Online ISSN: 2382-9931
Journal of Water and Irrigation Management
Homepage: https://jwim.ut.ac.ir/
University of Tehran Press
Check Structure Level Regulation in Water Supply Canals using RBO in HEC-RAS
Zahra Nourozirad1 | Kazem Shahverdi2 | Hesam Ghodousi3
1. Department of Water Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, Iran. E-mail:
2. Corresponding Author, Department of Water Science Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran. E-mail: [email protected]
3. Department of Water Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, Iran. E-mail:
Article Info ABSTRACT
Article type:
Research Article
Article history:
Received: 13 March 2023 Received in revised form:
17 April 2023 Accepted: 6 June 2023 Published online: 2 July 2023
Keywords:
Canal Operation Management, HEC-RAS,
Rules-Based Operation.
Water level control and regulators have a main role in water conveyance and distribution. Despite the simplicity of structure settings in a steady-state condition, applying an appropriate setting in unsteady flow is complicated. Hence, control logic is used to set these structures, usually developed in languages such as MATLAB, Python, and FORTRAN. To use these logics, they must be combined with hydraulic models. In HEC-RAS, there is an elevation controlled water level boundary condition that can be used to control structures. In this research, the evaluation of the performance of this boundary condition was considered to regulate the water level in the E1R1 canal of the Dez network. The results showed that the rate of opening and closing of the gate has a significant impact on the performance, and if they are chosen correctly, the depth changes will be small.
The results showed that the IAE indicator is around one percent in all the examined options and except in a few cases where the maximum value of MAE exceeds 10 percent and reaches up to 15 percent, its value is also low. Therefore, it is suggested to use this boundary condition in the control of structures.
Cite this article: Nourozirad, Z., Shahverdi, K., & Ghodousi, H. (2023). Check Structure Levels Regulation in Water Supply Canals using RBO in HEC-RAS. Journal of Water and Irrigation Management, 13 (2), 341-350.
DOI: https://doi.org/10.22059/jwim.2023.356700.1062
© The Author(s). Publisher: University of Tehran Press.
DOI: https://doi.org/ 10.22059/jwim.2023.356700.1062
نا هﺎﮕﺸ اد تارﺎﺸ ا
Homepage: https://jwim.ut.ac.ir/
RBO
HEC-RAS
|1
2 3 |
1 . .
2 .
"#$% % # &#'(
'(#)
* +, .
3 . .
!"
# $%&
: !" ( , ./ 01 2
)
* +
* ,- 22: / 12 / 1401
)
* + . / 28 : / 01 / 1402
)
* + 01
* 2 16 : / 03 / 1402
)
* + 34 11 : / 04 / 1402
$5
#6 :
8 9
Rules
) :
" )
HEC-RAS
. .; <
, ) )
HEC-RAS
=( )
#9
> ) ?< ) #<) ) @ 9
AB " < 8 9 <
, C
, D ;
* E ) .
.; <
, '+(
*
; /
* C
*
* ?< ) F
# 1 E<
#G " <
#;
)
)
#
% F
# 1 E<
& " <
HI )
% # J'<
F *1 K9 )
* "
. #9 &
L M, ./
) .; <
) G
HEC-RAS
E #G <> 9 ;
: 9 9 ?< )
@
(Rules-based Operation)
N ORBO
1 < 9
P F*
)PID
D ;
* E , ) "
< #> " +9 K9 E1R1
% #
) . 9 L " #D
HEC-RAS
; "
* 9 ) , ) F
" <
)PID
D ;
* E N O : Q ) R+(
) . 9 )
"
N O 9 S> 9 , '+( <
9 ?<
" < J T 2 . K ;
) ; F , ) U / ) ) ) J*; ;
5 / 4 F
) . : U <
S> 9 2 W N H +; MAE
) , 9
) ) ) 13
S> 9 2 W N X E IAE
: X F ; 8 9 J U < *)
RBO
.:
L 8 9 ?<
" < RBO
*/ , . #9
74
# : Y ,
#, 9 EZ [ & %N ) 1402 .(
D ;
* E ; ) ,
"
, ) ) ') [
* : RBO HEC-RAS
.
:
*) 13 ) 2 ( 341 - 350 . DOI:https://doi.org/10.22059/jwim.2023.356700.1062
; _ < % ` : .
. % #©
87)
$ ) 9:
7/
; /:
/ 5/
$ , RBO HEC-RAS
/
= %>
343
1 .
"
, ,
* 1*
M2 K9
*
"
> , a ,
, b'<a ...
?
> ) .
&
, HI ,
* 1*
F cca;
d #; # ; <I
e 9
HEC-RAS SWMM 1
SIC 2
SOBEK 3
4ICSS
9 ) Q d e e 9 _
) : : (SVE
eN 5
.
)
#O E< # 1 +( '
" ?< # " < , e 9 ,
f , F* P
6PID
"
M*/ " <
L*)
7MPC
"
(# c f#, ) <K +9#, ,
8AI
. 9 ) ) G#; ) L
E< # 1 ,
* ) ) " <
) , <I d #; ; I J'< % #
" ) R*?'; :*') [ B> *h ,
i#I
> )
"
, <I d #;
e 9 2;
K Q d _ eN : :
. R*?'; :*') [ e 9
: : _Q d 9 f #;
, X A )
Bonet et al., 2017
(
f , +T ) ) L H / # 1
Figueiredo et al., 2013
(
"
, 2;
K H*
#;
"
j
k l )
Van Overloop et al., 2014
( m " .
<K # K9 )
, Kc(
E<%*
, I
* E<%
,
B>
f ,
# <%G
# 1 )
Herrera et al., 2013; Tavares et al., 2013
) & ( .
f PID
L ; f , 9 ) :I ) " < e+( G > n , 2 ) % 2
m K M, ./
b'<a , C F " < )
#
&#'I )
Shahverdi and Monem
(2012
*K9 ) R*?';
Sobek
F +9 "
)ASCE Arauz et al., 2020
( ) R*?';
Sobek
)
" " <
)
Hashemy and Van Overloop, 2013
(
<I d #;
# #
<I [ ) .:
) I ?< # b'<a eo % H* (# c f#, Q ) :( ) , ;#*l o , ;#*l d #; ) ;
f ?< ) M, ./ L*1 .: <I [ M, ./ * ) <K (# c f#, ,
Hernández and
Merkley
) ( 2011
" #> : G (# c f#, 9 ) d1 B . 9 ?< ,
Shahverdi
and Monem
) (2015
, Fk# " F AB " < #> : G (# c f#, f
./ . 9 ?< F* *, " ) R*?';
M,
Shahverdi et al.
) (2016
d (# c f#, ) <K f
< #2; * f )RL
Reinforcement Learning
( ) ) . 9 ?< p #; e #m; H
HEC-RAS
F , "
* 1*
F )
* :
)
#O
<%
[ ?< #
* d; ) . b
"
, , ,
* 1*
HEC-RAS
#;
G , / / G
, q<
*
; 9 :m;
@ G m)
m) i#I 9 @'<a
K*
.
I /
* e , ) pO 2 AB
r 1 d eN
; f ) K m < & ) &
)
Daneshfaraz et al., 2019
b'<a @ 9 .(
<> 9
9
HEC-RAS
) " +( ) #G b'<a ,
#;
. ?< ,
9 <I */ @ 9 AB s ?; " < 8
" < ) : 9
, " )
E1R1
) : 9 ) <I [ ?< #
Mollazeynali and shahverdi, 2022
) u i#I d1 B .(
<%) C 9 Sa < F ) C 9 ) 2 * ) ,
B> # )
& . 9 L**d;
,
9 ) 2 p*+ ; f _ **q; v H) K m ,
u ) 9 C ) :I [ ?< # 9 ,
,
U < . 9 " +(
) . b'<a _ **q; e) 2 AB " < )#> :*') [ # w 8 9
f J '+( s ?; " < 8 9 #G ) ,
<I */ ) H* ;
HEC-RAS
#G
8 9
Rules
10RBO
[ ?< # # ; &
.: <I
" s ?; " < :*') [ % 2
HEC-RAS
M, ./ ) 9 ,
Q ) 9 :I #;
HEC-RAS
*K9 F E, 1 < f F E, 9 )
'K[ _ d1 B . 8 9
x <K%
s ?; " <
) #
.: <I [ ) n ,
L ./
M, N O F .; <
/
* <I E< # 1 % # 8 9 PID
: RBO
G )
, G " <
) ) ) R*?';
) ,
% # . , &
)
'+( )
: Q ) n , R+( R+( :*KW;
, ) "
" +9 K9 E1R1
< #>
) 9 ?< # d1 B # ( .
L 1*
L , ./
: F
1 <
RBO HEC-RAS
) 9 % # 9
# .
2 . ! "
#!
2 - 1 .
% &
PID
f ,
U 1 < " <
j/ .: PID
:I ,
2 % , D ; B2 )
* E O#)
G >
D ;) ,
* E
#9 ) ,
C , ) L M, ./
B) ?< ) G > 2 ( )
1 ( K m
.
B) 1
= − + + − + − 2 (
C 9 ) 2
# &
C ) 9 ) " +( ,
#9
−
'K[ & C 9 ) 2 # & AB B>
−
'K[ & AB B>
− 2
'K[ & AB B>
&
:) y <%, , )
J*; ; @) RKO )
2 ) ; ( 4 ( K m . #9
B) 2 (
= 1 +
B) 3
= − 1 + 2 − (
B) 4
= (
RB '*% ? 1 < K ; J T
xQ#+d _ K m & . 9 ) PID
) ) ) 01 / 0 <I D :(
. #9
2 - 2 . ' ( RBO
8 9
RBO HEC-RAS
) ,
* ) ) e) [
?<
: #;
)
#
%
) e 9 . &
1 8 9 ) 8#) / (
# 1 RBO
E<
: 9 % # PID
e 9 ) G#; ) .: 9 +< k
H Y #G 8 9 L 1
- T#;
* _ m , #a1
#;
I T
2 -
< / , e 9 C / ) u
L<%) C
" < :m;
9 ) e[ N W N 3
- 9 ) 1*
4 - zI
E< # 1 M, ./ L D # E< # 1 ) 8#) L<9# ) .: PID
,
&
K9
*
+;
<9# _ #<
/ ) Q ) 9
* L G
#9 .
'+( % # ) Y #G 8 9 L ?'<a ,
1 - '+(
_ m*T#;
)11
HI
L<
,
<>
* 2 - '+(
G *q<
)12
d;
b q<
* ,
* # 2 ,
"#O ?< : G
87)
$ ) 9:
7/
; /:
/ 5/
$ , RBO HEC-RAS /
= %>
345
) 3 - *K9 2 :I '+(
) C 9 ) 2 K m xPW _ K m ?< : G 13
E< # 1 4 PID
- ) _ +*D ; " +( '+(
14 ) C _ +*D ; " +( : G ,
5 - O 9 , '+(
15
_ #< ?< : G -
. , : { ) & Q
) G
, C
* ) ) )
<9#
) #9 L
d
" <
d #;
<I
HEC-RAS
F
" <
h
* H +<
.:
_ 2*2m; <K1
M*) .: * # * L ;
L M, ./
C 9 ) e[ N ,
) 05 / 0 C 9 ) . 9 <I D <
*1 @ 9 , )
, < / ) G#;
C )
#K(
| ( C
s ?;
T J 'a;
O#) B) ?< ) *
K m 9 jl )
#O [ R*
; d ) B>
" e>
HEC-RAS
d;
L**
. #9 : { ) & Q
m _ **q; ?'<a 2 ; X F 16
20 .: d1 B 9 <I D X
Figure 1. RBO boundary condition in HEC-RAS.
2 - 3 . E1R1
"
) E1R1
C ) * ) M9 )
# ,
*) K9 ) < #> " +9 p[
# (
d1 B L # d1 B 9 ?<
5 / 2830 <
"#O 2 { pB2 )
<) M9#/
9 ) . | (
b 1 - 5 / 1 1#O J*9 <
00012 / 0 ; 0015 / 0 K G J*9 #) *q<
5 / 1 Eo [ F ) 2I ) 2 . 9 )
L*) " ) 7
/ 0 ; 5 / 1 * y Jd <
" L T " M, ./ L . 9 )
HEC-RAS
9 * ;
H jl ) b'<a ,
# ) : Q ) F , * ) .:I [ ) #
F )
: Q ) k , * ) : Q ) M9 U / , * ) )
. [ )
2 - 4 . + ! ,"
d #; E<%* '+( ) ) # M9 M, ./ L <I
S1-S6
HI e 9 e #m; ) ) M, M
) ) " G ,# XP> 9 ) , * ) ) _ ?< , 1
) ,# .: 9 (
1 ) ( 3 (
) 5 ) ,# ) M HI ,# ( 2
) ( 4 ) ( 6 ) M, ,# (
) . 9 )
" W # ( F H
G M HI u
G > ) " ) ) " :*dT , Jd < F ) ) )
) & :*dT : * y 2
/ 1 */ M HI * y Jd <
:*dT # L , * ) +; .
<%) & "
eK[ / @ 9 " :*dT " G L . 9 ) & :*dT : , * ) _ *'+( &
) / @ 9 d)
) _ *'+( &
) , * )
" <
8 9 ) , . 9 RBO
s ?;
: Q ) AB )
) ) ) " @ 9 , 2
/ 1 :1 N <
. 9 ) { ) & Q :
:*dT +; ,# +; F , * ) + & ) e #m; #) <%) ,
. ,
Table 1. Flow of turnouts (TO) in different scenarios (m3/s).
Scenario Steady-state inflow TO3 TO4 TO5 TO6 outflow
S1 Initial 1 0 0 0 0 1
Second 1.2 0 0 0 0 1.2
S2 Initial 1.5 0 0 0 0 1.5
Second 1.2 0 0 0 0 1.2
S3 Initial 1 0 0 0.1 0.1 0.8
Second 1.2 0 0 0.2 0.2 0.8
S4 Initial 1.5 0 0 0.2 0.2 1.1
Second 1.2 0 0 0.05 0.05 1.1
S5 Initial 1 0.1 0.1 0.1 0.1 0.6
Second 1.2 0.1 0.1 0.2 0.2 0.6
S6 Initial 1.5 0.2 0.2 0.2 0.2 0.7
Second 1.2 0.2 0.2 0.05 0.05 0.7
2 - 5 . ./ ( +
S> 9 S> 9 e 9 R+( ) <K , ) R'B W N B>
(MAE
17
R+( n m W N ,
*K9 "#O n , R+(
) d+ ; R'B B> S> 9 : (IAE
)18
Clemmens et al., 1998
(
*)
*K9 "#O n , R+( R+( n m @ #<
: 9 ?< 9 ) )
) J*; ; ) @) _ #X 5
(
) 6 ( b d;
. #9
B) 5
= ! − (
!
B) 6 (
" = # ∑%&'( ! −
!
@) L ) "#O D
) *K9 "#O R+(
! n , R+(
2 . 9 )
: ?X d+ ; R'B B> W N R'B B> S> 9 , ) "
.
87)
$ ) 9:
7/
; /:
/ 5/
$ , RBO HEC-RAS /
= %>
347
3 . 01 ! 2+ %
8 9 M, ./ L ) RBO
<I */ # ( H L ;
) , :I [ G#; # )
E< # 1 : Q ) AB " < ) PID
" , ) ,# :m; 9 % # E1R1
.:I [ ) # # , HI b'<a
E< # 1 , < / 2 " < I & eK[
2 9 } a< B> # )PID
) ) ) ) J*; ; 5
5 / 4 1 ) E ) E<%* 2 L ?< ) . : p B> L ;
L + L ;
:*KW; n , R+( R+( _ **q;
" < : { ) & Q . < ) " ) L*1 PID
) e+( ,
) ) " ) L* / ,
E : : 1 N L .:9 w/ y ; )
M*) w/ y > ) &#
L* / ; L* / H F #> :
) : 9 *Kd; : :'(
:) y F H s ?; #) ) #)
<) y x K 2; R+( ) )
) b'<a , #G
L ) . " N
i#I 2 ) w1
H +, 9 <I w/ 2 # ( . ?< ) ,
) e 9 2 ) R+( B> ( :
) e 9 ) M HI ,#
3 ( R+( B>
) :
,#
M, ) +, .: 9 o , #O
+, ~ , ) R+( ,# +, #9
) ?X ) ) ) B> 2 : 9 :*KW; n , 2 ) ,# <K1 .: :
1 ) ( 2 (
v H) 9 ) _ **q; *< ) _ **q;
; ) #9
:'(
<%) M HI e , * ) & +; #)
+; ) M, , )
y +, ) 2 w #K( , )
L ) . B> 2 " N
) # 2 ) # ) :K% ( 1
M*) ( : ; #G " :KW }# ) M HI :1 N
x K 2;
HI }# e <) y :( e 9 x K 2;
em ) ca F ,
; #X . e 9
=( ) : / ) M, 9 ? }# :(
Q#O ) _ **q; #9 ) :K% ;
em ) :KW }#
i KB *< ) )
*C*/ G @ 9 ) C x <K%
M*) ; .
S5 S3
S1
Figure 2. Depth errors upstream of check structures (Ch) under increasing scenarios (S1, S3, and S5).
S6 S4
S2
Figure 3. Depth errors upstream of check structures (Ch) under decreasing scenarios (S2, S4, and S6).
+, , #O R+( B> #9
) ) 1 E *%) ( L 9 )
E< # 1 ,
PID
C E ) :( ) e2<% , " < B> L ;
C L* / : Q ) *y•; :m; , :
R+( _ **q; 9 ) M*) H* ,
;
" G s#T# L . 9 ) ) ,
2 ) ( 3 ) H* ( 2 J*; ;
S> 9 ,
MAE
.: , e) [ , IAE
2 ,# +; F )
MAE
) W N ) # X ) )
2
; #X : ( # L*+, )
) , ) 2 ) ( 3 ) ) ) (
13 #)Q ) :'( .: X ) ) MAE
3 d) H #G ( . 9 )
Table 2. MAE performance indicators (%).
Ch1 Ch2 Ch3
S1 1 2 9
S2 2 3 13
S3 1 2 10
S4 0 3 8
S5 1 2 6
S6 1 3 7
Table 3. IAE performance indicators (%).
Ch1 Ch2 Ch3
S1 0.00 0.04 0.25
S2 0.01 0.04 0.22
S3 0.00 0.04 0.51
S4 0.00 0.04 0.28
S5 0.00 0.05 0.52
S6 0.01 0.04 0.43
_ **q;
_ **q; ) ) H* IAE
: MAE
M*) ) ;
.: ,# +; , )
M*) ) ) ) H* 2 L ; 52
/ 0 .: X 2
H +, IAE
E *%) , L 9 )
:
: <9 + _ **q; n , R+( ) :K% R+( _ **q; @ #<
: Q ) *<
.
4 . 3 %
&
L M, ./
8 9
RBO HEC-RAS
AB E*D ; : G : Q )
, ) "
K9 E1R1
< #> " +9 p[
) 9 ?<
. L E< # 1 8 9 ) PID
1 < # (
E, 9 * ; 1 9 % # H +< *h *K9
" <
L ) 9 ) ) L*) 2*?';
U / ) ) ) K ; J T 2 . * ) _ #X _ ?<
5 / 4 F J T 2 F , )
1 <
'*% ? +,
) ) ) , ) 001
/ 0 0001 / 0 ) E, . : m L* k
R+( , _ **q;
e* n , R+( :+ ) + P ~ , ) R+(
)
#O E R+( _ **q; @ #<
) X F ; :
M*) H* R+( B> W N _ **q; . ) ) ) B> 2 ;
13 '+( U < .: X
M, ./ L ?< # f J M, ./ + < .: & e) [ :1# ) :
,
#9 ) ) d) E< # 1 ?< w/
8 9 H " < H +< , ) : RBO
[P(
*/
. #9
87)
$ ) 9:
7/
; /:
/ 5/
$ , RBO HEC-RAS
/
= %>
349
5 . 4 ("
1. Hydrologic Engineering Center-River Analysis System
2. Storm Water Management Model 3. Simulation of Irrigation Canals 4. Irrigation Canal System Simulation 5. Saint-Venant Equations
6. Proportional- Integral-Derivative 7. Model Predictive Control 8. Artificial Intelligence 9. Elevation controlled gates 10. Rules-Based Operation 11. Comment operator 12. New Variable
13. Get Simulation Value 14. Set Operational Parameter 15. Branch operator
16. Dead band
17. Maximum Absolute Error
18. Integral of Absolute Magnitude Error
6 . 6 7 89
*,
€ . #G % # L*) dI | d; #
7 . 8
Arauz, T., Maestre, J. M., Tian, X., & Guan, G. (2020). Design of PI controllers for irrigation canals based on linear matrix inequalities. Water, 12(3), 855.
Bonet, E., Gómez, M., Yubero, M., & Fernández-Francos, J. (2017). GOROSOBO: an overall control diagram to improve the efficiency of water transport systems in real time. Journal of Hydroinformatics, 19(3), 364-384.
Clemmens, A. J., Kacerek, T. F., Grawitz, B., & Schuurmans, W. (1998). Test cases for canal control algorithms. Journal of Irrigation and Drainage Engineering, 124(1), 23-30.
Daneshfaraz, R., Dasineh, M., & Ghaderi, A. (2019). Evaluation of Scour Depth around Bridge Piers with HEC-RAS (Case study: Bridge of Simineh Rood, Miandoab, Iran). Environment and Water Engineering, 5(2), 91-102.
Figueiredo, J., Botto, M. A., & Rijo, M. (2013). SCADA system with predictive controller applied to irrigation canals. Control Engineering Practice, 21(6), 870-886.
Hashemy, S., & Van Overloop, P. (2013). Applying decentralized water level difference control for operation of the Dez main canal under water shortage. Journal of irrigation and drainage engineering, 139(12), 1037-1044.
Hernández, J., & Merkley, G. (2011). Canal Structure Automation Rules Using an Accuracy- Based Learning Classifier System, a Genetic Algorithm, and a Hydraulic Simulation Model.
I: Design. Journal of irrigation and drainage engineering, 137, 1.
Herrera, J., Ibeas, A., & de la Sen, M. (2013). Identification and control of integrative MIMO systems using pattern search algorithms: An application to irrigation channels. Engineering Applications of Artificial Intelligence, 26(1), 334-346.
Mollazeynali, H., & shahverdi, k. (2022). Application and Evaluation of Elevation Controlled Gates Boundary Condition in HEC-RAS in Water Conveyance and Distribution Systems.
Water and Irrigation Management,12(4), 847-858.(In Persian)
Shahverdi, K., & Monem, M. J. (2012). Construction and evaluation of the bival automatic control system for irrigation canals in a laboratory flume. Irrigation and drainage, 61(2), 201-207.
Shahverdi, K., & Monem, M. J. (2015). Application of reinforcement learning algorithm for automation of canal structures. Irrigation and drainage, 64(1), 77-84.
Shahverdi, K., Monem, M. J., & Nili, M. (2016). Fuzzy SARSA learning of operational instructions to schedule water distribution and delivery. Irrigation and Drainage, 65(3), 276-284.
Tavares, I., Borges, J., Mendes, M. J., & Botto, M. A. (2013). Assessment of data-driven modeling strategies for water delivery canals. Neural Computing and Applications, 23(3), 625-633.
van Overloop, P.-J., Horváth, K., & Aydin, B. E. (2014). Model predictive control based on an integrator resonance model applied to an open water channel. Control Engineering Practice, 27, 54-60.