• Tidak ada hasil yang ditemukan

PDF 13 Hilbert - 東京理科大学

N/A
N/A
Protected

Academic year: 2024

Membagikan "PDF 13 Hilbert - 東京理科大学"

Copied!
2
0
0

Teks penuh

(1)

13

Hilbert

! #"%$'&)(+*%,%-/.1032547618:9; &3<>=@?BADC'6FEHG58)91I

JLKNM O%P%Q%R SUT+V+W%XNY5ZW%[DZ\5]

^%_5`+a SUT+V+W%XNY5ZW%[DZ\5]

bdc

2005

e

8

f

22

b

(

f

) 16:00

g

8

f

26

b

(

h

) 11:15

-%i j%kDl%m+nLo prqLstNuv5w%x%yDz OD{

|%}5~%)€

8



22

‚ƒ„+…

16:00 - 17:00

†%‡+ˆD‰

S‹ŠŒ%%ŽNY‘%ŽN]

Hilbert

’%“%”%•5–;—

S

1

]

17:30 - 18:30

†%‡+ˆD‰

S‹ŠŒ%%ŽNY‘%ŽN]

Hilbert

’%“%”%•5–;—

S

2

]

˜;™š%›

20:00

g

œB:ž%Ÿ S¡ 5Y‘¢%WN]¤£L¥%¦

mod p

§

}+¨ª©%«

#¬;­3®!¯±°N²+³

´5µ

Aª¶+·

S¸ +Y¹º¢W%]

Finiteness of abelian fundamental groups with restricted ramification

»%¼5`¾½¤S¿YDÀ)[NYÁ[N]ÃÂ

“%ÄNÅ

ÆDÇ;È:É

¢ S

Iwan Duursma

WLÊD]7Ë#Ì

1

°;

Í;Î

8



23

‚ƒÐÏN…

9:00 - 10:00

Ñ A:ÒDÓ

S¡Ô%YՏ‘ÖD×¢%WN]

Hilbert Eisenstein series

#Ø%Ù¾ÚDÛ:®DÜ

10:15 - 11:15

Ñ A#ÒDÓ

S¡Ô5YÁÖD×±¢%WN]

Hilbert Eisenstein series

Ë

L

Ý

¢

11:30 - 12:30

Þ

#ß%à

S¿áLâ%[NY‘[N]

Doi-Naganuma lift

ã!ä1å

Ì)æ

¯±É)ç'9'è K%é S

1

]

13:30 - 14:00

Þ

#ß%à

S¿áLâ%[NY‘[N]

Doi-Naganuma lift

ã!ä1å

Ì)æ

¯±É)ç'9'è K%é S

2

]

14:15 - 15:15

ê%ë+ì

Ÿ S¡ 5YÁ¢%W5]

GL(2) base change lift

S

1

]

15:45 - 16:45

ê%ë+ì

Ÿ S¡ 5YÁ¢%W5]

GL(2) base change lift

S

2

]

17:15 - 18:15

í

#î

ˆ

SUTNYÁ¢%W5]

Hilbert modular varieties as moduli spaces of abelian varieties

˜;™š%›

20:00

g

Ñ

SUTNY‘¢%WN]

p

ð

Ö+ñ

L

òDóNô

×

ªö5÷

ø%ù%ú%û SÐÀY‘WN]

p

ð

Ö+ñ

§BüªýÝ

¢

.ªþD²NÿNè!¯±°5²+³

ë

S¡V5Y‘WN]

Q ( √

2)

 Ç

”L•

¢

.!¯¾°

!

•

¯±°N²+³

1

(2)

8



24

‚ƒ;…

9:00 - 10:00

í

:î

ˆ

SUT5YՏ‘¢%WN]

Cohomology groups of Hilbert modular varieties 10:30 - 11:15

v

a SUTNYÁW5]

’%“%”%•

`

ð

©%«

< Ç

S

1

]

11:30 - 12:15

v

a SUTNYÁW5]

’%“%”%•

`

ð

©%«

< Ç

S

2

]

8



25

‚ƒN…

9:00 - 10:00

S¡V%YՏ‘WN]

Borcherds

¾­

− O (2 , 2)

#i

− 10:15 - 11:15

O%P+Q%R SUT5V+WNY‘W%[N]

Hilbert modular

E!

Â

! #"

¢ Ë

’+“%”%•

11:30 - 12:30

$BÑ

»% S E

YÁW+[N]

Basis problem of Hilbert-Siegel modular forms (after J. Kuang)

S

1

]

13:30 - 14:00

$BÑ

»% S E

YÁW+[N]

Basis problem of Hilbert-Siegel modular forms (after J. Kuang)

S

2

]

14:15 - 15:00

&(') Ó

SÐÀYÁWN]

D. Lanphier “Petersson norms and liftings of Hilbert modular forms”

*

S

1

]

15:15 - 16:00

&(') Ó

SÐÀYÁWN]

D. Lanphier “Petersson norms and liftings of Hilbert modular forms”

*

S

2

]

16:30 - 17:15

+,&.-0/

S213NYÁW+[N]

Serre’s p-adic modular forms

S

1

]

17:30 - 18:15

+,&.-0/

S213NYÁW+[N]

Serre’s p-adic modular forms

S

2

]

8



26

‚ƒ4;…

9:00 - 10:00

Ñ

E56

S¡V%YՏ‘WN]

Katz p-adic modular forms

S

1

]

10:15 - 11:15

Ñ

E56

S¡V5YÁWN]

Katz p-adic modular forms

S

2

]

2

Referensi

Dokumen terkait

[r]

[r]

22nd Autumn Workshop on Number Theory Date: October 30th – November 3rd in 2019 Venue: Hotel Abest Happo Aldea Abstract October 30th Hiraku Atobe Hokkaido University Introduction

もし任意の異なる2点x, y∈Xに対して,xの開近傍U とyの 開近傍V が交わらないように, つまりU ∩V =∅をみたすように存在するとき, X,OをT2空間 Hausdorff space, ハウスドルフ空間という.. 問題 105 1pt

T2と同値な条件 S,Oを位相空間とする.S,OがT2を満たすことと以下のT2′を満たすことは 同値である. T2′ ∀x∈Sに対してその閉近傍全体の集合をVcx とおいたとき, ∩ A∈Vcx A ={x} が成り立つ. ここで,x∈Sに対してその閉近傍とはxの近傍であり,かつ閉集合であるような集合の

[r]