 - 25 ( × 1) .[
ﻊﺑﺎﻨﻣ رادﺮﺑ يﺎﻬﯿﺒﻄﻗود ﺎﯾ
ﯽﻣ يﺰﻐﻣ ﻪﮐ ﺪﻨﺷﺎﺑ
ﺎﻬﻧآ داﺪﻌﺗ ﺖﺳا دﺪﻋ n
ﺮﺘﻣارﺎﭘ .
ﯽﻣ نﻮﯿﺳاﺰﯾرﻻﻮﮔر ﻊﺑﺎﺗ .ﺪﺷﺎﺑ
ندﻮﺑمﻮﻠﻌﻣﺎﺑ1 G, ,
ﺖﺒﺴﻧ
ﻪﺑ ﯽﻣ ﺖﺳﺪﺑﻊﺑﺎﻨﻣ ﺖﯿﻟﺎﻌﻓناﺰﯿﻣ وهﺪﺷ ﻪﻨﯿﻤﮐ ﻞﺣﺎﺑ .ﺪﻨﯾآ
شور ﺎﺑ يزﺎﺳ ﻪﻨﯿﻤﮐ ﻪﻟﺎﺴﻣ ﺢﯾﺮﺻ sLORETA
ﺮﯾز ترﻮﺼﺑ
ﯽﻣﺖﺳﺪﺑ .ﺪﯾآ
) 2 (
= .
1 Standardaized low resolution brain electromagnetic topography
2 Finite element methods
3 Boundry element methods
ﻪﮐ ﯽﻣ هﺪﺷ هدز ﻦﯿﻤﺨﺗ لﺎﻌﻓ ﻊﺑﺎﻨﻣ ناﺰﯿﻣ ﻪﻄﺑار رد .ﺪﺷﺎﺑ
هرﺎﻤﺷ راﺪﻘﻣ2 ﻪﻄﺑارزاT و3 ﯽﻣﺖﺳﺪﺑ4 ﺪﯾآ
) 3 (
= [ + ]
) 4 (
= −11 /1 1
ﻪﻟﺎﺴﻣ ﻞﺣ زا ﺲﭘ sLORETA
ﺲﯾﺮﺗﺎﻣ ﻪﺒﺳﺎﺤﻣ و
يﺮﺘﺸﯿﺑﺖﯿﻟﺎﻌﻓﻪﮐﯽﻌﺑﺎﻨﻣوهﺪﺷهدزﻦﯿﻤﺨﺗﺎﻬﯿﺒﻄﻗودﺖﯿﻟﺎﻌﻓ ﯽﻣجاﺮﺨﺘﺳاﺪﻧرادنﺎﻣزلﻮﻃرد .ﺪﻧﻮﺷ
ﻪﺑ ﯽﮑﯿﻣﺎﻨﯾد ﯽﻄﺧ ﺖﻟﺎﺣ يﺎﻀﻓ لﺪﻣ مود ﻪﻠﺣﺮﻣ رد هﺪﺷجاﺮﺨﺘﺳاﻊﺑﺎﻨﻣوهﺪﺷهدادﻖﯿﺒﻄﺗلﺎﻌﻓ يﺎﻬﯿﺒﻄﻗود ﻂﺳﻮﺗ
ﯽﻣلﺪﻣﺮﯾزﻪﻄﺑارترﻮﺼﺑﺖﻟﺎﺣيﺎﻀﻓلﺪﻣ .ﺪﻧﻮﺷ
) 5 (
k k k
k k k k
GJ V
J F J
e h +
=
+
+1=
( × 1) ﻪﮐ لﺎﻨﮕﯿﺳ
ﻪﻧﻮﻤﻧ EEG
،ماk ( × )
ﺲﯾﺮﺗﺎﻣ leadfield
، و ﺖﻟﺎﺣ ﺰﯾﻮﻧ هزاﺪﻧا ﺰﯾﻮﻧ
يﺮﯿﮔ
ﻢﺘﺴﯿﺳ .ﺪﻨﺷﺎﺑﯽﻣ
يﺎﻀﻓلﺪﻣ ﺮﺑﻪﻧﺎﮔودﻦﻤﻟﺎﮐ ﺮﺘﻠﯿﻓ لﺎﻤﻋاﻞﻣﺎﺷ ﺪﻌﺑﻪﻠﺣﺮﻣ هرﺎﻤﺷﻪﻄﺑارﺖﻟﺎﺣ ﺲﯾﺮﺗﺎﻣودﻦﯿﻤﺨﺗو5
و ماﻮﺗترﻮﺼﺑ
يزاﻮﻣو ﯽﻣ ﺲﯾﺮﺗﺎﻣنﺪﻣآﺖﺳﺪﺑﺎﺑﻪﮐﺪﺷﺎﺑ ﻊﺑﺎﻨﻣﻦﯿﺑﻪﻄﺑار
وﺮﮕﯾﺪﻤﻫﻪﺑﺖﺒﺴﻧونﺎﻣزلﻮﻃرد ﺖﯿﻟﺎﻌﻓناﺰﯿﻣ
يﺎﻬﯿﺒﻄﻗود
لﺎﻌﻓ هدز ﻦﯿﻤﺨﺗ نﺎﻣز لﻮﻃ رد ﯽﻣ
ﺪﻧﻮﺷ ﺮﺘﻠﯿﻓ ﯽﻠﮐ رﺎﺘﺧﺎﺳ .
هرﺎﻤﺷ ﻞﮑﺷ رد ﻪﻧﺎﮔودﻦﻤﻟﺎﮐ ﻦﯾارد .ﺖﺳاهﺪﺷ هداد نﺎﺸﻧ2
،ﻢﺘﺴﯿﺳ تﻻﺎﺣ ﺮﺑ هوﻼﻋ ﯽﻟﻮﻤﻌﻣ يﺎﻫﺮﺘﻠﯿﻓ فﻼﺧﺮﺑ ﺮﺘﻠﯿﻓ عﻮﻧ ﯽﮑﯾ نازوازا اﺪﺘﺑا وهدﻮﺑلﻮﻬﺠﻣﺰﯿﻧ ﺎﻫﺮﯿﻐﺘﻣزاﯽﮑﯾ
سﺎﺳاﺮﺑ
رد تﻻﺎﺣ ﯽﻧﺎﺳرزوﺮﺑ ﯽﻧﺎﻣزﻪﻟدﺎﻌﻣ
رد نازوا ﯽﻧﺎﺳرزوﺮﺑ ﯽﻧﺎﻣزﻪﻟدﺎﻌﻣ
رد تﻻﺎﺣ ﯽﻧﺎﺳرزوﺮﺑ هزاﺪﻧاﻪﻟدﺎﻌﻣ يﺮﯿﮔ
رد نازوا ﯽﻧﺎﺳرزوﺮﺑ هزاﺪﻧاﻪﻟدﺎﻌﻣ يﺮﯿﮔ
هزاﺪﻧا يﺮﯿﮔ
ﻞﮑﺷ .2 ﯽﻣﻢﻫﺎﺑيزاﻮﻣترﻮﺼﺑتﻻﺎﺣونازواﯽﻧﺎﺳرزوﺮﺑﻪﻠﺣﺮﻣودﻞﻣﺎﺷﻪﮐﻪﻧﺎﮔودﻦﻤﻟﺎﮐﺮﺘﻠﯿﻓرﺎﺘﺧﺎﺳوسﺎﺳا ﻦﯾا .ﺪﺷﺎﺑ
هزاﺪﻧاوﯽﻧﺎﻣزﻪﻟدﺎﻌﻣودزاهدﺎﻔﺘﺳاﺎﺑزاﺰﯿﻧﻞﺣاﺮﻣ ماﺪﻗاﺖﻟﺎﺣيﺎﻀﻓلﺪﻣيﺮﯿﮔ
ﻪﺑ ﯽﻣنزووﺖﻟﺎﺣيﺎﻫﺮﺘﻣارﺎﭘﻦﯿﻤﺨﺗ .ﺪﻨﻨﮐ
ندﻮﺑمﻮﻠﻌﻣضﺮﻓﺎﺑﺲﭙﺳوهﺪﺷهدزﻦﯿﻤﺨﺗﺖﻟﺎﺣيﺎﻀﻓلﺪﻣ لواﺮﯿﻐﺘﻣ
، ﯽﻣهدز ﻦﯿﻤﺨﺗمودﺮﯿﻐﺘﻣ ﻦﻤﻟﺎﮐﺮﺘﻠﯿﻓ ﻞﺣرد .دﻮﺷ
ياﺮﺑ لﺪﻣ ضﺮﻓ ﺮﺑ هوﻼﻋ ﻪﻧﺎﮔود تﻻﺎﺣ ﻦﯿﻤﺨﺗ
ﮏﯾ ﺪﯾﺎﺑ
نﺎﻤﻫﺎﯾنازواﺮﺘﻠﯿﻓياﺮﺑﺰﯿﻧ هدﺎﺳﮏﯿﻣﺎﻨﯾد .ﻢﯾﺮﯿﮕﺑﺮﻈﻧرد
ﻪﻟدﺎﻌﻣترﻮﺼﺑﺰﯿﻧﻪﻟدﺎﻌﻣﻦﯾا ﯽﻣﻪﺘﺷﻮﻧ6
دﻮﺷ
) 6 (
= +
= +
نآردﻪﮐ ﯽﻣﻒﯾﺮﻌﺗﺮﯾزترﻮﺼﺑ
:دﻮﺷ
) 7
= (
⎣⎢
⎢⎢
⎡( ) … ( )
0 ( ) … ( ) 0 … .
0 … .
0 0
⋮ ⋱ ⋮
0 … 0 ⋯ ( ) … ( )⎦⎥⎥⎥⎤
ﺪﻨﯾاﺮﻓودياﺮﺑلﺪﻣضﺮﻓزاﺲﭘ ﻪـﺑﻪـﻧﺎﮔودﻦﻤﻟﺎـﮐﺮـﺘﻠﯿﻓ،
ماﻮﺗترﻮﺼﺑ ودﺮﻫﻪﺑ
ﺪﻨﯾآﺮﻓ يﺎـﻫﺮﺘﻣارﺎﭘولﺎـﻤﻋا ﯽـﻃ و
ﺮﯾزﺪﻧور ﯽﻣهدزﻦﯿﻤﺨﺗ .ﺪﻧﻮﺷ
ﯽﺗﺎﻣﺪﻘﻣضﺮﻔﺸﯿﭘ .1
) 8 (
= [( − [ ])( − [ ]) ]
) 9 (
= [( − [ ])( − [ ]) ]
ﻪﮐ ﯽﻣﯽﺿﺎﯾرﺪﯿﻣاهﺪﻨﻫﺪﻧﺎﺸﻧE .ﺪﺷﺎﺑ
ﯽﻧﺎﻣزﻪﻟدﺎﻌﻣﯽﻧﺎﺳرزوﺮﺑﯽﻧﺎﻣزﻪﻧﻮﻤﻧﺮﻫياﺮﺑ .2
) 10 ( =
) 11 (
= + =
ﻪﮐ ﻪﻧﻮﻤﻧردﺪﻨﯾآﺮﻓﺰﯾﻮﻧﺲﻧﺎﯾراﻮﮐ ﺖﺳاk-1
ﯽﻣﻪﺒﺳﺎﺤﻣﺮﯾزﻪﻠﺣﺮﻣﻖﺑﺎﻄﻣﺰﯿﻧﺖﻟﺎﺣﺮﺘﻠﯿﻓ .3 :دﻮﺷ
) 12 (
=
) 13 (
= +
ﻪﮐ ﯽﻣﺖﻟﺎﺣﺰﯾﻮﻧﺲﻧﺎﯾراﻮﮐ ﺪﺷﺎﺑ
ﺮﺑﻪﻟدﺎﻌﻣ .4 يﺮﯿﮔهزاﺪﻧاﯽﻧﺎﺳرزو
) 14 (
= +
) 15 (
= + −
) 16 (
= −
ﻪﮐ هزاﺪﻧاﺰﯾﻮﻧﺲﻧﺎﯾراﻮﮐ ﯽﻣيﺮﯿﮔ
ﺪﺷﺎﺑ
ﯽﻧزوﺮﺘﻠﯿﻓﯽﻧﺎﺳرزوﺮﺑ .5
) 17 (
= +
) 18 (
= + −
) 19 (
= ( − )
ﻪﮐ ﻪﻧﻮﻤﻧردﺪﻨﯾآﺮﻓﺰﯾﻮﻧﺲﻧﺎﯾراﻮﮐ .ﺖﺳاk-1
ﻦﯿﻤﺨﺗوﻪﺒﺳﺎﺤﻣزاﺲﭘ
، ﺮﻫ ﺮﮕﻧﺎﺸﻧﺪﻧاﻮﺘﯿﻣنآزاﻪﯾارد
ﻦﯿﺸﯿﭘ نﺎﻣزرد ﺮﮕﯾدﯽﺒﻄﻗود ﻪﺑﯽﺒﻄﻗود ﺮﻫﺖﯿﻟﺎﻌﻓ ﯽﮕﺘﺴﺑاو هدزﻦﯿﻤﺨﺗﻢﻫﻪﺑﺖﺒﺴﻧﻊﺑﺎﻨﻣﺮﺛﻮﻣطﺎﺒﺗراترﻮﺻﻦﯾاﻪﺑوﺪﺷﺎﺑ
ﯽﻣ ]ﺪﻧﻮﺷ 26 - 27 [ .
3 ﻪﯿﺒﺷ - ﺞﯾﺎﺘﻧويزﺎﺳ
لﺎﻤﻋاردﯽﻌﺳيدﺎﻬﻨﺸﯿﭘشورﯽﻓﺮﻌﻣزاﺲﭘﺶﺨﺑﻦﯾارد يﺎﻬﻟﺎﻨﮕﯿﺳ يورﺮﺑ شور ﻪﯿﺒﺷEEG
ﻦﯾاﻪﮐ ﻢﯾرادهﺪﺷ يزﺎﺳ
مﻮﻠﻌﻣ و ﻊﺑﺎﻨﻣ زا يداﺪﻌﺗ نﺪﺷ ﻪﺘﻓﺮﮔ ﺮﻈﻧرد لﺎﻌﻓ ﺎﺑ ﺎﻬﻟﺎﻨﮕﯿﺳ ﯽﻣ ﺪﯿﻟﻮﺗ ﺎﻬﻧآ ﻦﯿﺑطﺎﺒﺗرا ندﻮﺑ اريدﺎﻬﻨﺸﯿﭘ شورﺲﭙﺳ .ﺪﻧﻮﺷ
لﺎﻤﻋاهﺪﺷﺪﯿﻟﻮﺗيﺎﻬﻟﺎﻨﮕﯿﺳﻪﺑ ﺎﺑارﺎﻬﯿﺒﻄﻗودﻦﯿﺑطﺎﺒﺗراوهدﺮﮐ
ﻞﺒﻗ زا مﻮﻠﻌﻣ ﺮﯾدﺎﻘﻣ ﺎﺑ و ﻦﯿﻤﺨﺗ يدﺎﻬﻨﺸﯿﭘ شور زا هدﺎﻔﺘﺳا ﯽﻣﻪﺴﯾﺎﻘﻣهﺪﺷﻦﯿﯿﻌﺗ .ﻢﯿﻨﮐ
ﻞﮑﺷردﻪﮐارﯽﺒﻄﻗوددﺪﻋرﺎﻬﭼاﺪﺘﺑالﺎﻨﮕﯿﺳ ﺪﯿﻟﻮﺗياﺮﺑ وهدﺮﮐضﺮﻓلﺎﻌﻓﻪﻧﻮﻤﻧيﺎﻀﻓﻦﯿﺑزاارﺖﺳاهﺪﺷهدادنﺎﺸﻧ3
ﻪﻄﺑارزاهدﺎﻔﺘﺳاﺎﺑارﺎﻬﻧآﺲﭙﺳ ﺮﻣﻢﻫﻪﺑﺮﯾز
ﺒﺗ ﯽﻣﻂ :ﻢﯿﻨﮐ
) 20 (
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ ( ) = 0.65 ( −1) + ( ) ( −1) + ( ) ( −1) + ( )
( ) = 0.87 ( −1) + ( ) ( −1) + ( )
( ) = 0.56 ( −1) + ( ) ( ) = 0.87 ( −1) + ( ) ( ) = ( ) = 5 … 19 (1) = (1) = (1) = (1) = 1
لﺎﻨﮕﯿﺳﺪﯿﻟﻮﺗياﺮﺑﺲﭙﺳ ﺲﯾﺮﺗﺎﻣاﺪﺘﺑا،EEG
leadfield
ﻢﯿﻘﺘﺴﻣﻪﻟﺎﺴﻣﻞﺣزاﻪﮐار EEG
نﺎﻤﻟايﺎﻬﺷورزاهدﺎﻔﺘﺳاﺎﺑ
ﯽﻣ ﺖﺳﺪﺑ ﯽﺴﯿﻃﺎﻨﻐﻣوﺮﺘﮑﻟا ﻦﯿﻧاﻮﻗ و دوﺪﺤﻣ ﺲﯾﺮﺗﺎﻣ رد ار ﺪﯾآ
ﻪﻟدﺎﻌﻣزاهﺪﻣآﺖﺳﺪﺑﯽﺒﻄﻗود بﺮﺿ20
و هدﺮﮐ ﺖﺳﺪﺑﺲﯾﺮﺗﺎﻣ
-50
0
50
-100 -50 0 50 -40 -20 0 20 40
60 1
2 3
4
ﻞﮑﺷ .3 نﺎﺸﻧلﺎﻌﻓيﺎﻬﯿﺒﻄﻗودوﻊﺑﺎﻨﻣﻪﻧﻮﻤﻧيﺎﻀﻓﻞﮐ
لﺎﻨﮕﯿﺳ .ﺖﺳا هﺪﺷ هداد ندﻮﺑ لﺎﻌﻓ ضﺮﻓ ﺎﺑ EEG
ﯽﻣﺪﯿﻟﻮﺗﺎﻬﻧآﻦﯿﺑطﺎﺒﺗراوهﺪﺷهدادنﺎﺸﻧيﺎﻬﯿﺒﻄﻗود دﻮﺷ
لﺎﻨﮕﯿﺳوﻊﻤﺟﺰﯾﻮﻧيراﺪﻘﻣﺎﺑارهﺪﻣآ ﻪﻟدﺎﻌﻣﻖﺑﺎﻄﻣEEG
21
ﯽﻣﺖﺳﺪﺑ .ﺪﯾآ
) 21 ( ( ) = ( ) +
ﻪﯿﺒﺷ ناﻮﻨﻌﺑ ﺮﯾدﺎﻘﻣ يﺎﺠﺑ اﺪﺘﺑا لوا يزﺎﺳ
، a(n)
،b(n)
ﺖﺑﺎﺛ ﺮﯾدﺎﻘﻣ c(n)
،0,9 و 0,5 لﺎﻨﮕﯿﺳ و هﺪﺷ هداد راﺮﻗ 0,7
ﺎﺑﺰﯾﻮﻧ ندﺮﮐ ﻪﻓﺎﺿاﺎﺑ،ﺪﺷ هدادﻪﮐﯽﺗﺎﺤﯿﺿﻮﺗﺪﻨﻧﺎﻤﻫ ارEEG ﺰﯾﻮﻧ ﻪﺑ لﺎﻨﮕﯿﺳ ﺖﺒﺴﻧ ﯽﻣ ﺪﯿﻟﻮﺗ ﻞﺒﯿﺳد 20
شور ﺲﭙﺳ .دﻮﺷ
ﺳ ﻪﺑ ار هﺪﺷ هداد ﺢﯿﺿﻮﺗ يدﺎﻬﻨﺸﯿﭘ لﺎﻤﻋا هﺪﺷ ﺪﯿﻟﻮﺗ لﺎﻨﮕﯿ
ﯽﻣهدزﻦﯿﻤﺨﺗارﺎﻬﯿﺒﻄﻗودﻦﯿﺑﺮﺛﻮﻣطﺎﺒﺗراوهدﺮﮐ .ﺪﻧﻮﺷ
طﺎﺒﺗرا
ﻦﯿﮕﻧﺎﯿﻣياراديدﺎﻬﻨﺸﯿﭘشورياﺮﺑهﺪﺷهدزﻦﯿﻤﺨﺗ 0,8956
،
0,4676 0,7038 ،
ياﺮﺑ
،a(n) و b(n) c(n) ﯽﻣ ﻪﮐ ﺪﺷﺎﺑ
ضﺮﻔﺸﯿﭘ ﺮﯾدﺎﻘﻣﮏﯾدﺰﻧ
،0,9
،0,5 ﯽﻣ 0,7 رﺎﯿﻌﻣ فاﺮﺤﻧا .ﺪﺷﺎﺑ
ﯿﻤﺨﺗ تﺎﻃﺎﺒﺗرا ﺐﯿﺗﺮﺗ ﻪﺑ ﺰﯿﻧ هﺪﺷ هدز ﻦ
0,0542 0,0922 ،
و
0,0768 ﯽﻣ
ﯽﻣ ﯽﻟﻮﺒﻗ ﻞﺑﺎﻗ راﺪﻘﻣ ﻪﮐ ﺪﺷﺎﺑ ﺞﯾﺎﺘﻧ ﻦﯾا .ﺪﺷﺎﺑ
هﺪﻨﻫﺪﻧﺎﺸﻧ .ﺖﺳايدﺎﻬﻨﺸﯿﭘشورﺐﺳﺎﻨﻣﻦﯿﻤﺨﺗ
نﺎﻣز ﺎﺑﺮﯿﻐﺘﻣ ارﺎﻬﯿﺒﻄﻗود ﻦﯿﺑطﺎﺒﺗرا موديزﺎﺳﻪﯿﺒﺷ رد ﻞﮑﺷ ﺪﻨﻧﺎﻤﻫ لﺎﻨﮕﯿﺳ ﺰﯾﻮﻧ ندﺮﮐ ﻪﻓﺎﺿا زاﺲﭘ و هدﺮﮐ ضﺮﻓ 4
ﯽﻣ ﺪﯿﻟﻮﺗ EEG ﻮﺷ
ﻦﯿﻤﺨﺗ ياﺮﺑ يدﺎﻬﻨﺸﯿﭘ شور ﺲﭙﺳ .د
وهﺪﺷلﺎﻤﻋايﺪﯿﻟﻮﺗلﺎﻨﮕﯿﺳﻪﺑﻊﺑﺎﻨﻣﻦﯿﺑنﺎﻣزﺎﺑﺮﯿﻐﺘﻣطﺎﺒﺗرا
ﯽﻣ ﺖﺳﺪﺑﻊﺑﺎﻨﻣ ﻦﯿﺑ طﺎﺒﺗرا ﺮﯾدﺎﻘﻣ ﺎﺑهاﺮﻤﻫ تﺎﻃﺎﺒﺗرا ﻦﯾا .ﺪﻨﯾآ
ﺶﯿﭘ ردضﺮﻓ 5 ﻞﮑﺷ
هﺪﺷ هدادنﺎﺸﻧ لﺎﮑﺷا زاﻪﮐرﻮﻄﻧﺎﻤﻫ .ﺪﻧا
ﯽﻣطﺎﺒﻨﺘﺳا ﯿﭘشورﻂﺳﻮﺗﯽﺑﻮﺨﺑﻊﺑﺎﻨﻣﻦﯿﺑطﺎﺒﺗرادﻮﺷ
يدﺎﻬﻨﺸ
و هﺪﺷ هدز ﻦﯿﻤﺨﺗ هﺪﺷ هدز ﻦﯿﻤﺨﺗ تﺎﻃﺎﺒﺗرا
راﺪﻘﻣ ﯽﻟاﻮﺣ
نﺎﺳﻮﻧ ضﺮﻔﺸﯿﭘ .دراد
لوﺪﺟ رد ﻦﯿﮕﻧﺎﯿﻣ يﺎﻄﺧ ناﺰﯿﻣ ﺰﯿﻧ 1
ﻪﺴﯾﺎﻘﻣﻪﻨﯿﻣز ﻦﯾاردﺮﮕﯾدشور ودﺎﺑيدﺎﻬﻨﺸﯿﭘشورتﺎﻌﺑﺮﻣ .ﺖﺳاهﺪﺷ
4
ﻪﺠﯿﺘﻧ - يﺮﯿﮔ
دﺮﮑﻠﻤﻋو ﺰﻐﻣلﺎﻌﻓ ﯽﺣاﻮﻧ ﻦﯿﺑﻞﻣﺎﻌﺗ و طﺎﺒﺗراﻪﻌﻟﺎﻄﻣ نآ
زا ﯽﮑﯾ ﻪﻨﯿﻣز ﻦﯾﺮﺘﻤﻬﻣ ﯽﻣ ﺰﻐﻣ دﺮﮑﻠﻤﻋ ﺰﯿﻟﺎﻧآ يﺎﻫ
ﻦﯾا .ﺪﺷﺎﺑ
ﻢﯿﺴﻘﺗﺶﺨﺑﻪﺳﻪﺑيﺰﻐﻣﯽﺣاﻮﻧﻦﯿﺑطﺎﺒﺗرا ﯽﻣ
زاﯽﮑﯾﻪﮐدﻮﺷ
ﯽﻣﺮﺛﻮﻣ طﺎﺒﺗراﺎﻬﻧآ يورﺮﺑﯽﺣاﻮﻧزاﮏﯾﺮﻫﺮﺛاﺮﯿﺛﺎﺗﻪﺑﻪﮐ ﺪﺷﺎﺑ
ﯽﻣ ﺚﺤﺑ ﺮﮕﯾد ﻪﯿﺣﺎﻧ ﯽﺷور ﻪﻟﺎﻘﻣ ﻦﯾا رد .ﺪﻨﮐ
ياﺮﺑيدﺎﻬﻨﺸﯿﭘ
ﻦﻤﻟﺎﮐ ﺮﺘﻠﯿﻓزا هدﺎﻔﺘﺳا ﺎﺑلﺎﻌﻓ ﯽﺣاﻮﻧﻦﯿﺑ ﺮﺛﻮﻣ طﺎﺒﺗراﻦﯿﻤﺨﺗ ﻪﺋاراﻪﻧﺎﮔود ﺮﺛﻮﻣطﺎﺒﺗراﻪﮐﺪﺷ
ﺰﻐﻣﯽﺣاﻮﻧﻦﯿﺑ يزاﻮﻣترﻮﺼﺑار
نﺎﻣز لﻮﻃرد و هدﺮﮐ ﻪﺒﺳﺎﺤﻣ ﻊﺑﺎﻨﻣ ﺖﯿﻟﺎﻌﻓ ﻪﻨﻣاد ﻪﺒﺳﺎﺤﻣ ﺎﺑ ﯽﻣﻪﺒﺳﺎﺤﻣ زوﺮﺑترﻮﺼﺑارﻊﺑﺎﻨﻣﺖﯿﻟﺎﻌﻓ شورﻦﯾاﻦﯾاﺮﺑﺎﻨﺑ .ﺪﻨﮐ
نوﺪﺑوﺎﺘﺴﯾاترﻮﺼﺑارﻊﺑﺎﻨﻣﺖﯿﻟﺎﻌﻓﻪﮐﺮﮕﯾديﺎﻬﺷورﻪﺑﺖﺒﺴﻧ نﺎﻣزﻦﺘﻓﺮﮔﺮﻈﻧرد ﻦﯿﻤﺨﺗ
ﯽﻣ
،ﺪﻧدز ﻦﯿﻨﭽﻤﻫ .درادﯽﻤﻬﻣﺖﯾﺰﻣ
شور ،ﯽﮑﯿﻣﺎﻨﯾد ﯽﻠﻋ يﺎﻬﻟﺪﻣ ﺪﻨﻧﺎﻣ ﺎﻬﺷور ﺮﻨﺸﯿﺑ فﻼﺧﺮﺑ تﺎﻋﻼﻃاﻪﻧﻮﮕﭽﯿﻫ ﻪﺑيزﺎﯿﻧ يدﺎﻬﻨﺸﯿﭘ ﯽﮑﯾژﻮﻟﻮﯾﺰﯿﻓوﯽﮑﯿﻣﻮﺗﺎﻧآ
.دراﺪﻧ يدﺎﻬﻨﺸﯿﭘشور هﺪﺷﻪﺋارا
يﺎﻬﻟﺎﻨﮕﯿﺳيورﺮﺑﻪﻟﺎﻘﻣﻦﯾارد
ﻪﯿﺒﺷ ﯽﻟﻮﺒﻗﻞﺑﺎﻗباﻮﺟو هﺪﺷلﺎﻤﻋامﻮﻠﻌﻣطﺎﺒﺗراﺎﺑهﺪﺷيزﺎﺳ
ﺑ ﺖﺒﺴﻧ ﻦﯾا رد شور ﻦﯾا .ﺖﺳا هداد ﺖﺳﺪﺑ ضﺮﻔﺸﯿﭘ راﺪﻘﻣ ﻪ ﻂﯾاﺮﺷردارنﺎﻣزﺎﺑﺮﯿﻐﺘﻣوﺖﺑﺎﺛتﺎﻃﺎﺒﺗراﻪﺘﺴﻧاﻮﺗﯽﺑﻮﺨﺑﻪﻟﺎﻘﻣ يﺪﻌﺑ تﻻﺎﻘﻣ رد .ﺪﻧﺰﺑ ﻦﯿﻤﺨﺗ ار ﺎﻬﻧآ و هدﺮﮐ ﺐﯿﻘﻌﺗ يﺰﯾﻮﻧ وهدادراﺮﻗﯽﺳرﺮﺑدرﻮﻣيﺰﯾﻮﻧﻒﻠﺘﺨﻣﻂﯾاﺮﺷردارشورناﻮﺘﯿﻣ ردﻪﮐﻪﻧﺎﮔودﻦﻤﻟﺎﮐﺮﺘﻠﯿﻓﻪﺟردﻦﯿﻨﭽﻤﻫ ﻪﻟﺎﻘﻣﻦﯾا
ﺖﺳاهدﻮﺑ1
ﻪﺟرد ﺎﺑتﺎﻃﺎﺒﺗرا ﻦﯿﻤﺨﺗ ردشور ﯽﯾارﺎﮐناﻮﺘﺑ ﺎﺗ داد ﺶﯾاﺰﻓا ﻦﯿﻨﭽﻤﻫ .دﺮﮐ ﯽﺳرﺮﺑ ار ﺮﺗﻻﺎﺑ ﯽﻣ
ناﻮﺗ شور ار يدﺎﻬﻨﺸﯿﭘ ﻪﺑ
هداد لﺎﻤﻋا ﯽﻘﯿﻘﺣ يﺎﻫ هدﺮﮐ
و ار شور ﻦﯾا ﯽﯾارﺎﮐ ﯽﺳرﺮﺑرد
يﺰﻐﻣﯽﺣاﻮﻧﻦﯿﺑﺮﺛﻮﻣطﺎﺒﺗرا ﻪﮐﯽﯾﺎﻬﯾرﺎﻤﯿﺑ ﺮﯿﯿﻐﺗرﺎﭼدﺎﻬﻧآ رد
ﯽﻣ )ﺪﻧﻮﺷ (ﻢﺴﯿﺗواﺪﻨﻧﺎﻣ
، دﺮﮐﯽﺳرﺮﺑار .
5 ﻊﺑﺎﻨﻣ -
[1] Y. Liu and S. Aviyente,” Quantification of Effective Connectivity in the Brain Using a Measure of Directed Information,” Computational and Mathematical Methods in Medicine, Vol. 2012.
[2] [2] S. L. Bressler, “Large-scale cortical networks and cognition,” Brain Research Reviews, Vol. 20, No. 3, pp. 288–
304, 1995.
[3] O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag,
“Organization, development and function of complex brain networks,” Trends in Cognitive Sciences, Vol. 8, No 9, pp.
418–425, 2004.
[4] M. A. Koch, D. G. Norris, and M. Hund-Georgiadis, “An investigation of functional and anatomical connectivity using magnetic resonance imaging,” NeuroImage, Vol. 16, No. 1, pp.
241–250, 2002.
[5] K. J. Friston, “Functional and effective connectivity: a review,”
Brain Connectivity, Vol. 1, No. 1, pp. 13–36, 2011.
0 5000
-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
a(n)
Sample
Connectivity
0 5000
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
b(n)
Sample
0 5000
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
c(n)
Sample
ﻞﮑﺷ 4 لﺎﻨﮕﯿﺳﺪﯿﻟﻮﺗياﺮﺑنﺎﻣزﺎﺑﺮﯿﻐﺘﻣتﺎﻃﺎﺒﺗرا. EEG
ﻪﯿﺒﺷردﻪﮐ موديزﺎﺳ ﻦﯿﻤﺨﺗرديدﺎﻬﻨﺸﯿﭘشورﯽﺑﺎﯾزراياﺮﺑ
هﺪﺷضﺮﻓنﺎﻣزﺎﺑﺮﯿﻐﺘﻣتﺎﻃﺎﺒﺗرا لﺎﻨﮕﯿﺳ .ﺪﻧا
ضﺮﻓﺎﺑEEG
تﻻدﺎﻌﻣﻂﺳﻮﺗتﺎﻃﺎﺒﺗراﻦﯾا و20
ﯽﻣﻪﺘﺧﺎﺳ21 .دﻮﺷ
[6] K. J. Friston, “Functional and effective connectivity in neuroimaging: a synthesis,” Human Brain Mapping, Vol. 2, No.
1-2, pp. 56–78, 1994.
[7] S. Haufe,” Towards EEG source connectivity analysis,” PhD thesis, Berlin Institute of Technology, 2012
[8] R. Vicente, M. Wibral, M. Lindner, G. Pipa, “Transfer entropy—a model-free measure of effective connectivity for the neurosciences,” J. of Computer Neuroscience , Vol. 30, pp. 45–
67,2011
[9] V. Sakkalis, “Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG,” Computing in Biology and Medicine, Vol. 41,pp. 1110–1117,2011
[10] W.R. Adey, D.O. Walter, C.E. Hendrix,” Computer techniques in correlation and spectral analyses of cerebral slow waves during discriminative behavior,” Exp. Neurology. Vol. 3, pp.
501–524, 1961.
[11] M. Brazier, J. Casby, “Cross-correlation and autocorrelation studies of electro- encephalographic potentials, Electroencephalography,” Clinical. Neurophysiology. Vol. 4, No. 2, pp. 201–211,1952.
[12] G. Pfurtscheller, C. Andrew, “Event-related changes of band power and coherence: methodology and interpretation,”
Clinical. Neurophysiology. Vol. 16, No. 6, pp. 512–519,1999.
[13] J.S. Bendat, A.G. Piersol, “Engineering Applications of Correlation and Spectral Analysis,” J. Wiley, New York, 1993.
[14] A. Pikovsky, M. Rosenblum, J. Kurths, “Synchronization: A Universal Concept in Nonlinear Sciences,” Cambridge Nonlinear Science Series, Cambridge University Press, 2003.
[15] V. Sakkalis, et al., “Assessment of linear and nonlinear synchronization measures for analyzing EEG in a mild epileptic paradigm,” IEEE Trans. Inf. Technol. Biomed. Vol. 13,No.
4,pp. 433–441,2009.
[16] R. Grech, T. Cassar, J. Muscat, K. P. Camilleri, S. G. Fabri, M.
Zervakis, et al.,”Review on solving the inverse problem in EEG source analysis,”. Journal of Neuro-Engineering and Rehabilitation, Vol. 5, No. 25, 2008.
[17] G. L. Holmes, and C. T. Lombroso, “Prognostic Value of Background Patterns in the Neonatal EEG,” Journal of Clinical Neurophysiology, Vol. 10, No. 3, pp. 323-352, 1993.
[18] C. Porcaro, F. Zappasodi, P. Maria Rossini, F. Tecchio,”
Choice of multivariate autoregressive model order affecting real network functional connectivity estimate,” Clinical Neurophysiology, Vol. 120, pp. 436–448, 2009
[19] A.H. Omidvarnia, M. Mesbah, M. S. Khlif1, J.M. O Toole, P.B.
Colditz, B. Boashash, “Kalman filter-based time-varying cortical connectivity analysis of newborn EEG,” 33rd Annual International Conference of the IEEE EMBS, Boston, Massachusetts USA, 2011
[20] E. Giraldo, C. G. Castellanos,” Estimation of neuronal and brain dynamics using a dual Kalman filter with physiological based linear model,” Revista Ingenierías Universidad de Medellín, Vol. 12, No. 22 pp. 169 – 180, 2013
[21] Niedermeyer, F.H. Lopes da Silva, ”Electroencephalography:
Basic Principles, Clinical Applications, and Related Fields,”
Williams & Wilkins, Baltimore, 1999
[22] T. Brookings, S. Ortigue, S. Grafton, J. Carlson, “Using ICA and realistic BOLD models to obtain joint EEG/fMRI solutions to the problem of source localization,” NeuroImage , Vol. 44, pp. 411–420,2009.
[23] Y. Jonmohamadi, G. Poudel, C. Innes, R. Jones, “Source space ICA for EEG source separation, localization, and time-course reconstruction,” , Vol. 101, pp. 720-737, 2014
[24] J. A. Nedler, R. Mead, “A simplex method for function minimization,” Computation J, Vol. 7, pp. 308-313, 1965.
[25] L. Zhukov, D. Weinstein and C. Johnson, “Independent Component Analysis For EEG Source Localization In Realistic Head Models,” Center for Scientific Computing and Imaging, University of Utah, 2000
[26] E. Giraldo, C. G. Castellanos,” Estimation of neuronal and brain dynamics using a dual Kalman filter with physiological based linear model,” Revista Ingenierías Universidad de Medellín, Vol. 12, No. 22 pp. 169 – 180, 2013
[27] S. Haykin, “Kalman filtering and neural networks,” First ed.
McMaster University, Hamilton, Ontario, Canada: JOHN WILEY & SONS, 20
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 -0.5
0 0.5 1 1.5
Sample
Connectivity
Estimated Connectivity Known Connectivity
0 500 1000 15002000 2500 30003500 4000 4500 5000 -0.5
0 0.5 1 1.5
Sample
Connectivity
Estimated Connectivity Known Connectivity
0 500 1000 15002000 2500 30003500 4000 4500 5000 -0.5
0 0.5 1 1.5
Sample
Connectivity
Estimated Connectivity Known Connectivity
a(n) b(n) c(n)
ﻞﮑﺷ ﻪﯿﺒﺷياﺮﺑضﺮﻔﺸﯿﭘوهﺪﺷهدزﻦﯿﻤﺨﺗﺮﺛﻮﻣطﺎﺒﺗرا.5 ﻪﯿﺒﺷﻦﯾارد .موديزﺎﺳ
ﺮﻈﻧردنﺎﻣزﺎﺑﺮﯿﻐﺘﻣﺎﻬﯿﺒﻄﻗودﻦﯿﺑطﺎﺒﺗرايزﺎﺳ
ﺳاﺎﺑلﺎﻨﮕﯿﺳوهﺪﺷﻪﺘﻓﺮﮔ ﯽﻣهدزﻦﯿﻤﺨﺗتﺎﻃﺎﺒﺗراﻪﻧﺎﮔودﻦﻤﻟﺎﮐﺮﺘﻠﯿﻓلﺎﻤﻋاﺎﺑوﺪﯿﻟﻮﺗضﺮﻔﺸﯿﭘتﺎﻃﺎﺒﺗراﻦﯾازاهدﺎﻔﺘ
.ﺪﻧﻮﺷ
لوﺪﺟ . 1 ﺎﻄﺧتﺎﻌﺑﺮﻣﻦﯿﮕﻧﺎﯿﻣ ﻂﺳﻮﺗهﺪﺷهدزﻦﯿﻤﺨﺗراﺪﻘﻣ
ﯽﻌﻗاوراﺪﻘﻣﺎﺑﻒﻠﺘﺨﻣيﺎﻬﺷور ﻦﯿﺑطﺎﺒﺗرايزﺎﺳﻪﯿﺒﺷﻦﯾارد.
ﻞﮑﺷﻖﺑﺎﻄﻣنﺎﻣزﺎﺑﺮﯿﻐﺘﻣترﻮﺼﺑﺎﻬﯿﺒﻄﻗود ﺖﺳاهﺪﺷضﺮﻓ4
c(n) b(n)
a(n)
0,3021 0,3235 0,3534 ﻪﻟﺎﺴﻣﻞﺣﯽﻟﻮﻤﻌﻣشور
ﺎﺑMVAR minimum norm
0,3165 0,3245 0,3643 ﯽﻟﻮﻤﻌﻣشور
ﻪﻟﺎﺴﻣﻞﺣ ﺎﺑMVAR
sLORETA
0,2476 0,2864 0,2843 ﺎﺑﯽﻟﻮﻤﻌﻣﻦﻤﻟﺎﮐﺮﺘﻠﯿﻓشور
sLORETA
0,1542 0,1567 0,1845 يدﺎﻬﻨﺸﯿﭘشور