Online ISSN: 2382-9931
Journal of Water and Irrigation Management
Homepage: https://jwim.ut.ac.ir/
University of Tehran Press
Investigation of Water Quality Impact on Structures of Voshmgir Dam and Its Irrigation Network
Mohammad Sadegh Anbarsouz1 | Kumars Ebrahimi2 | Ebrahim Amiri Tokaldani3
1. Department of Irrigation and Reclamation Engineering, College of Agriculture & Natural Resources, Faculty of Agriculture, University of Tehran, Karaj, Iran. E-mail: [email protected]
2. Corresponding Author, Department of Renewable Energies and Environmental Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran. E-mail: [email protected]
3. Department of Irrigation and Reclamation Engineering, College of Agriculture & Natural Resources, Faculty of agriculture, University of Tehran, Karaj, Iran. E-mail: [email protected]
Article Info ABSTRACT
Article type:
Research Article
Article history:
Received: 28 August 2022 Received in revised form:
7 December 2022
Accepted: 1 February 2023 Published online: 2 July 2023
Keywords:
Chemical deterioration, Concrete leaching, Sustainable exploitation, Structures of Voshmgir dam and its irrigation network,
Water security.
This study was aimed to investigate the risk of chemical damages originated from water quality on concrete structures of Voshmgir dam and its irrigation network.
In this regard, field survey and water sampling from the dam and its network were carried out in June 2022. In order to determine the intensity of water chemical aggression to concrete, the results of water quality tests were analyzed using soft water aggression indices and well known international standards. Also, the temporal changes of water chemical aggression was investigated using the data received from Golestan water authority. Langelier and Ryznar indices for dam water in June 2021 are -0.6 and 8.6, respectively, and based on these indices, the dam water is corrosive and very corrosive, respectively, and the concrete structure of spillway is exposed to severe soft water attack. In all studied months, there has been aggression risk of at least one damaging agent to concrete. In December 2021, Ryznar index was 8.49 and the amounts of sulfate and magnesium were 400 and 199 mg/liter, respectively, and there has been a risk of simultaneous aggression by three factors of soft water, sulfate and magnesium. Assessment of water quality of Voshmgir dam in fivemonths showed that the water is corrosive in four months and there is a risk of sulfate and magnesium ions reaction with concrete in two months. So, to protect the spillway’s concrete structure and lining of irrigation canals against leaching by the corrosive dam water and damages originated from reaction of sulfate and magnesium ions with concrete, utilization of epoxy coatings is suggested.
Cite this article: Anbarsouz, M. S., Ebrahimi, K., & Amiri Tokaldani, E. (2023). Investigation of Water Quality Impact on Structures of Voshmgir Dam and Its Irrigation Network. Journal of Water and Irrigation Management, 13(2), 351-368. DOI: https://doi.org/10.22059/jwim.2023.347832.1016
© The Author(s). Publisher: University of Tehran Press.
DOI: https://doi.org/ 10.22059/jwim.2023.347832.1016
نا هﺎﮕﺸ اد تارﺎﺸ ا
یرﺎﯿآ و بآ
Homepage: https://jwim.ut.ac.ir/
:ﯽﯿوﺮ !ﻟا #ﺎﺷ ۹۹۳۱ - ۲۳۸۲
|1
2 3 |
1 .
! "
# $ .
% # : [email protected]
2 . ()*+ +#) ,
- ) . / 0+#
) 1 2)34 5#)
! "
# ! .
% # : [email protected]
3 .
! "
# $ .
% # : [email protected]
!" # $ %&
' (
:!" # * - 78 9: ;
+ , - + , ./
: 06 / 06 / 1401
+ , - 0 16 : / 09 / 1401
+ , - 12 , 3 12 : / 11 / 1401
+ , - + 45 : 11 / 04 / 1402
'6 7 :
0
)#
5A
B C
# D
8
#
- % C
"DC . E - F G % : H HI
B -
# D C C 0 J % K - A
% C
"DC 0 ) .
# % : H 5
#
% )D % C K
"DC I
1401
% . C 2 L )M
5 ! NO ! P C
# D C 5A % K Q# A
R#
- 0 J SI C JA K -
K NO ! - A 2
( A 5 33D:
3/!
T . C N- 5 U P V!
NO !
# D C JA K -
01 # 0 C C
%;H K A+3
. C SI C - :7 W X#
I K 1401
% B ! ! 6
/ 0 - 6 / 8 [ 5#
SI C K -
% B ! ! + )I 0 )I
A X#
C NO ! \
# 2 D! . ] 2 K -
% : H NO ! HI C
T] G
# T )4 B
%AC )O 5A % ^ .0
1400 SI C X#
49 / 8
;
# P J:) N#X
% B ! ! 400 199 3 2 : A ) 5#
NO ! HI
2 K T 4 % XD- P J:)
N#X %AC )O .0
0 J
"DC K Q 8
R HI 0 )I K U %
)#
- P J:) N#X
% _: . )O 5A A 0M1 / )M
X#
( RC)8 -
K
)I B - C R )#
- P J:) N#X
JA 5A K ()3/
RC)8 - + )8
% `)!
)C .
) 4: 5 D/
ab ` - D c ) 3 ! - N ) 1402 .(
% : H fg!
J 0 K -
% C
"DC .
K 0# # %#
13 ) 2 ( 351 - 368 . DOI:https://doi.org/10.22059/jwim.2023.347832.1016
: 8
! " P A %+ i .
. +#)©
1 .
"
#
% O - N - A 2 0 j
- % 0
fgA k ! 5 5A
/ H ) 0 [ D! % 0
Otieno et al., 2017
( 0 ` I.
DO ! - l %
#
% C -
[ D!
- A 0 )!
B % - BO)
R# X1
% #X- - D !
"
- N- 5 U D4 R- J
-
` I . ) 0 DO ! 0 5 D K
% T : C )
# D K ()3/
#
+ )
% T : ]) % %O)! C K m)3I 0
1 VO
# A n)
% ) P JA %O)! T ]
) ) - )I
Mason, 1990
.(
)#
15A . )!
22 K N !
# fg! T )4 5
%AI 5A 2 _ C
3! 8 D ) 0 3
Han et
al., 2014
( ) .
# 1 T C 5A - #
) ( ;A (j/
D % 0 )I K . )! 5A
)
Behera, 2019
` I K %U - .(
0 )I C
! # ; C %AC R
! ) D TG )I
)
Mariana and Cornel, 2011
% M .(
5#
% ) K 0
# 3 5A Q#
- 0
8 R#
o /: % % : H fg!
D#
- 0 D-
# )
ICOLD, 1989
.(
N 0M3p )#
-
q4 2 K ()3/
D!
T#
+3 (j/ % K N
- + )O) D
0 O 5A ]
( ! )#
K )C )
Prabhakar et al., 2016
1 % .(
# )#
N +3
+ -
0#
2 D!
D 0l C
5A
%#XL!
% " .;1 5A C -
P - - 3 + ): 5- ]
)
ICOLD, 1989
.(
N- 5 U +3 N fg!
# ) 5A 0 ;
# X1 B R#
P C
#
# 1 - 1 R#
M 5A
C NO !
# D )#
- N#X ) 2) K )O) P J:) )C
)
Prabhakar et al., 2016; Ballim et al.,
5 )O .(2009
+ K ()3/
X R BO) r
P N +3 :)!
P N +3
)C .
% T : (j/
_8
#
# P
+3 N K 5#
)#
% AG %A+C 5A TI )C
5#
s#
D 04 5A R
! XL!
%#
)C )
Behera, 2019
.(
% (
#) D C - t
% "
- 5A
F B#
RC)8 A ( T )! - -
K ( ;A R# X1
# % -
( ;A
G . %O ) T C 1
#) D X1 R#
A RC)8 T )!
- % L K ( ;A
R# X1 01 ,
4 H`
A
%L R- :)!
, -
] . C - )I L#
+ - ( K 1 0 8 - l -
u X X1 5A _1 C R#
- W 1
- R-
A
#
"
f J )#
D ) A+- 5A
ICOLD, 1989
.(
5#
% : H 0 J
K )!
0 F HI B - C
# D C 0 J
% K -
A
! 5
! P ] D
B 8 )
Anand et al., 2015; Mohd-Asharuddin et al.,
(2015
. 8 R#
3/!
T 0 J 0 K - l K
%A1 # 5A - -
X P C nj BO)
B - C
# D ) C - )I 5A %
Wankhade, 2015
.(
N- 5 U SI C JA
5 :7 W 0 O
# HI
% 2 K NO ! -
A
`)!
% C ) 0
ICOLD, 1989
0M3p .(
)#
%v U K P J:) r#
HI C ! 1 Sl G B
- C R )#
P J:) -
A R .0C - )I )O )#
P J:)
P !
D )!
% P )`
! T#
+3 N - + D
0l +3 % C N
- P J:)
%!
# T# ! N +3 P ):
5- -
%! - % N +3 )J:) P ):
5-
%! - ) C
ICOLD, 1989
.(
1 - R -
P !
.+
)C BO) % A+-
L#
1 5A
B# l!
R 8
)C )
ICOLD, 1989; Ayers and Westcot, 1985
.(
)#
% P J:) s#
"#
X )!
B
:)! C !
P ; - XL! B pH
%#
- P - P 3 +3 N . )C 5#
1
# %
2 K NO ! 0#
D
% " C %A+C 5A -
] )
ICOLD, 1989
.(
N- 5 U R-
HI pH
6 )I - )!
5A TI X
X1 R#
# )
ICOLD, 1989
( .
c G T ]
# w j )"
3/! %+ 1 7
T 0 J K HI B - C
# D C % R
)#
C 5A P J:)
# D P J:) 2 ; 5A 2 D!
- . C JA
% L JA
D Rl % P J:) F -
8 8 y A+
01 0#
B L#
+ TI 0
# 8
% C XL T )! K - ( ;A )M
# ) C %AI
Mason, 1990
.(
Bhuyan et al.
) ( 2022
fg!
0 J K
r#
- .
- SI C JA :7 W
T 3/!
0 J 0 K Xl K
%A1 #
X#
A1 # 0D+] K % -
` I z3Al 0
)I K)
_ .
N- 5 U y X
0 K %
%A1 # X#
+ B 0 )I L#
E C X#
)C .
Behera
) ( 2019
;
%+#
`){I P 0 J : Xl K -
9 ) SI C JA A -
:7 W A
%L +3 DL! P - s H % 01 N
P : ] 2 K NO ! \ 5A
.
Koszelnik et al.
) (2018
% )D K) O !) U K
] C A+ : T 3/!
0 J
% )D - K SI C JA -
10 X#
:7 W % ) 2 K NO !
# - A %AI 8
%L A .0 )I K \ % 5A % A1
Otieno et al.
) ( 2017
)I SI C JA fg!
A RC)8 % 2 K NO ! K ( ;A T )!
] W)" # 1 11
;#
) O
A1 # %
Rl K - )I T )! z3Al
# + ) 0 )I
# A RC)8 X1 BO)
R#
R- T )!
:)!
% b X 93 / 0 ` 0 C .
- 2 L R#
A1 # % W . )A | 5A }H %
G 1 / 1 3 A 1 \ R#
% 0 JA 5A 0M1 / )M
RC)8 - + )8 8
.
Prabhakar et al.
) ( 2016
fg!
0 J K c G T/ 5A ]
12 )!
- JA
:7 W SI C 3/!
T - A 8 0 J
K .
- % - 18
% )D % K % )D
` I K 0
s H )I
A )USBR
( 1981
. )O %! J:) PjDG HI N-
5 U JA
A
French National Code p-018
) (1985
C NO ! HI
# D - A 8 N#X pH
) P J:) 2)
5A %
% -
pH
% )D K 8 T/ C
c G N
! 5 / 6 0
NO ! HI
# D C
% K . )O 5A
% C
"DC D R;
I^
5 ! K . A+3 A
5#
%4)DL
M ) ! B
- C
# D C 0 J
% K
% )O
# % : H .0
R- 78 F G 2 L
- #
% )D
% C K
"DC JA 01 P )`
y - - " # - A 8
0 J K % ) 3/! ~• . C
T SI C - 2 K NO !
A JA -
%AI C C 5 33D:
F 0 HI B -
# D C %
- % C
"DC
% : H ) 01 ]
. N- 5 U 3/!
T - 01 # K 0 C C
%;H A+3 P V!
NO ! P C
# D C K
. C
2 .
$%&
'
2 - 1 .
" )
$ &
"DC 1 VO ()
# 54 %O 46 ] ] C %;
\ 4 37
%O 13 ] : DC %;
] C ( DC
b C %3` 1 j]
42 A )3
# 3/ C 5
% ) " 2
C c G % I
.0
)G X l
# G c G T/ ! 5 7156
/ 0 A )3 .
497 A )3 XD- . C
c G % C
"DC X 10791 F A - C p RC)8 0/!
)
Yousefi, 1991
(.
) ( O 1 P {l (
"DC X#
.0 C %€
Table 1. Characteristics of Voshmgir dam and its spillway (Yousefi, 1991) Voshmgir dam characteristics Value
Reservoir capacity in normal level 42 million m3
Lake in normal level 15 km2
Elevation of spillway 20 m
Reservoir level in design flood 21.5 m
Maximum capacity of spillway 1400 m3/s
2 - 2 .
$%$
7#
- 0 J
% )D K - K DO C
% C
"DC I
1401
" #
0 J K A [ ! "
)APHA
( 2017
. C Q# A
R#
- 0 J K ) ( O 2 .0 C %€ (
Table2. Chemical analysis of water sampled from Voshmgir reservoir and operation gallery of its spillway (sampling date April 2022, the units of ions concentration, CO2 and TDS are mg/l)
Location of water sample Longitude Latitude D M S D M S pH EC (microS/cm) TDS Ca2+ Mg2+ HCO3- CO2
Voshmgir Dam 54 44 10 37 12 34 7.51 1762 1128 32 87.5 225.8 17.6
Voshmgir dam drainage gallery I 54 44 11 37 12 33 7.11 7900 7000 192 439.8 97.6 15.8 Voshmgir dam drainage gallery II 54 44 13 37 12 32 6.64 12830 12000 308 274.6 54.9 17.6 Voshmgir dam drainage gallery III 54 44 14 37 12 31 7.21 15970 13000 288 435.0 79.3 14.1 Voshmgir irrigation network (main canal entrance) 54 41 31 37 12 28 7.14 1745 1117 56 199.3 231.9 14.1
N- 5 U
% )M T 3/!
P V!
7#
- DO ! K
- - % 0 J Xl K
"DC % k)
- J ^
( 1400 1 5#
1401
%;H K 0 C A+3
01 # C
) ( O % 3
.0 C %€ (
Table 3. Monthly water quality data of Voshmgir reservoir received from Golestan water authority. TDS, Hardness and ions concentration are in mg/l
Date EC (microS/cm) TDS pH SO42- NH4+ Mg2+ Ca2+ HCO3- Total Hardness
2021/11 2920 1839 8.2 84 0.1 170.2 180.4 280.7 1150
2021/12 4530 2853 8.1 940 0.8 194.5 200.4 244.1 1300
2022/03 1124 708 7.6 80 0.4 82.7 44.1 402.7 450
2022/04 1834 1155 7.8 320 1.0 88.7 94.2 292.9 600
2 - 3 . +, -
./ 0 1 2
2 - 3 - 1 . +, 324
%
! )M 5
` I 0 K) _ # )I K
# 2 K NO ! HI %
- A
% /
:7 W SI C . )!
ICOLD
) ( 1989
`)!
% C .0 5#
. )! % SI C
Langlier
) ( 1936
1 C
TF J!
] pH
K +3 n C 0: GpH
N 0 P H
9 ) 1 (
% 0
# ; . H pHs
9 ) 1 ( X
JA H
9 ) 2 ( % / )C
)
Morton, 1977
.(
H 9 1 ( .
= −
H 9 2 ( .
= 12.3 − log − log − 0.025 ∗ + 0.011 ∗ √
- A 8
C A T
H S
9 ) 2 (
%
! ! B 0M3p )#
- +3 N P
B+G 3 2
+3 N : P A A %O B+G B+G K ()3/ P O
3 2 : A
; . A+-
#
J :7 W SI C )I
) HI )O K )
# .0 2 K . )!
! )`
% 5#
SI C
5 / 1 - X rU) ! + K C C NO ! HI \ 5A )I
# ) 0 2 K
ICOLD, 1989
.(
1 0 • P )`
! ( DAG SI C ) B
+3 N ) )O
ICOLD, 1989
.(
2 - 3 - 2 . +,
% 5 6 275%
% +J! 2 1 )M K n)
:7 W SI C - 0 •
% ) 4 p )I
# K) SI C _
"#
2 %
8 SI C
# . )!
Ryznar
) ( 1944
8 JA . C 5#
SI C 0 ` I K)
_ # )I K
0]
R ! 5 ! )C
)
Ryznar, 1944
( SI C.
X#
K %D-
; - H 0 0 •
9 ) 3 (
% / )C
; . H pHs
9 ) 3 ( X H 9 ) 2 (
% 0
# .
H 9 3 ( .
= 2 ∗ −
SI C [ X#
%;
K ) ( O s H - 4
( 2 L )C .
Table 4. Degree of corrosiveness of water based on Ryznar index RSI Inference (Ryznar and Langelier 1944)
<5.5 Heavy scale will form
5.5-6.2 Scale will form
6.2-6.8 No difficulties
6.8-8.5 Water is aggressive
>8.5 Water is very aggressive
2 - 3 - 3 .
% 2 8 % 9
:
; -5
- -)8
% )M
# HI B -
# D C C
R )#
5A P J:) -
A
% : H )
A )USBR
( 1981
. C JA 5#
) ( O s H A 5
0M3p [ ( )#
K )O) P J:)
NO ! P C
# D C 2 ] P J:)
At JG C %€ B
.0
Table 5. Sulfate aggression levels and cement requirements (USBR, 1981)
Relative degree of sulfate attack mg/l sulfate (as SO42-) in water samples
Negligible 0 to 150
Positive (1) 150 to 1500
Severe (2) 1500 to 10000
Very severe (3) 10000 or more
1. Use type II cement.
2. Use type V cement, or approved combination of Portland cement and pozzolan which has been shown by tests to provide comparable sulfate resistance when used in concrete.
3. Use type V cement plus approved pozzolan which has been determined by tests to improve sulfate resistance when used in concrete with type V cement.
%#
0 J K O
)I
# )I K
% 0 +
( - A JA
Biczok
) ( 1972
8 0 C )
Ayers and Westcot, 1985
) ( O .(
6 (
Biczok
) (1972
P C B
- C
# D A % T 4 Q 8 ; [ 5 K pH
CO2
K ()3/
)#
- 2) ) N#X C %€ P J:)
0 O .0 NO !
# D C % C K
"DC 5#
. C JA
Table6. Limit values for evaluating the aggressiveness of water to concrete (Biczok, 1972)
Aggressive agents Intensity of attack
None to slight Mild Strong Very Strong
pH >6.5 6.5 – 5.5 5.5 – 4.5 <4.5
Lime-dissolving carbonic acid (CO2), mg/l <15 15–30 30–60 >60 Ammonium (NH4+
), mg/l <15 15–30 30–60 >60
Magnesium (Mg2+), mg/l <100 100–300 300–1500 >1500
Sulfate in water (SO42-), mg/l <200 200–600 600–3000 >3000
% )M HI
B -
# D C A %
X#
"DC A
French Standard P18-011
) ( 1985
% 5 K
# O
# C %€ N 04
0 ) ( O . C JA 7
s H ( 5#
P C A
B - C
# D At JG 2 ] 5A % - ; [ B
r#
C %€ NO T )4 .0
Table7.Aggressiveness of water in relation to its concentration of aggressive agents and pH: stagnant or slowly flowing water (French Standard P18-011, 1985)
Condition Slightly aggressive Fairly aggressive Very aggressive Extremely aggressive
Protection level* 1 2 2 3
Aggressive agents Concentration in mg/l
Aggressive CO2 15-30 30-60 60-100 >100
SO42- 250-600 600-1500 1500-6000 >6000
Mg2+ 100-300 300-1500 1500-3000 >3000
NH4+ 15-30 30-60 60-100 >100
pH 6.5-5.5 5.5-4.5 4.5-4 <4
* Protection levels:
1. Not special measures.
2. Adaptation of composition and implementation to the conditions of the environment (proportion of cement, category of cement, W/C, curing, additives) 3. Necessity for external protection (coatings, paint) or internal protection (impregnation).
% )M 5 ! P C B -
# D C C
R )#
P J:) )O) K 5A N- 5 U
%+# ; -
z3Al
%;
P C NO !
# D C K
A
CSA A23.1
) (2019
. C JA 5#
s H A
( O ) 8 ( P C B -
# D C
% 5A [ 0M3p )#
P J:) )O) K 5 ! C 0 .
Table8.Sulfate attack classification based on SO4 concentration in water (Canadian Standard Association Standard A23.1, 2019)
SO42- ion concentration (ppm) Severity of attack
<150 Negligible
150-1000 Mild but positive
1000-2000 Considerable
>2000 Severe
3 .
<5 82
=>
3 - 1 .
? @>
$
$%$ , 1401
( O ) 9 ( Q# A R#
- 0 J K
"DC I
1401
% D-
# ; SI C - )I
%€
C
0 .
; pH
5 / 7 -
0 ` I K
0 .
% L K pH
Xl u X
! 5 / 6 0
[ - ( O - ) 6 ( ) 7 ( HI -
A K)+/
D )C .
;
CO2
()3/
K
6 / 17 3 2 A : 0
% T : ] 15
! 30 3 2 A : s H
French Standard
P18-011
) ( 1985
0 ` I DO ! K N 0 ) . N- 5 U 0M3p )#
- N#X P J:)
% B ! ! N
! 100
150 3 2 A :
% ) [
- ( O - ) 5 (
! ) 8 ( N
! G HI NO !
% 5A ) 0 .
Table9. Chemical analysis of Water sampled from Voshmgir reservoir in April 2022 along with the aggressivity indices
Sample pH EC
(microS/cm)
Ca2+
(mg/l) Mg2+
(mg/l)
HCO3-
(mg/l) CO2
(mg/l) SO42-
(mg/l)
Langelier index
Ryznar index
Voshmgir Dam 7.5 1762.0 32.0 87.5 225.8 17.6 71.9 -0.6 8.6
3 - 2 . - ./ 0 1 2
75
$
$%$ , 1401
)I P C
"DC K
( I
1401 % / SI C
- :7 W X#
SI C . C
:7 W 6
/ 0 - rU) !
% 0 J`
` I K ) )I 0
DO ! . 5A % 0 +
SI C
# 8 X#
K 6
/ 8 + K ) )I
5 / 8 ( R !
SI C [ .0
X#
%
!W 5#
` I 0]
0 DO ! ) K
Ryznar, 1944
Xl K ( +
0 )I
. 5#
[
0 )I K SI C - X#
A NO ! \
# C . ] 2 K
% )M D
#) A
X#
"DC K . )!
I^
Xl C P `){I
0 J K
: K - Xl X#
( I % k) 1401
%+# ; . C
% )D % %H; % K -
:) %3` 1 + #
A : X#
C 2 L ) T C . 1
; ( )#
- +3 N N#X )O)
0D+] Xl K -
z3Al : X#
C %€
k ; % 0 r#
%
% B ! ! A % k)
%
A :
X#
0 . D- ) ) T C % 1
- ( )C
+3 ; N 32 3 2 : A Xl K
G % 300 3 2 : A K - 0D+]
-
# A : X#
R#X1
%A1 # 0M3p .0 +3
N K -
A : X#
Xl K % 0 + 160
3 2 : A %A1 # R# X1 .0
R# X1 T ] 0M3p %MGj N +3
K - : X#
0:W Xl K % 0 +
#)
P !
N +3 X#
A . 2 K NO !
% L N +3 fg!
# 5A 0 ; )
Prabhakar et al., 2016
( B ! #) N +3 -
A
5A 0 ; R- BO) X#
- C -)I
) T C s . 1
; ( N#X
A K -
% A
: X#
Xl K % 0 +
% B ! ! 352 187 347 3 2 : A X1 R#
%A1 # .0
) T C 2 (
# ; - 0#
A :
# ()3/ P O T Al
+3 n)DL N
N#X
"DC K
0 K
%A1 # % 0D+]
- z3Al : X#
I % k) 1401
C .0
% )
Al . )A : K -
X#
;
%+#
Xl K R
X1 Q 8 R#
%A1 # ) % 0
"#
#) N +3 N#X
5A X#
C .
D- ) ) T C % 2
- ( )C
; A K - EC
% A :
X#
% B ! ! R
- % 0J- U 0#
A :
# T C [ .0 Xl K )
3 ( R 5# ! N ! 5#
; EjAI
- 0#
A :
# : K - Xl K X#
% B ! !
;
# 14208 6138
~ D#
A A
A A :
0 C 0 f .
5#
%A1 #
"
R# X1 T ] %MGj )#
- 0 K ()3/
%A1 # : %
X#
.0 Xl K % 0 +
Figure 1. Concentrations of Mg2+ and Ca2+ in mg/l present in water samples in April 2022
# L
% ; 0# - A :
# K -
0D+]
- A
: u X ! 10000
~ D#
A A ()3/ P O )O ( DAG 0 X )#
K - 5#
: 0D+]
# .0 5#
; 0# -
# A : K -
% A :
Rl E X )#
0 O _: .0 K - ()3/ P O C
D ] s 1
# )#
X#
A 0D+] K - Xl K ()3/ P O -
z3Al
:
;
%+#
. C ) T C [
2 ; ( T A K - ()3/ P O
% A :
X#
0 +
Xl K %
% B ! ! R 5872 10872 11872
3 2 : A X1 R#
%A1 # .0 C ) T 3 - (
)C
% T : 4 + C ) .#
0 K
%A1 # : TI % X#
l !
%A+C ‚j C C
5A X#
: z;
O
%AC _ .0
Figure 2. Total dissolved solids, EC and Hardness for water of Voshmgir reservoir and different locations of its spillway’s
gallery in April 2022.
Figure 3. Deposition of Leached materials out of concrete on the wall of spillway's gallery (photo taken in April 2022)
#) X#
A
% BO) 2 K NO ! %H u X
X1 5A TI _1 C R#
Tl3l!
fi
)C 1 . _8^)J
# / 0 ; 5A .
- )I 9H
[) % L !
5 U . /
# -
5A JA
#_8^)J N
#
^)J
#_8
% `)!
C 0 )
ICOLD, 1989
.(
5#
)#
X#
A
"DC NO ! % 0 +
"#
C PjDG
# D K B
#_8 ! ) T C .
4 )I f ( - )!
5A TI :
X#
.0 )
Figure4. Corrosion signs of embedded reinforcement in concrete structure of Voshmgir dam’s spillway (photo taken from operation gallery of spillway in April 2022)
3 - 3 .
$
$%$ , 1401
7#
- 0 J A K % C 0 (
"DC I
1401
% D- SI C - 2 K NO !
) ( O 10 %€ ( 0 C ; . 14 pH
/ 7 X r#
• I / )U 0
R ! 5 / 6
[ 0
-
( O - ) 6 ) ( 7 HI ( A RC)8
K)+/ ( D
)C ) ( O s H . 10
0M3p ( N#X
26 / 199
3 2 A :
%; s H 0
Biczok
) ( 1972
) ( O 6 NO ! P C (
# D C )#
N#X . )A
A [ .0
French Standard P18-011
) (1985
% C K ƒ A +
2 ] )I
` I 5A 0t JG
% `)!
.0
% L A
French Standard P18-011
) ( 1985
5 K
# O
# %€ N 04
C ( O) 0 7
(
#
# - / % A#
- )O T 3/!
0 J % C K %
. )A 04
# O D 0 R
! 5 ; . A+- JA T ] +
N % C K ()3/
!
15 3 2 A : s H
Biczok
) (1972
NO ! P C
# D C ! N 5A % K X U
P J:) 0M3p .0
K % C %
"DC 400 3 2 : A D! HI % A -
JA C 5#
R- 78
R !
- A [ .0
)USBR
(1981 CSA Standard A23.1
) (2019
RC)8 % %! J:) PjDG HI
A ( - )O
5#
C .#
A [ )USBR
(1981
JA D
8 n)
)C s .
Biczok
) ( 1972
X SI C .0 . )A P J:) NO ! P C :7 W
% C K 68
/ 0 -
% 0 0 ` I
)I . K
N- 5 U SI C X#
49 / 8 + K % ) )I
5 / 8 ( r# X .0
% % %O)!
) Q# A SI C - 2 K NO ! K
"DC % C )!
P C % R# 1 A RC)8
% C
"DC
%
%H 8 2 K NO ! j4 .
5#
# L
% NO ! P C % C K
# D C N#X
P J:) X
0 . )A
% T : C PjDG T 4 % NO !
# D 5A % K
! # C . ) -)I 5#
HI % 0: G
C NO !
# D T 4 %
% ) % 0 + T 4 - K l f )O XD- C NO ! HI ! %
# D
)O T 4 R
! 0 )
ICOLD, 1989
( .
! )`
At JG P ] % NO !
# D C ) 2 L 5A %
% C
!j M L#
X1 K 0 _1 R#
8 ( }H
%A+C C D
5A
% " C - t -
% )O . - )I
Table10. Water quality characteristics of right irrigation canalof Voshmgir network in April 2022
Location of water sample pH EC Ca2+ Mg2+ CO2 SO42- Langelier index Ryznar index Voshmgir irrigation net 7.14 1745 56.00 199.26 14.08 400.35 -0.68 8.49
3 - 4 . - :% C -2
% )M V!
P SI C
- )I NO ! HI
# D C % K
- A - 0 J K
"DC % k)
- J ^
1400 1 5#
1401
%;H K 0 C A+3
01 #
A JA
French Standard P18-011
) (1985
T 3/!
A . C
French Standard P18-011
) ( 1985
# NO !
# D C 5 K
# O N 04 %
# C %€
T 3/!
0 J
) T C .0 B Xl K 5
( P V!
SI C :7 W
"DC Xl K !
N C 0
;1 .I % 5# LI=0
F % k) T C 0
8
# K % 0 5#
C .#
` I 0 )I K)
_
. W 8 5 # 5#
SI C .I :7 W
% B ! ! J 0 • % 0
% B ! ! K) K E
)I _
C J . 1400
I 1401
SI C :7 W J
)I K .0
5# 1 1401
:7 W SI C K 0 •
0 F
# 8 .0 -
8 T{1 ^ X #
( 1400 :7 W SI C
% B ! ! 81
/ 0 58 / 0 % ) -
T# D!
% K K) _ .0
Figure 5. Temporal variation of Langelier index for water of Voshmgir reservoir
Figure6. Temporal variation of Ryznar stability index for water of Voshmgir reservoir
P V!
8 SI C
# X#
) T C 6
C (
;1 .I 0 8
/ 6
= 5 RSI
/ 8
=
RSI
5#
T C
% B ! ! -
+ )I K SI C ; %v U . A+- )I
X#
# .I
8 / 6
=
;1 .I RSI
8 / 6
= 5 RSI
/ 8
= # RSI
W .I 5 / 8
= ] RSI
K
% B ! ! p )I
+ )I :7 W SI C EjI . ) - )I )I
SI C ] - X#
u X ! C 0 ` I )I K
R ! .0 D- ) % T C - ) 5 ) ( 6 - ( )C
P V!
0 ` I )I Xl K
SI C [ -
:7 W X#
.0 % -
V! % P :7 W SI C -
# X1
# 0
SI C X#
% B ! ! X1 R#
R-
%A1 # 0 . SI C X#
^ Xl K 1400
1 5#
1401
% B ! ! 93
/ 6 30 / 7 Xl K 0 5#
` I 0
. )I 5#
: G :7 W SI C % 0
5#
` I K 0 • 0
K) _ .
5#
! SI C EjAI 5
K n) -
^ 1400
1 5#
1401 C 2 )O +J!
:7 W SI C 0 • ; A] ] .0
:7 W SI C 0 •
% 0
# D )!
% ) H]
p ) )I
# K) M t K ) _
# SI C X#
) )C JA
Ryznar, 1944
.(
O)!
) T C % % 6
SI C ( X#
1400 57
/ 6 N
` I ! 0
)I ) K
8 / 6 ^ .0 (
1400 SI C X#
93 / 6 K 5#
SI C .0 )I X#
J 1400
71 / 7 0
] )O G
% ) )I K 8
/ 6 ! 5 / 8
` I ( 0 DO ! ^ % 0 + K 1400
X1 R#
%A1 # T C .0
) 6 - ( )C
J % 1400
! 5# 1 1401
SI C X#
% 41 / 0 R-
%A1 # )O
)I P C K ) DO !
C %A K
.0 R 5# ! C A % 2 K NO ! P X#
"DC
( I
1401 .0 5#
SI C X#
R 5 / 8 + K / ) T C .0 )I
6 (
- )C % . )O 2 K NO ! HI 0 )I K U C % : H Q 8
) T C 7 ( P V!
; )#
N +3 Xl K )O)
"DC C
.0 -
^ 1400 K %
% B ! ! p D )I A %H; ) 0 )I
# T C 6 ; ( )#
+3 N
K )O) R
5# ! )I ;
%+# ;
# . - 5#
0:W n)F) T# D!
! N X U K
%
#) N +3
+ -
5A -
( ^ 1400
T ; . I
1401 0M3p % )#
+3 N K 32
3 2 : A N ! 5#
;
# SI C s H 0 - X#
K +
%H; ) 0 )I
# A T C - 6 7
% .(
p -
^ 1400 SI C % X#
+3 ; N
K
5#
D EjAI V!
P SI C
X#
+3 ; N
% P )`
[)
"# # .0
5#
%A1 # -
H 9 ) )I [ +3 ; Xl K
N .0 K )O)
Figure7. Temporal variation of calcium ion concentration in water of Voshmgir reservoir
Figure 8. Temporal variation of sulfate ion concentration in water of Voshmgir reservoir
) T C 8 ( P V!
0M3p
#
"DC Xl K )O) P J:) ) N !
C 0 ) T C . 8
(
G
% - )] P C [ 5A % %! J:) PjDG N . )A
Biczok
) (1972
;1 .I . )!
"# # r J!
C 0 . D- ) ) T C % 8
- ( )C
P J:) 0M3p
% P )`
) V!
%! J:) PjDG HI P C -
C
% P )`
: )A U 0 • X
.0 -
( J
1400 N- 5 U
( I
1401 G P J:) ; 80
3 2 A :
# L
% N ! 200 3 2
: A 0 U [ ( O
- ) 5 ) ! ( 8 P J:) NO ! HI ( X U
( ^ .0 1400
P J:) ;
940 3 2 A : R 5 / 6 5 "
P J:) ;
# - P J:) PjDG P C 0 5#
[
Biczok
) ( 1972
# C A s H
French Standard P18-011
) ( 1985
%MGj T ] .0
[ )USBR
(1981 CSA Standard A23.1
) X (2019
)O P J:) PjDG HI
USBR
) (1981
JA D
n) !
% 5A U \ 5
8
A .0
French Standard
P18-011
) ( 1985
X
! b H 2 X:
C 5A O B
# / . H n) T C) D
% K 0 + D
C .#
X1 ) 0
% (B 8 P J:) PjDG 0t JG )M
.0 5# 1 (
1401 0M3p
K P J:) 320
3 2 A : T C) 0 . )A P J:) PjDG P C 8
.(
P V!
; )#
N#X
"DC K )O) ) T C
9 ( -
0M3p T] G • G %
N#X
% B ! ! -
J ^ 1400
C 0 f .0 -
( ^ 1400
0M3p N#X
% B ! !
170 194 3 2 : A ) 5A % NO ! . )A P C % A 0 100
3 2 : A %3` 1 (
# .
1 0M3p N#X
J ( 1400 -
1 5#
( I 1401
G 86 3 2 : A
5#
` I % 0
DO ! K
%
%H ; N#X U ! N X .0 ) T C [ 9
; ( N#X
)O)
K
"DC Q 8
C F 0 C NO ! HI
# D . ] 5A %
) T C 10 V! ( P )# 0M3p )
2) ;
"DC K pH
C %€
.0 D- ) C % T
) 10 - ( )C
R 5# ! N ! 5#
) 0M3p ; 2)
K
% B ! ! r#
12 / 0 3 2 A : .0
# L
% ) 0M3p 2)
+ )D- N
HI % A ! NO !
# D C 5A %
) 15 3 2 : A 0 (
HI -
A K)+/
D )C .
Figure9. Temporal variation of magnesium ion concentration in water of Voshmgir reservoir
Figure10. Temporal variation of ammonium ion concentration and pH value in water of Voshmgir reservoir
V! % %O)!
P ;
) T C K pH
10 - ( )C
% - V! C
P pH
5 51 / 7 19 / 8
` I )D- K 0 0
.
%O)!
% 5#
% ; )D- K pH
u X ! 5 / 6
[ 0
( O - ) 6 ) ( 7 M ( K pH
HI -
A
# ! D .
3 - 5 . - 5 % , ./ 0 -5
-)8
~8 V!
P -
r#
T )4 fi C NO !
# D 5A % K )I P C -
T )4
3 )4 ! z3Al NO ! HI %
- ) ( O )O 11
C %€ (
.0 1400
% %O)!
5#
%
SI C X#
N ! 8 / 6 )O 2 K NO ! 0 N-
5 U %! J:) PjDG HI X
U X ( O) 0 11
.(
; T ; N#X
170 3 2 A : R ) 5A % NO ! . )A P C % A 100
3 2
A : ( - .
C % : H R
5# ! 0M3p )#
- P J:) N#X
T C s H -
) 8 ) ( 9 ^ (
1400 C PjDG P C C 0 f
# D P J:) N#X
5A %
% B ! ! )]
. )A .0
N- 5 U 5#
K
"DC C PjDG 0 )I
# D % K X#
A ( RC)8 -
F 0 /
. ] 5#
C .#
% T : T 4 % XD- NO ! HI )ICOL
( 1989
fg!
- K l r#
T )4
% 0 + )O NO ! HI ! %
R ! .0 - 78 A [ %
Q#
3/!
T 0 J K
)"#
w j C P J:) PjDG HI %+ 1
#
% )3O )M l!
B#
5A - D
2 ;
) C JA P J:)
Mason, 1990
) ( O [ .(
11 J ( 1400
T 4 ! B
5A %
.0 2 K NO ! 5# 1
1401 :) PjDG P C .0 )I K N %! J
D- ) ( O %
) 11 - ( )C
I 1401
+ K ) HI )I
# X#
A C
# % %O)! .0
) ( O 11 %D- ( NO ! HI T] G -
# D C r#
. )O 5A % T 4 R
5# ! HI B -
# D C
^ 5A % 1400
1 5#
1401 0 ) . - J
1400 I 1401
X r#
%AC )O HI T 4
0 . D- ) ) ( O % 11
- ( )C
C 2 K NO !
# 5# ! T
9H
"DC K .0
Table 11. Intensity of different chemical attacks in various studied months and number of attacks for each month Year Month Soft water attack Intensity of SO42-
attack Intensity of attack by Mg2+ Involved agents
2021 November No difficulties None to slight Mild 1
2021 December Water is aggressive Strong Mild 3
2022 March Water is aggressive None to slight None to slight 1
2022 April Water is aggressive Mild None to slight 2
2022 June Water is very aggressive None to slight None to slight 1
#)
!j j4 5A )I K 1 0 %
8 - )!
# -
A L#
1 \ 5A R#
R !
# T T )4 X1 B ]
R#
fg!
K l -
)C
)
ICOLD, 1989; Prabhakar et al., 2016; Ballim et al., 2009
.(
Koszelnik et al.
) ( 2018
% : H
C NO ! HI
# D ] C K) O !) U 5A % K A+ :
%L A % K % A1
+ A8 T )I .0
Otieno et al.
) ( 2017
R- 78 SI C % /
)I % 2 K NO !
A RC)8 T )!
K ( ;A 1
;#
) O
A1 # Rl K % -
)I T )! z3Al
# +
.0 )I -
[ R#
- + )8 RC)8 JA )I )3O
#) A RC)8 T )!
8 .
N- 5 U
Prabhakar et al.
) ( 2016
)I % : H fg!
0 J c G T/ 5A K
I^ % D3!
:7 W SI C % - )!
… % % )D 18
J K % )D 2 L 0
At JG P ] )3O
1 R#
F 5A . A+
4 . E 82 F
5#
R- 78
% )M HI
B - C
# D % C 5A %
"DC 2 L
#
% )D NO ! P C % C K
# D C 3/! 5A % K
T A Q#
R#
- 0 J JA K
SI C - - A 2 K NO ! )O)
. C
# ; SI C - :7 W X#
"DC K
I 1401
% B ! ! 6 / 0 - R 5 / 8
% 0 %
% B ! ! )I "
) + .0 K ) )I
N- 5 U % : H 0 J
"DC K )I U K % Q 8
. )O 2 K NO ! HI
X1 R#
_8^)J
# 5A X#
8 1
# )#
! B
# NO !
"#
C PjDG T )4
# D 5A % )C f .
)I - )!
A )O) X#
"DC : %
X#
-) 0 - T ] 5#
B3H
C .
% _:
A 0M1 / )M X#
( RC)8 -
)
# )I K . )!
R - B P J:)
N#X RC)8 JA 5A -
+ )8
`)!
% )C . N- 5 U P ] 2 L
AM1 / M 5A JA -
W 3D4 . /
-
† )I
- )8 - K F
3D4 % 5A -
2 L R#
- C C
)!
5A -
B -
# D C .0I 2 ;
T 3/!
0 J
A K % C 0 (
"DC
( I
1401 C Sl NO ! 2 K NO ! HI j4 %
P J:) N#X
X
% B ! ! N . )A C
JA D
! 5A n)
% ) 4 RC)8 - At JG
)3O 0 O R# 1
RC)8 A ( -
`)!
% )C .
# C NO ! HI
# D Xl K
- ( J ^
1400 -
5# 1 ( I
1401 ( ^ %
1400 j4
)I P C K ) B
- C
# D C R )#
5A P J:)
# ) 5#
HI B -
# D C %
- A
# .0 N- 5 U 2 D! % C Sl T] G NO ! HI -
# NO ! T )4
C
# D O %O)! 2X3A+ % )O 5A % K At JG P ] 2 L %
C . 8 )C
P : H
#
y - ) 5#
8 R#
0 j M -
) -
• X B - C
# D % P
% )O
! 5 )D N- 5 U 8 R B
-
# ( JA -
0 j
2 / - . - 8 )I R 3/! 2 L . )C T
- {A]
X )!
y - 0t JG z3Al
-
B -
# D C B
5# ! N y ! 5#
;
% #X- - N !
"
. )D K lA
5 . -6
&2 1. Concrete Leaching
2. Soft Water 3. Portland Cement 4. Firictional Energy Loss 5. Langelier Index
6. Corrosion 7. Aigueblanche 8. Foundation 9. Hirakud Dam 10. Ryznar 11. Ingula 12. Turga
5 . G -2%$ H
K 0 C ! "
%;H A+3
% 7#
# ] 34 V`
+I y
C
% T : N- 1 )D
P - ) 2 L
5#
R- 78
% !
% ) PW ; ] !
.
6 . JK ) L
w - . )O +#) . )! 1 \ ! % )
7 . J )
American Public Health Association, American Water Works Association & Water Environment Federation, USA. (2017). Standard Methods for the Examination of Water and Waste Water.
Anand, B., Sharma, S. N., Pathak, R. P., Kachhal, P. I., & Sharma, P. (2015). Impact of soft water attack on dam concrete, International Journal of Emerging Technology and Advanced Engineering, 5(03), 357-363.
Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture (Vol. 29, p. 174). Rome:
Food and Agriculture Organization of the United Nations.
Ballim, Y., Alexander, M., & Beushausen, H. (2009). Durability of concrete, Chapter 9. In:
Owens, G (Ed.). Fulton’s Concrete Technology, 9th ed. Midrand: Cement & Concrete Institute, 155-188.
Behera, J. (2019). Assessment of water quality parameters of seepage water from crack areas of Hirakud Dam. In: International dam safety conference, 13th–14th Feb, Bhubaneswar, India, 351-358.
Bhuyan, S.C., Behera, J., Kar, J., & Barik, P.K. (2022). Seepage of water quality analysis of a concrete gravity dam using langlier and aggressive index. Advanced Modelling and Innovations in Water Resources Engineering. Lecture Notes in Civil Engineering, (176).
Springer, Singapore.
Biczok, I. (1972). Concrete corrosion-Concrete protection. Hungarian Academy of Sciences, Budapest. 500 p.
Canadian Standard Association CSA Standard A23.1. (2019). Concrete materials and methods of concrete construction/Test methods and standard practices for concrete.
FAO. (2011). The State of the World's Land and Water Resources for Food and Agriculture- Managing Systems at Risk, Food and Agriculture Organization of the United Nations, Rome and Earthscan, London.
French National Standard p18-011. (1985). assessing aggressivity due to pH, Ammonium, Magnesium and Sulphate ions.
Han, F., Liu, R., & Yan, P. (2014). Effect of fresh water leaching on the microstructure of hardened composite binder pastes. journal of Construction and Building Materials, 68, 630-636.
International Commission on Large Dams, ICOLD Bulletin No. 71, (1989). Exposure of Dam Concrete to Special Aggressive Waters–Guidelines and Recommendations, for assessing aggressivity of soft water.
Koszelnik, P., Kaleta, J., & Bartoszek, L. (2018). An assessment of water quality in dam reservoirs, considering their aggressive properties. In: E3S web of conferences, vol. 45, p 00035. EDP Sciences.
Langlier, W. F. (1936). The analytical control of anti-corrosion water treatment. Jourrnal of American Water Works Association, 28(10), 1500-1521.
Mariana, G., & Cornel, T. (2011). Defects in Concrete Dams, JAES, 1(14), 73-78.
Mason, P. J. (1990). The effects of aggressive water on dam concrete. Constr Build Mater, 4(3), 115-118.
Mohd-Asharuddin, S., Zayadi, N., Rasit, W., & Othman, N. (2015). Water Quality Characteristics of Sembrong Dam Reservoir, Johor, Malaysia, In: proceedings of International Conference of Soft Soil Engineering (SEIC2015), IOP Conf. Series: Materials Science and Engineering, IOP Publishing, pp.1-6.
Morton, T. H. (1977). An algorithm for the langelier index of process waters. Jrnl. of the Inst. of water Engrs and Scientists, 31(1).
Otieno, M., Alexander, M., & Plessis, J. (2017). Soft water attack on concrete tunnel linings in the Ingula pumped storage hydro-power scheme: Assessment of concrete resistance and protection.
Journal of the South African Institution of Civil Engineering, 59(3), 57-67.
Prabhakar, K., Pathak, RP. & Sivakumar, N. (2016). Water quality impact on the dam concrete for upcoming pumped storage scheme in west Bengal, International journal of eng. sci. &
research technology, 5(2).
Ryznar, J. W., & Langelier, W. F. (1944). A new index for determining amount of calcium carbonate scale formed by a water, American Water Works Assoc., 36(4), 472-486.
Ryznar, J.W. (1944). A new index for determining amount of calcium carbonate scale formed by a water. Jrnl. of American water works association, Vol. 36, 472-0483.
United States. Bureau of Reclamation, United States. Department of the Interior. Water, &
Power Resources Service. (1981). Concrete Manual. US Bureau of Reclamation.
Wankhade, R. R. (2015). Water Quality Study: Physico-Chemical Characteristics of Neelona Dam, Yavatmal (Maharastra) India, International Journal of Scientific and Applied Science (IJSEAS), 1(08), 495-497.
Yousefi, Gh. (1991). Report of Voshmgir Resevoir operation, Golestan Water Regional Co.
167p. (In Persian).