暟椚㷕
痥㔐湡
䗍ⴓ倯玎䒭ך鑧
⡘縧鸞䏝⸇鸞䏝
⡘縧鸞䏝⸇鸞䏝ךꟼ⤘ְֶׁ׃גֶֻ
v (t) = dx(t) dt
a(t) = dv (t)
dt = d
2x(t) dt
2 x(t)儗tד䗍ⴓ
儗tד䗍ⴓ
r(t)
v (t) = dr (t) dt
a(t) = dv (t)
dt = d
2r (t) dt
2 儗tד䗍ⴓ儗tד䗍ⴓ 如⯋麊⹛ך㜥さ 如⯋麊⹛ך㜥さ
䗍ⴓ倯玎䒭
d
2x(t)
dt
2= a t, dx
dt , x
v =ֿ鍑ֻֿהד劢濼ךx tװv t実
⸇鸞䏝ך䞔㜠ָⴓַגְ㜥さ
⸇鸞䏝ך䞔㜠
׳ה⯓《
չ麊⹛ך岀 麊⹛倯玎䒭պח״ה暟⡤ח⡲欽ׅ
⸂椚鍑ׅל暟⡤ח欰ׄ⸇鸞䏝ָⴓַկ
⡘縧װ鸞䏝実ֿהָדֹ
侧㷕ה׃גך䗍ⴓ倯玎䒭
鍑כ㶷㖈ַׅ 㹀纏㚖כוְֻ䎢ְַ
ⴱ劍勴⟝♷ִל鍑כ♧䠐ח㹀תַ
ⴱ劍⦼חꟼׅ鍑ך⣛㶷䚍כ
倯玎䒭ָػًٓ٦ةろ㜥さך鍑ךػًٓ٦ة⣛㶷 䚍כ
鍑כⰧ⡤涸זꟼ侧ד邌ׇךַ
׃ַ׃ֿך䱇噟דכ麣Ⱗה׃ג䗍ⴓ倯玎䒭䪔גְֻ
䗍ⴓ倯玎䒭ךⴓ겲
杝甧㢌侧ך⦐侧⦐䌢䗍ⴓ倯玎䒭醱侧⨉䗍ⴓ倯玎䒭 倯玎䒭ָ劢濼ꟼ侧ֶ״ןך㼪ꟼ侧חאְג如䒭ך 㜥さ简䕎䗍ⴓ倯玎䒭הְֲկֲדזְךꬊ简䕎 䗍ⴓ倯玎䒭הְֲկ
倯玎䒭ָ劢濼ꟼ侧ֶ״ןך㼪ꟼ侧ろ갪ךろ
갪ךַזך俕如倯玎䒭ֲדזְך
ꬊ俕如倯玎䒭הְֲկ
葿ղזة؎ف׀הח鍑ֹ倯ךظؐعָ֮ؐ
简䕎הꬊ简䕎
♧菙חꬊ简䕎䗍ⴓ倯玎䒭כ鍑ֻךָꬊ䌢חꨇ׃ְ
鍑匿涸ז鍑ָ㶷㖈׃זְֿהָקהו 简䕎ך⢽
ꬊ简䕎ך⢽
俕如הꬊ俕如
简䕎俕如倯玎䒭
简䕎ꬊ俕如倯玎䒭
暟⡤ך麊⹛ה䗍ⴓ倯玎䒭
琎ⴓ岀ה㢌侧ⴓꨄ
瘝⸇鸞䏝麊⹛ 䗁统
v(t) = adt = at + C
琎ⴓ㹀侧
d
2x(t)
dt
2= a
㹀侧dv (t)
dt = a
ְ֮כ
ֿ弫ׅ״ֲזx tװv t実ךָ湡涸
dv (t)
dt = a
ך⚕鴟tד琎ⴓׅה琎ⴓ㹀侧ろ䕎ד剅ַ䗍ⴓ倯玎䒭弫ׅꟼ侧
ך䗍ⴓ倯玎䒭ך♧菙鍑הְֲկ 鍑
瘝⸇鸞䏝麊⹛ 䗁统
♧菙鍑実ֽדכ麊⹛ך圫㶨㸣Ⰻח✮鎉׃ה כְִזְկ麊⹛✮鎉ׅחכ琎ⴓ㹀侧ך⦼寸 㹀ׅ䗳銲ָ֮կ
黝䔲זⴱ劍勴⟝ָ֮לv tָ㸣Ⰻח寸ת
⢽tךהֹחvv
v(0) = C = v0 ״ v(t) = v0 + at
v
t v
⫘ָֹa v(t) = at + C ♧菙鍑כ⫘ֹaך湫简ך꧊さ
搀侧ח֮
ד֮הׅ
ֿ弫ׅחכ
搀侧ך湫简ך⚥ַֿךאָ鼅ל
瘝⸇鸞䏝麊⹛ 䗁统
v(t) = v0 + at
如ח⡘縧x t実
dx(t)
dt = v
0+ at
x(t) = (v
0+ at)dt = v
0t + a
2 t
2+ C
ⱄן琎ⴓ㹀侧
黝䔲זⴱ劍勴⟝ָ֮ל琎ⴓ㹀侧ך⦼ָ寸ת
⢽tךהֹחxx
x(0) = v0 0 + a
2 02 + C = C = x0
״ג
x(t) = x
0+ v
0t + a 2 t
2♧菙鍑כ搀侧ך佝暟简ך꧊さ
ד֮הׅ
䗍ⴓ倯玎䒭ך鍑岀
⸇鸞䏝ָ儗tךꟼ侧ה׃ג♷ִגְ㜥さ ⸇鸞䏝ָxװvח⣛㶷׃זְ㜥さ
剑知⽃זة؎فך䗍ⴓ倯玎䒭
dv (t)
dt = a(t)
瘝⸇鸞䏝麊⹛כֿך知⽃ז㜥さ 鍑実חכ⽃ח⚕鴟tד琎ⴓׅל״ְկ
v (t) = a(t)dt
x(t) = v(t)dt
ׁחvtד琎ⴓׅלxָ実ת
琎ⴓׅ嫣ח琎ⴓ㹀侧
ָ⳿גֻ
琎ⴓ㹀侧寸㹀ׅחכאךⴱ劍勴⟝ָ䗳銲
⢽겗
⸇鸞䏝ָa(t)DPT tחז״ֲח麊⹛׃גְ暟⡤ָ֮կ
ֿך暟⡤כtךהֹחxNך⡘縧ד姺׃גְկ⟣䠐 ך儗ⵟחֶֽֿך暟⡤ך⡘縧ה鸞䏝実״կ
⢽겗
⸇鸞䏝ָa(t)DPT tחז״ֲח麊⹛׃גְ暟⡤ָ֮կ
ֿך暟⡤כtךהֹחxNך⡘縧ד姺׃גְկ⟣䠐 ך儗ⵟחֶֽֿך暟⡤ך⡘縧ה鸞䏝実״կ
dv (t)
dt = 2 cos(3t)
⚕鴟tד琎ⴓ׃ג
v (t) = 2 cos(3t)dt = 2
3 sin(3t) + C
tךהֹחvהזחכv (t) = 2
3 sin(3t)
״ג
v (0) = 2
3 sin(3 0) + C = C = 0
⢽겗
⸇鸞䏝ָa(t)DPT tחז״ֲח麊⹛׃גְ暟⡤ָ֮կ
ֿך暟⡤כtךהֹחxNך⡘縧ד姺׃גְկ⟣䠐 ך儗ⵟחֶֽֿך暟⡤ך⡘縧ה鸞䏝実״կ
v (t) = dx(t)
dt = 2
3 sin(3t)
⚕鴟tד琎ⴓ׃ג
x(t) = 2
3 sin(3t)dt = 2
9 cos(3t) + C
tךהֹחxNהזחכx(0) = 2
9 cos(3 0) + C = 2
9 + C = 1
x(t) = 29 cos(3t) + 11
״ג 9
鸞䏝ח嫰⢽׃ג幾鸞ׅ㜥さ
鸞䏝ח嫰⢽׃ג幾鸞ׅ㜥さ罋ִ
dv (t)
dt = kv (t)
姻ך㹀侧ֿך㜥さכ⽃秪ח琎ⴓ׃ג鍑実ֿהָדֹזְկ הִ֮׆⚕鴟tד琎ⴓ׃גկ
v (t) = ( kv (t))dt = k v (t)dt
劢濼ךꟼ侧 劢濼ךꟼ侧琎ⴓֿׅהזו♶〳腉
⡦ַⴽך倯岀ָ䗳銲
ꥡ简䕎俕如倯玎䒭
㢌侧ⴓꨄ
dv (t)
dt = f (v )g(t)
⚕鴟f vדⶴ
f (v 1 ) dv dt = g(t)
⚕鴟tד琎ⴓׅ
f (v 1 ) dv dt dt = g(t)dt
縧䳔琎ⴓׅה 左辺 = 1f (v) dv 1
f (v) dv = g(t)dt
ך䕎׃䗍ⴓ倯玎䒭חאְגכ㢌侧ⴓꨄהְֲ
ذؙصحָؙ⢪ִկ
ֿז⚕鴟鎘皾דֹ
㢌侧ⴓꨄך穠卓ך鋙ִ倯
dv (t)
dt = f (v )g(t)
䊩鴟חvחꟼ⤘ׅך〸鴟חtחꟼ⤘ׅך꧊
dvהdtללחׅ
1
f (v) dv = g(t)dt
⚕鴟ח琎ⴓ鎸〾ֻאֽל⯓玎ךꟼ⤘䒭ָ䖤կ
1
f (v ) dv = g(t)dt
㼰׃ֽ湫錁涸ז椚鍑
dv
dt = lim
t 0
v t
鵚⡂ך礵䏝♳־הְֲ䠐㔳
þtָ㼭ֽׁל鵚⡂涸ח
v t f (v )g(t) v
f (v ) = g(t) t
ָֿþtװþvך稢ַזⴓⶴ׀הח䧭甧גְַ
v
f (v) = g (t) t
鵚⡂ך礵䏝搀ꣲח״ֻׅlim
v 0v
f (v ) = lim
t 0
g(t) t
1f (v) dv = g(t)dt
⚕鴟ך駈׃♳־
㢌侧ⴓꨄ
ꥡ简䕎俕如倯玎䒭ך㜥さחֿך䩛岀黝欽ׅ
ꥡ简䕎俕如倯玎䒭 ך鍑ךⰕ䒭
׃K tכĜ tך⾱㨣ꟼ侧 琎ⴓ㹀侧
MPHvָ実תկ⚕鴟Fך肔חךׇה
AeCה琎ⴓ㹀侧縧ֹזֶ׃
鸞䏝ח嫰⢽׃ג幾鸞ׅ麊⹛
dv (t)
dt = kv (t) 1
v dv = kdt
⚕鴟琎ⴓ׃ג
1
v dv = k dt
log v = kt + C
⚕鴟ַ⳿גֻ琎ⴓ㹀侧
〸鴟ח꧊
v = e kt+C = eCe kt
⚕鴟eך肔חךׇ
鸞䏝ח嫰⢽׃ג幾鸞ׅ麊⹛ך㜥さ
v = e kt+C = eCe kt ⴱ劍勴⟝ך⢽tךהֹחvv
״ג v(t) = v0e kt v(0) = eCe k 0 = eC = v0
t v
v0
➙䏝כ⽃秪ח琎ⴓׅלxָ実תկ
鸞䏝ח嫰⢽׃ג幾鸞ׅ麊⹛
x(t) = v (t)dt = v
0e
ktdt = v
0k e
kt+ C
ⴱ劍勴⟝ך⢽tךהֹחxxx(0) = v
0k e
k 0+ C = v
0k + C = x
0x(t) = v
0k 1 e
kt+ x
0״ג
t x
x0 + v0 k
x0
鸞䏝ח嫰⢽׃ג幾鸞ׅ麊⹛
㉏겗
如⯋ך麊⹛罋ִկ儗ⵟtחְֶגxחְג
vv ד麊⹛׃גְ暟⡤ָ֮կֿך暟⡤ָ鸞䏝ך
⛦ח嫰⢽׃ג幾鸞׃גְ㜥さח⟣䠐ך儗ⵟtחֶֽ鸞 䏝ה⡘縧実״կ׃⸇鸞䏝ך鸞䏝ך⛦ח㼎ׅ
嫰⢽⤘侧ך㣐ֹׁk הׅկ
תֿך麊⹛ך圫㶨鸞䏝ח嫰⢽׃ג幾鸞ׅ㜥さה 嫰鯰ׇ״կ