2017ɾزԿֶংԋٛ 20175݄19
§5 接ベクトル空間,写像の微分
接ベクトル空間に関する基本事項
41. ʢʰଟ༷ମͷجૅʱ8.3ɽͯ͢ͷϕΫτϧϕΫτϧͱͯ͠ද͞ΕΔʣ MΛCr ڃଟ༷ମͱ͠ɼp ∈ M ͱ͢ΔɽϕΫτϧۭؒTp(M)ͷҙͷϕΫτϧvʹ ର͠ɼ͋ΔCr ڃۂઢ(−ε,ε) →M͕ଘࡏͯ͠ɼc(0) = p, dc
dt
!!!!t=0 =vͱͳΔ͜ͱΛূ໌ͤ
Αɽʦώϯτɿ89ʙ90ϖʔδͷઆ໌ΛҰൠԽ͢Δɽʧ 42. ʢʰଟ༷ମͷجૅʱ86ϖʔδͷҙʣ
MΛC∞ڃଟ༷ମͱ͠ɼp ∈ Mͱ͢Δɽ͜ͷͱ͖ɼϕΫτϧۭؒTp(M) pʹ͓
͚Δํඍશମͷू߹D∞p (M)ʹҰக͢Δ͜ͱΛূ໌ͤΑɽ
球面
S
m の接ベクトル空間43. m࣍ݩٿ໘Sm ⊂Rm+1ʹ͓͍ͯɼ15ʹग़͖ͯͨɼཱମࣹӨʹΑΔC∞ڃ࠲ඪۙ
ܥ { (U,φ),(V,ψ) }Λߟ͑Δɽ(U,φ)ʹΑͬͯU = Sm\ {p+1}ʹہॴ࠲ඪܥ(y1, . . . ,ym) ΛೖΕ*ɼ(V,ψ)ʹΑͬͯV =Sm\ {p−1}ʹہॴ࠲ඪܥ(y˜1, . . . ,y˜m)ΛೖΕΔɽ
U∩V ͢ͳΘͪSm\ {p+1,p−1}ͷpΛͱΔɽpʹ͓͚ΔϕΫτϧۭؒTp(Sm)Λ ߟ͑Δͱɼ
"# ∂
∂y1
$
p
,
# ∂
∂y2
$
p
, . . . ,
# ∂
∂ym
$
p
%
͓Αͼ "# ∂
∂y˜1
$
p
,
# ∂
∂y˜2
$
p
, . . . ,
# ∂
∂y˜m
$
p
%
͍ͣΕTp(Sm)ͷجఈͰ͋Δɽ
# ∂
∂yi
$
p Λ # ∂
∂y˜1
$
p, # ∂
∂y˜2
$
p,. . ., # ∂
∂y˜m
$
p ͷҰ࣍݁߹ͱ
ͯ͠දͤɽͨͩ͠ pʹ͓͚Δ y˜1, y˜2,. . .,y˜mͷʢͦΕΒΛ୯ʹ y˜1,y˜2,. . .,y˜mͱॻ
͍ͯ͠·ͬͯΑ͍ʣΛ༻͍ͨදࣔʹ͢Δ͜ͱɽ 44. ʢʰଟ༷ମͷجૅʱ8.2ʣ
2࣍ݩٿ໘S2={x ∈R3 | ∥x∥=1}Λߟ͑ΔɽS2্ͷۂઢc:R→S2Λ
c(t)=
# 1
√2cost, 1
√2sint, 1
√2
$
∈R3
ʹΑͬͯఆٛ͢ΔɽཱମࣹӨʹΑΔS2 ͷC∞ ڃ࠲ඪۙܥ { (U,φ),(V,ψ) } Λ༻͍Δɽ (U,φ)ʹΑͬͯɼU = S2\ { (0,0,1) }ʹہॴ࠲ඪܥ(y1,y2)ΛೖΕΔɽۂઢc(0,0,1) Λ௨Βͳ͍͔Βɼcͷ૾c(R)Uʹ෦ू߹ͱؚͯ͠·Ε͍ͯΔ͜ͱʹҙ͠Α͏ɽ
(1) c(t)Λ(y1,y2)Λ༻͍ͯ࠲ඪදࣔͤΑɽ (2) dc
dt ΛɼҰൠతͳtͷʹରͯ͠ɼ
# ∂
∂y1
$
c(t)
,#
∂
∂y2
$
c(t)
ͷҰ࣍݁߹ͱͯ͠දͤɽ
*ͭ·Γɼφͷୈ1ɼʜʜɼୈmΛ༩͑ΔU্ͷؔΛͦΕͧΕy1,. . .,ymͱॻ͘ɽ
45. ʢMercatorਤ๏ʣ
2࣍ݩٿ໘S2={x ∈R3 | ∥x∥=1}ͷཱମࣹӨʹΑΔC∞ڃ࠲ඪۙܥ{ (U,φ),(V,ψ) } Λߟ͑Δɽ͞ΒʹɼW ={x ∈S2 | x1> 0}ͱ͓͍ͯɼχ:W →(−π/2,π/2)×RΛ
χ(x1,x2,x3)=
#
tan−1 x2
x1,tanh−1x3$
Ͱఆٛ͢Δɽͨͩ͜͜͠Ͱɼtan−1 tan: (−π/2,π/2) → Rͷٯؔɽ·ͨ tanh−1 ɹϋΠύϘϦοΫɾλϯδΣϯτ
ۂ ਖ਼ ؔ ɹtanh: R→(−1,1),tanh(s)=(es−e−s)/(es+e−s)ͷٯؔͰ͋Δɽ
(1) (W,χ)S2ͷC∞ڃ࠲ඪۙͰ͋Δʢʰଟ༷ମͷجૅʱ54ϖʔδʹड़ΒΕ͍ͯΔ ҙຯͰʣɽݴ͍͑Δͱɼ{ (U,φ),(V,ψ),(W,χ) }S2ͷC∞ڃ࠲ඪۙܥʹͳ͍ͬͯ
Δɽͦͷ͜ͱΛ͔֬ΊΑʢʮݴ͍͑ʯͷਖ਼ੑ͔֬Ίͳͯ͘Α͍ʣɽ
(2) (U,φ)ʹΑͬͯU = S2\ { (0,0,1) }ʹہॴ࠲ඪܥ(y1,y2)ΛೖΕɼ(W,χ)ʹΑͬͯ
W ʹہॴ࠲ඪܥ(z1,z2)ΛೖΕΔɽU∩W (=W)ͷ pΛͱΔɽpʹ͓͚ΔS2ͷ
ϕΫτϧ # ∂
∂z1
$
p, # ∂
∂z2
$
p Λ # ∂
∂y1
$
p, # ∂
∂y2
$
p ͷҰ࣍݁߹ͱͯ͠දͤɽͨͩ͠
pʹ͓͚Δy1,y2ͷΛ༻͍ͨදࣔʹ͢Δ͜ͱɽ
ͳ͓ɼ࠲ඪۙܥͷ͜ͱΛアトラスʢatlasɼਤாʣɼ࠲ඪۙͷ͜ͱΛチャートʢchartɼ
ਤւਤͱݴ͏͖͔͠Εͳ͍ʣͱݺͿ͜ͱ͋Δɽ
写像の微分
46. ʢʰଟ༷ମͷجૅʱ9.1ʣ
f:C→CΛɼf(z)=z(z+1)Ͱఆٛ͞ΕΔࣸ૾ͱ͢Δɽ (1) z =x+√
−1yʹΑͬͯCʹ࠲ඪ(x,y)ΛೖΕɼf Λ࠲ඪදࣔͤΑɽ (2) Ұൠͷzʹ͓͍ͯɼfͷJacobiߦྻ(Jf)zΛٻΊΑɽTz(C)ͷجఈ
&# ∂
∂x
$
z
,
# ∂
∂y
$
z
'
Λ༻͍Δ͜ͱɽ
(3) ඍ(df)z:Tz(C)→Tf(z)(C)͕ಉܕͰͳ͍zΛͯ͢ٻΊΑɽ 47. લͷ f:C→Cʹ͍ͭͯҾ͖ଓ͖ߟ͢Δɽ
Riemannٿ໘Cˆ Λߟ͑Δɽ͢ͳΘͪɼʰଟ༷ମͷجૅʱ49ϖʔδͷྫ5ʹ͋ΔΑ͏ʹ*ɼ
Cˆ ͱS2Ͱ͋ͬͯɼU =S2\ { (0,0,1) }͕CzͱɼV =S2\ { (0,0,−1) }͕CwͱಉҰࢹ͞
Ε͍ͯΔʢCz,Cw͍ͣΕCͦͷͷ͕ͩɼ۠ผͷͨΊʹҧ͏ه߸Λ༻͍͍ͯΔʣɽU
্ʹͳ͍Cˆ ͷ།ҰͷΛ∞ͱॻ͘ɽ
(1) f ΛCz͔ΒCzͷࣸ૾ͱݟͳ͢ɽͦͷͱ͖ɼf࿈ଓࣸ૾ f˜: ˆC→Cˆ ʹ֦ுͰ͖ɼ f˜(∞)=∞ͱͳΔ͜ͱΛূ໌ͤΑɽ͞Βʹɼf˜͕C∞ڃࣸ૾Ͱ͋Δ͜ͱΛূ໌ͤΑɽ (2) ඍ(df˜)∞:T∞(Cˆ)→T∞(Cˆ)ಉܕͩΖ͏͔ɽఆͤΑɽ
*71ϖʔδͷྫ7ɼ͓ΑͼԋٛϓϦϯτ§3ͷʮRiemannٿ໘ɼෳૉղੳͱͷؔ࿈ʯͷ߲ࢀরͷ͜ͱɽ