/ / NMR P Pz z7 7 Y Yf f[ [T T/ /_ _Y Yb bW WT T/ /
1 / NMR z
<R/@c96UgdNMRS
" K, 4L , " M& FQA*xG" # H ISBN: 9784782705681
(/c@Nbgh)0 '%(Z:%c,)
?!'%(13C/j8)
C?!'%
(;3eE(Y^13C/j8) R’ = I ( I+ 1)
( + 1) 2
1 2
1 ×
ν13C ν0
× α13C α0
3
R’ = I ( I+ 1) ( + 1) 21
21 ×
ν13C ν0 3 S = I(I+1)ν03N I : /mrw
ν0: O5+
N : /mrw:%
D$ (line width factor) LW= (2I + 3)Q2
I2(2I – 1)
I : /mrw
Q : /1uytwq
gW>XihI=1/2c/
2H (I = 1, 0.015%), 7Li (I = 3/2, 92.6%)
11B (I = 3/2, 81.2%), 14N (I = 1, 99.6%)
17O (I = 5/2, 0.037%)
15N (0.37%), 19F (100%), 29Si (4.7%), 31P (100%)
77Se (7.58%), 111Cd (12.75%), 119Sn (8.58%)
125Te (6.99%), 195Pt (33.8%), 207Pb (22.6%) gW>XihI=1/2c/
c/_ckosvwlVgW>Xih/
103Rh (I = –1/2, 100%)
107Ag (I = –1/2, 51.82%), 109Ag (I = –1/2, 48.18%)
/mrwf'%Q\i]ic/c8=Ia`cpynV+)J
-2.B 8 (2020/5/12)
NMR + +Y Y8 8G G9 9G GA A A A * * > > N NT TP P
2
*B5>@C;=-F
(AJSVLXΔE = hν>7F>
ν= γ·B0 2π
*A)- Zhigh frequency
*A- Z low frequency 'B)AI1H@ 6=
I-H-H$7F4>1- (=19FABOUXRWMI1H@7)
@!.KXPOUXRWMB 4A*I%7F
http://www.chem.wisc.edu/areas/reich/nmr/notes-7-multi.pdf
8G9GA@03F*(1HI100 MHz>6:>2)
NTPB5>@?F
1
H ~ 15 ppm
13
C ~ 200 ppm
11
B ~ 210 ppm
31
P ~ 450 ppm
77
Se ~ 3000 ppm
195
Pt ~ 6700 ppm
59
Co ~ 18000 ppm
NTP A-B I/?1D
NMQVI#<3F"1,F (E&6@7F4>)
3
NMR & &D D 2 H NMR 7 7= =4 48 8@ @
2
H, 7;B I = 1, 0.015%, "' γ = 4.1066
?C>B8 = 2.8 + 10
–3, !$ = 1.45 + 10
–6D)*#-1.8/7=48@
J. Mol. Cat. B: Enzymatic 2011, 73,17.
1H NMR spectrum (C6D6)
2H NMR spectrum (C6D6)
5<80 Si(CD
3)
4= 0
Chem. Commun. 2002,66.
Dstyrene-d8/MeReO32,.
% 6:9A35(
NMR * *K K 7 Li, 6 Li NMR : :C C8 8> >F F
4
7
Li, :@I I = 3/2, 92.6%, #+ γ = 10.396
EJDI> = –4 . 10
–2, "& = 1.54 . 10
39A>3 LiCl/D
2O = 0
$ 3% –10~5 ppm
J. Am. Chem. Soc. 2007, 129, 3492.
7Li!KMe3Si7;=GI2'BH>I6 RI(rapid injection)NMR0,-E?<J
6
Li, :@I I = 1, 7.4%, #+ γ = 3.937 EJDI> = –8 . 10
–4, "& = 3.58
6Li!K(Ph6Li)21(Ph6Li)42 (6Et2O26Li/54
13C NMR:C8>F0)
J. Am. Chem. Soc. 1998, 120, 7201.
Prof. Hans J. Reich@U Wisconsin
NMR 2 2X X 11 B NMR F FM MC CI IS S
5
11
B, FJT I = 3/2, &" 80.42%, ,#4" γ = 8.5847 PUOTI = 4.1 8 10
–2, +0 = 7.52 8 10
2EKI%> BF
3·OEt
2= 0 ->. –120~90 ppm
X BBr
3: 38.5 ppm, BBr
3·pyridine: –7.1 ppm
=;=BHLRTD>V6YW6
http://u-of-o-nmr-facility.blogspot.jp/2008/04/11-b-cosy.html http://u-of-o-nmr-facility.blogspot.jp/2008/04/1-h-11-b-hmqc.html
(!<)=
11B @?' NA/CQFGU:>
11B NMR 9*
Nat. Chem. 2013, 5, 115.
Pt B
Et3P Et3P
B Dur
Dur 3
Science 2010, 328, 345.
Science 2006, 314, 113. Science 2011, 333, 610.
Science 2012, 336, 1420.
Energy Environ. Sci. 2009, 2,706.
11B NMR :
$/17=
@53
δB17 δB130
δB47 δB 12.5 δB39
NMR & &; ; 15 N NMR 1 15 5/ /2 28 8
6
15
N, 139 I = –1/2, 0.37%, ' γ = –2.716 7:692 = ,+ , % = 2.19 * 10
–2042. CH
3NO
2= 0
".# –600~600 ppm
1H-15N HSQC
(-;!$)-
Nat. Chem. 2011, 3, 120.
N N N
N N
N
Mo N
N N N
P N
P
N P
P Mo
δN–29.0
(dt, 1JNN&2JPN = 6.1&2.4 Hz, terminal Nα) δN–16.5
(d, 1JNN= 6.1 Hz, terminal Nβ) δN8.5
(s, bridging N)
α
β P = PiPr2
NMR / /P P 19 F NMR ? ?F F= =B BM M
7
19
N, ?DN I = 1/2, $ 100%, (!0 γ = 25.1815 KOJNB = 75 , ', = 4.73 3 10
3>EB#: CFCl
3= 0 ):* –300~900 ppm
%P EA+GLHO92. 19%PC@I9-&8
F-cytosine <"469;; F-uracil <
http://www.cerij.or.jp/
19F NMR P
http://www.toray-research.co.jp/new_bunseki/index.html
−25
−20
−15
−10
−5 0
5 10
Chemical shift (ppm)
-2 -1 0 1 2 3 4 5
Chemical shift (ppm) 5-FC
5-FU
5-FC
A 5-FU
B
Brit. J. Cancer 2004, 89,1796.
NMR 0 0T T 29 Si NMR E EL LB BH HP P
8
)T
29Si NMR 8<=
Al,Si G@O?H9
29
Si, EJR I = –1/2, $! 4.7%, +"1! γ = –5.3190 NSMRH = 75 , *. = 4.95 4 10
–1DKH#: SiMe
4= 0 ,:- –200~100 ppm
Science 2004, 305, 1755.
Science 2011, 331, 1306.
δSi90
δSi –52, –50, 300, 308
29T& 7(9
29Si >;%
)TISF/3856 DQACR9'
Sci. Rep. 2012, 2, 564.
http://www.ube-ind.co.jp/usal/
documents/o224_145.htm
NMR 1 1 31 P NMR ' '+ +% %( (. .
9
31
P, ')/ I = 1/2, 100%, γ = 10.8394 -0,/( = #" , = 1.44 ! 10
2&*($ 85%H
3PO
4= 0
$ –400~600 ppm
Fig. 4 31P NMR traces for the time course of transesterification of p-nitrophenyl uridineH-phosphonate4awith EtOH (5 equiv.). Note the immediate consumption ofLP-4ain the first minute of the reaction.
Ar = 4-nitrophenyl
New J. Chem. 2010, 34,854.
PPM
40.0 30.0 20.0 10.0 0.0 -10.0 -20.0
Rh CO H
CO P P
two unidentified doublets δP19.2
1JRhP= 122 Hz
free xantphos δP38.8
δP22.2
δP17.7
δP0.7, J= 148 Hz δP8.1, J= 135 Hz 10
10
7
O Ph2P PPh2
Ru CO CO
Ph Ph
Ph Ph O
P P Ru
CO CO
Ph Ph
Ph Ph O
P P
(b) 1 + xantphos (1 eq), 120 °C, 15 min, in DMA, under H2/CO (1/1, 0.1 MPa)
(c) Rh(acac)(CO)2 + xantphos (1 eq) + 1 (2.5 eq), 120 °C, 15 min, in DMA, under H2/CO (1/1, 0.1 MPa)
(d) Rh(acac)(CO)2 + xantphos (1 eq), 120 °C, 15 min, in DMA, under H2/CO (1/1, 0.1 MPa)
(e) Rh(acac)(CO)2 + xantphos (1 eq), 120 °C, 15 min, in DMA, under CO (0.1 MPa)
(f) Rh(acac)(CO)2 + xantphos (1 eq), 80 °C, 15 min, in C6D6, under H2/CO (1/1, 0.1 MPa)
(g) Rh(acac)(CO)2 + xantphos (1 eq), 120 °C, 15 min, in DMA, under Ar (0.1 MPa) (a) 1 + xantphos (1 eq), 80 °C, 15 min, in C6D6, under H2/CO (1/1, 0.1 MPa)
Rh CO O O
P P Rh
CO O O
P
P
11 11
11' Rh
CO O O
P P
12 Rh CO
P P O CO O
31
1
Angew. Chem. Int. Ed. 2010, 49,4488.