• Tidak ada hasil yang ditemukan

PDF On the image of Fourier-Jacobi expansion - 東京理科大学

N/A
N/A
Protected

Academic year: 2024

Membagikan "PDF On the image of Fourier-Jacobi expansion - 東京理科大学"

Copied!
33
0
0

Teks penuh

(1)

Abstract Jacobi forms Our main theorem Proof Application

. .

.. .

.

.

On the image of Fourier-Jacobi expansion

Hiroki Aoki

Tokyo University of Science

March 2010

(2)

Borcherds product

On the symmetric domain of type IV, Borcherds has constructed automorphic forms by infinite product in his paperAutomorphic forms onOs+2,2(R)and infinite productsin 1995.

In his paper, he set the discrete groupOs+2,2(Z). And he gave an open problem: Extend the methods of this paper to level greater than 1.

To show the automorphic property is not so hard.

To show the convergence is very hard !!

In Borcherds paper, he did very complicated calculation on

asymptotic behaviors of the Fourier coefficients of modular forms to investigate the analytic continuation of the infinite product.

(3)

Abstract Jacobi forms Our main theorem Proof Application

Our problem

.

Problem

.

.

.

.. .

.

.

Find an easy way to show the convergence of given series that satisfies a kind of automorphic property, and apply it to Borcherds product.

The symmetric domain of type IV is a domain defined from an indefinite quadratic space of signature (s+ 2,2).

s= 0H×H: very special case

s= 1H2: Siegel upper half space of degree 2

(4)

Abstract Jacobi forms Our main theorem Proof Application

The simplest case

The simplest case : s= 1 (Siegel modular forms of degree 2)

Γ := Sp2(Z)

Mk : space of Siegel modular forms of weightk Jk,m : space of Jacobi forms of weightk indexm

Fourier-Jacobi expansion

.

.

.

.

.

Mk 3F(τ, z, ω) =

m=0

ϕm(τ, z) exp(2π√

1)

Mk 3F 7→ {ϕm} ∈

m=0

Jk,m

This is not surjective. We determine the image of this map.

(5)

Abstract Jacobi forms Our main theorem Proof Application

Main theorem

The elementS :=

(0 1 0 0

1 0 0 0 0 0 0 1 0 0 1 0

)

inducesF(τ, z, ω) = (1)kF(ω, z, τ).

.

Theorem. (The image of Fourier-Jacobi expansion)

.

.

.

.. .

.

.

These two maps are surjective, hence bijective.

FJ : Mk 3F 7→ {ϕm}m=0(∏

m=0

Jk,m

)sym

FJc : Mck 3F 7→ {ϕm}m=1(∏

m=1

Jck,m

)sym

Ifm} is in the image, the series

m=0

ϕm(τ, z) exp( 2π√

1) converges.

(6)

Application

Application

convergence of Maass lift

convergence of Borcherds product Reference

M. Eichler, D. Zagier,The theory of Jacobi forms, Birkh¨auser, 1985.

E. Freitag, Siegelsche Modulfunktionen, GMW 254, Springer Verlag, Berlin (1983).

R.E.Borcherds, Automorphic forms onOs+2,2(R) and infinite products, Invent. Math. 120-1(1995), 161–213.

J. Bruinier,Borcherds products onO(2, l)and Chern classes of Heegner divisors, LNM 1780. Springer-Verlag, Berlin (2002).

(7)

Abstract Jacobi forms Our main theorem Proof Application

Siegel upper half space of degree 2

We denote Siegel upper half space of degree 2 by H2:=

{

Z=tZ= (τ z

z ω )

M2(C) ImZ >0 }

.

The symplectic group G:= Sp2(R) =

{ M=

(A B C D )

M4(R)tM J M=J:=

(O2 −E2

E2 O2

)}

acts onH2transitively by

H23Z7−→MhZi:= (AZ+B)(CZ+D)1H2.

(8)

Abstract Jacobi forms Our main theorem Proof Application

Siegel modular form of degree 2

For a holomorphic functionF :H2Candk∈Z, define (F|kM)(Z) := det(CZ+D)kF(MhZi).

In today’s talk, we set Γ := Sp2(Z) := Sp2(R)M4(Z).

Definition. (Siegel modular form of degree 2)

.

.

.

.

.

We sayF is a Siegel modular form of weightkif a holomorphic functionF onH2 satisfies the conditionF =F|kM for anyM Γ.

We denote the space of all Siegel modular forms of weightkbyMk. For simplicity, we denoteF(Z) =F(τ, z, ω).

(9)

Abstract Jacobi forms Our main theorem Proof Application

Koecher principle

LetF Mk. F has a Fourier expansion F(Z) = ∑

n,l,m

a(n, l, m)qnζlpm,

whereqn:=e() := exp( 2π√

1)

,ζl:=e(lz) andpm:=e().

.

Proposition. (Koecher principle)

.

.

.

.. .

.

.

a(n, l, m) = 0 if 4mn−l2<0 orm <0.

.

Definition. (Siegel cusp form)

.

.

.

.. .

.

.

we sayF Mk is a cusp form of weightkifF satisfies the condition a(n, l, m) = 0 unless 4mn−l2>0. We denote the space of all cusp forms of weightkbyMck.

(10)

Abstract Jacobi forms Our main theorem Proof Application

Jacobi group

The elementT :=

(1 0 0 0

0 1 0 1 0 0 1 0 0 0 0 1

)

inducesF(τ, z, ω)7→F(τ, z, ω+ 1).

DefineGJ:={M ∈G|M1T M =T}. (G= Sp2(R) )

IfF :H2Chas a period 1 with respect toω, thenF|kM also has a period 1 for anyM ∈GJ.

Letm∈Zandϕ(τ, z) be a holomorphic function onH×C. The image ofϕ(τ, z)pm byM ∈GJ is a product of a holomorphic function onH×Candpm. (pm= exp(

2π√

1) ) Proposition. (Action of Jacobi group)

.

.

.

.

.

For eachm∈Z, the group GJ acts on the set of all holomorphic functions onH×C.

(11)

Abstract Jacobi forms Our main theorem Proof Application

Jacobi group invariant function

Define ΓJ :=GJΓ. ( Γ = Sp2(Z) )

Letm∈Zandϕ(τ, z) be a holomorphic function onH×C. We assume thatϕ(τ, z)pmis ΓJ-invariant.

Namely,ϕ(τ, z) satisfies the following two equations:

ϕ(τ, z) =(+d)ke

(−mcz2 +d

) ϕ

( +b +d, z

+d ) ϕ(τ, z) =e(

m(

x2τ+ 2xz))

ϕ(τ, z+ +y) (e(x) = exp(

2π√

1x) ) for any(a b

c d

)SL2(Z) and for anyx, y∈Z. (c.f. the book by Eichler and Zagier)

(12)

Abstract Jacobi forms Our main theorem Proof Application

No negative index Jacobi forms

According to the book of Eichler and Zagier, we have the following propositions.

Proposition. (Jacobi form with negative index is zero)

.

.

.

.. .

. .

Ifm <0, aboveϕshould be the zero function.

.

Proposition. (Jacobi form with zero index is constant)

.

.

.

.

.

Ifm= 0, aboveϕdoes not depend onz. Namely, it is a SL2(Z)-invariant holomorphic function onH.

Hence we may assumem≥0.

(13)

Abstract Jacobi forms Our main theorem Proof Application

Fourier expansion of Jacobi forms

Aboveϕhas a Fourier expansion ϕ(τ, z) =∑

n,l

c(n, l)qnζl. (qn :=e(), ζl:=e(lz))

Ifm= 0,c(n, l) = 0 forl6= 0.

Ifm >0,c(n, l) depends only on 4mn−l2 andl (mod 2m).

Especially, ifm= 1, c(n, l) depends only on 4mn−l2 and sometimes we denotec(4mn−l2) =c(n, l).

(14)

Abstract Jacobi forms Our main theorem Proof Application

Jacobi form

Definition.

(Jacobi cusp formweak Jacobi formw.h. Jacobi form)

.

.

.

.. .

.

.

We say aboveJacobi cusp formweak Jacobi formw.h. Jacobi formϕis a of weight kand indexmif c(n, l) = 0 except whenn >0 and 4mn−l2>0n≥0n≥ −N . We denote the space of allJacobi cusp formweak Jacobi formw.h. Jacobi formof weightkand indexm byJck,mJwk,mJwhk,m.

Jacobi form n≥0 and 4mn−l20 Jk,m

Jacobi cusp form n >0 and 4mn−l2>0 Jck,m

weak Jacobi form n≥0 Jwk,m

w.h. Jacobi form n≥ −N Jwhk,m

(w.h. · · ·weakly holomorphic)

(15)

Abstract Jacobi forms Our main theorem Proof Application

Property of Jacobi forms (1)

Forϕ∈Jwhk,m, a positive valued function Gϕ(τ, z) :=(τ, z)|exp

(2πm(Imz)2 Imτ

) (Imτ)k2 is ΓJ-invariant, namelyGϕ|0,0M =Gϕ for anyM ΓJ.

.

Proposition. (Upper bound of a Jacobi cusp form)

.

.

.

.. .

. .

Ifϕ∈Jck,m, Gϕ has a maximum value.

.

Proposition. (Upper bound of Fourier coefficients)

.

.

.

.. .

.

.

Forϕ∈Jck,m, there exists a constant Kϕ such that

|c(n, l)| ≤Kϕ(

4mn−l2)k2 .

ϕ(τ, z) =∑

n,l

c(n, l)qnζl, (qn:=e(), ζl:=e(lz))

(16)

Abstract Jacobi forms Our main theorem Proof Application

Property of Jacobi forms (2)

Ifm= 0,ϕis a SL2(Z)-invariant holomorphic function on H. Hence Jwk,0=Jk,0=Ak andJck,0={0}, whereAk is a space of all elliptic modular forms of weightk w.r.t. SL2(Z).

Jw,:= ⊕

k,mZ

Jwk,m is a graded ring ofA:= ⊕

k,mZ

Ak.

Proposition. (Structure theorem of weak Jacobi forms)

.

.

.

.

.

Jw, is generated byϕ0,1, ϕ2,1 andϕ1,2onA. (We remark thatJ, is not finitely generated onA).

(17)

Abstract Jacobi forms Our main theorem Proof Application

Fourier-Jacobi expansion

The Fourier Jacobi expansionis a p-expansion of F∈Mk orMck: F(Z) =

m=0

ϕm(τ, z)pm. ForF Mk, we haveϕmJk,m.

ForF Mck, we haveϕ0= 0 andϕmJck,m.

.

Definition. (Fourier-Jacobi expansion)

.

.

.

.. .

.

.

The Fourier Jacobi expansion is a map fromMk orMck to the infinite direct product space of Jacobi forms:

FJ : Mk 3F7→ {ϕm}m=0

m=0

Jk,m

FJc : Mck 3F7→ {ϕm}m=1

m=1

Jck,m

But these two maps are not surjective !!

(18)

Abstract Jacobi forms Our main theorem Proof Application

The symmetry

The elementS :=

(0 1 0 0

1 0 0 0 0 0 0 1 0 0 1 0

)

inducesF(τ, z, ω)7→(1)kF(ω, z, τ).

S∈Γ gives the information about the image of the Fourier-Jacobi expansion. Namely, on the Fourier expansion

Mk 3F(Z) = ∑

n,l,m

a(n, l, m)qnζlpm,

we havea(n, l, m) = (1)ka(m, l, n).

Proposition. (Generators of the symplectic group)

.

.

.

.

.

The groupG= Sp2(R) is generated byGJ andS.

The group Γ = Sp2(Z) is generated by ΓJ andS.

(19)

Abstract Jacobi forms Our main theorem Proof Application

The image of the Fourier-Jacobi expansion

Let (∏

m=0

Jk,m

)sym

:=

{

m} ∈

m=0

Jk,mcm(n, l) = (1)kcn(m, l) }

(∏

m=1

Jck,m

)sym

:=

{ m} ∈

m=1

Jck,mcm(n, l) = (1)kcn(m, l) }

where we denoteϕm(τ, z) =∑

n,l

cm(n, l)qnζl.

.

Theorem. (The image of Fourier-Jacobi expansion)

.

.

.

.. .

.

.

These two maps are surjective, hence bijective.

FJ : Mk 3F 7→ {ϕm}m=0(∏

m=0

Jk,m

)sym

FJc : Mck 3F 7→ {ϕm}m=1(∏

m=1

Jck,m

)sym

(20)

Abstract Jacobi forms Our main theorem Proof Application

Flow of our proof

Theorem. (The image of Fourier-Jacobi expansion)

.

.

.

.. .

.

.

These two maps are surjective, hence bijective.

FJ : Mk 3F 7→ {ϕm}m=0(∏

m=0

Jk,m

)sym

FJc : Mck 3F 7→ {ϕm}m=1(∏

m=1

Jck,m

)sym

Does

m=0

ϕm(τ, z)pm converge absolutely and locally uniformly onH?

Step 1. Estimation of Jacobi cusp forms on ‘rational’ points Step 2. Convergence at ‘rational’ points

Step 3. Complete the proof of FJc. Step 4. Complete the proof of FJ.

(21)

Abstract Jacobi forms Our main theorem Proof Application

Step 1. (1)

First, we supposem}m=1(∏

m=1

Jck,m

)sym

.

Takex, y∈Qwith same denominatorD. Then fm(τ) :=e(mx2τ)ϕm(τ, xτ+y)

is an elliptic cusp form of weightkwith respect to the main congruent subgroup of levelD2. The Fourier expansion offmis

fm(τ) =∑

ν>0

am(ν)qν (

am(ν) = ∑

n,l∈Z mx2 +lx+n=ν

cm(n, l) )

.

We remark that the number of the pair (n, l) satisfying mx2+lx+n=ν is less than 4

+ 1. These (n, l) satisfies the condition 4mn−l24.

(22)

Step 1. (2)

Because the space of the above elliptic cusp forms is finite dimensional, there existLandCsuch that

|fm(τ)| ≤C

∑

νL

|am(ν)|

(Imτ)k2.

Hence we have

Gm(τ, xτ+y)≤C





νL

( ∑

n,l∈Z mx2 +lx+n=ν

|cm(n, l)|)



, whereGm meansGϕm.

(23)

Abstract Jacobi forms Our main theorem Proof Application

Step 2. (1)

Here we denote the Fourier coefficientc

( n l/2 l/2 m

)

=cm(n, l).

For anyA∈SL2(Z), (t

A O2 O2A1

)Γ inducesc(T) =c(tAT A).

Forx= αβ, takeA= (αβ)SL2(Z). Then we have c

( n l/2 l/2 m

)

=c (tA

( n l/2 l/2 m

) A

)

=c

(

2+lαβ+2

) . Because2+lαβ+2= (mx2+lx+n)β2(mx2+lx+n)D2, we regard thatm in|cm(n, l)|at Step 1 is sufficiently small.

(24)

Step 2. (2)

Namely, from

Gm(τ, xτ+y)≤C





νL

( ∑

n,l∈Z mx2 +lx+n=ν

|cm(n, l)|)



,

there exists a constantKsuch that

Gm(τ, xτ+y)≤CK





νL

( ∑

n,l∈Z mx2 +lx+n=ν

(4mn−l2)k2)



, namely, there exists a constantC0 (depends on D) such that

Gm(τ, xτ+y)≤C0mk+12

(25)

Abstract Jacobi forms Our main theorem Proof Application

Step 3.

.

Proposition. (Structure theorem of weak Jacobi forms)

.

.

.

.. .

.

.

Jw, is generated byϕ0,1, ϕ2,1 andϕ1,2onA.

For anyR >1 and (τ0, z0)H×C, there exist its neighbourhoodU andx, y∈Qsuch that Gm(τ, z)≤RmC0mk+12 for any (τ, z)∈U. Namely,

(τ, z)| ≤RmC0mk+12 exp

(2πm(Imz)2 Imτ

)

(Imτ)k2.

Hence we know the series

m=1

ϕm(τ, z)pmis holomorphic on H2. (

Under the assumptionm}m=1(∏

m=1

Jck,m

)sym

. )

(26)

Abstract Jacobi forms Our main theorem Proof Application

Step 4.

Let ∆10Mc10be a unique Siegel cusp form of weight 10. We remark that ∆10(τ,0, ω) = 0.

Proposition. (Freitag)

.

.

.

.. .

.

.

IfF Mk(k∈2Z) satisfiesF(τ,0, ω) = 0, thenF/10Mk10. Now supposek∈2Z,m}m=0(∏

m=0

Jk,m

)sym

and regard F:=∑

m=0ϕm(τ, z)pmas a power series ofp.

Then each coefficients ofpm onF10is a Jacobi cusp form, hence by Step 3,F10 is holomorphic.

Therefore, by above proposition,F is holomorphic.

For oddk, we have a similar proof. (use ∆35 )

(27)

Abstract Jacobi forms Our main theorem Proof Application

Convergence of Maass lift

.

Theorem. (Maass Lift)

.

.

.

.. .

.

.

For anyϕ∈Jck,1, there existsF∈Mck such that FJc1(F) =ϕ.

The Hecke operatorT(m) induces a map fromJck,1 toJck,m.

(ϕ|T(m)) (τ, z) := ∑

ad=m d1

b=0

akϕ

( +b d , az

)

The series F(Z) :=

m=1

1

m(ϕ|T(m)) (τ, z)pm

=

m=1

n=1

l

 ∑

a|(n,l,m)

ak1c (mn

a2 , l a

) qnζlpm

converges by our main theorem.

(28)

Lift of a weakly holomorphic Jacobi form

Now letϕ(τ, z) =∑

n,l

c(4mn−l2)qnζlJwh0,1.

Calculate the Maass lift ofϕ, although it does not converge:

m=1

n=N

l

 ∑

a|(n,l,m)

a1c

(4mn−l2 a2

) qnζlpm

=

m=1

n=N

l

c(4mn−l2) (

a=1

a1(

qnζlpm)a

)

=

m=1

n=N

l

c(4mn−l2)(

log(

1−qnζlpm)) .

(29)

Abstract Jacobi forms Our main theorem Proof Application

Borcherds product

Hence,formally,

m=1

n=N

l

(1−qnζlpm)c(4mnl2)

is a ΓJ-invariant function of weight 0. By slight modification, Borcherds constructs a Γ-invariant function of weightc(0)/2:

paζbqc

(m,n,l)>0

(1−qnζlpm)c(4mnl2)

,

wherea=1 2

l>0

l2c(−l2),b=1 2

l>0

lc(−l2),c= 1 24

lZ

c(−l2) and (m, n, l)>0 meansm >0 orm= 0, n >0 orm=n= 0, l >0.

(30)

Convergence

This infinite product (Borcherds product) is a Γ-invariant function and has a symmetry.

However, generally, this infinite product (Borcherds product) does not converge. Borcherds has investigated its analytic continuation. He has determined all zero and poles of this product and shown it to be a meromorphic modular form onH2.

By our main theorem, if we show each coefficient of thep-expansion of this infinite product, it should be a holomorphic modular form.

In fact, using this method, we can find out the Borcherds product

10,35and so on.

(31)

Abstract Jacobi forms Our main theorem Proof Application

With levels

Consider the case Γ = Γ0(N) :=

{ M=

(A B C D )

Sp2(Z)C≡O2 (mod N) }

Γ0(N) is generated by Γ0(N)J andS.

We can show the first part of our main theorem in a similar way.

.

Theorem. (The image of Fourier-Jacobi expansion)

.

.

.

.. .

.

.

The map FJ is surjective, hence bijective.

FJ : Mk 3F 7→ {ϕm}m=0(∏

m=0

Jk,m

)sym

This gives a partial answer of Borcherds open problem: Extend the methods of this paper to level greater than 1.

(32)

Automorphic forms on O(2,s+2)

Generalize our main theorem to automorphic forms on the symmetric domain of type IV:

H:=G/K (K= O(2)×O(s+ 2) : max. cpt. ) x Γ

Obstacles

Step 2: Can we makemso small ?

(Is the Fourier group sufficiently large?)

Step 3: Is the space of Jacobi forms always finitely generated?

Step 4: Does the good cusp forms like ∆10 always exist?

(33)

Abstract Jacobi forms Our main theorem Proof Application

Thank you

Thank you for your kind attention.

Referensi

Dokumen terkait

Toshio Sakai, Paschalis Alexandridis, “Facile Synthesis and Colloidal Stabilization of Metal Nanoparticles in Aqueous Amphiphilic Block Copolymer Solutions” AIChE 2004 Annual Meeting,

もし任意の異なる2点x, y∈Xに対して,xの開近傍U とyの 開近傍V が交わらないように, つまりU ∩V =∅をみたすように存在するとき, X,OをT2空間 Hausdorff space, ハウスドルフ空間という.. 問題 105 1pt

[r]

位相空間 科目: 数学演習IIA( f組) 担当: 相木 いよいよ一般的な位相空間を扱う.その前にRnの開集合の性質をもう一度思い出そう. Rnの開集合の性質 これまでの演習問題で見てきたRnの開集合に関する主要な性質を挙げる. i ∅とRnは開集合 ii A, B ⊂Rn がRnの開集合ならばA∩BもRnの開集合 iii

T2と同値な条件 S,Oを位相空間とする.S,OがT2を満たすことと以下のT2′を満たすことは 同値である. T2′ ∀x∈Sに対してその閉近傍全体の集合をVcx とおいたとき, ∩ A∈Vcx A ={x} が成り立つ. ここで,x∈Sに対してその閉近傍とはxの近傍であり,かつ閉集合であるような集合の

部分集合U ⊂X が開集合であるとは,U が空集合であるか,あ るいは任意の点x∈U に対して,あるr >0が存在し,Bx, r⊂U がなりたつことをいう.. ここでr >0の選び方は点x∈U

Lorenzini : Quotients on wild Z=pZ-quotient singularities in dimenstion 2, preprint, http://www.math.uga.edu/ lorenz/paper.html [17] D.. Lorenzini : Wild quotients of products of

証明の検証が高速 • STARK ; 信頼のおける第三者機関が不要 • Bulletproof ; ECDLP に基づいた方式 • ブロックチェーンの秘匿系プロジェクトで注目度が高い • 例 : 範囲証明, 𝑎 ∈ [0,2𝑛であることを示す ZKP 証明系の比較 Proof system Σ-protocol zk-SNARK STARK