13
Hilbert
! #"%$'&)(+*%,%-/.1032547618:9; &3<>=@?BADC'6FEHG58)91I
JLKNM O%P%Q%R SUT+V+W%XNY5ZW%[DZ\5]
^%_5`+a SUT+V+W%XNY5ZW%[DZ\5]
bdc
2005
e8
f22
b(
f) 16:00
g8
f26
b(
h) 11:15
-%i j%kDl%m+nLo prqLstNuv5w%x%yDz OD{
|%}5~%)
8
22
+16:00 - 17:00
%+DS%%NY%N]
Hilbert
%%%5;S
1
]
17:30 - 18:30
%+DS%%NY%N]
Hilbert
%%%5;S
2
]
;%
20:00
gB:% S¡ 5Y¢%WN]¤£L¥%¦
mod p
§}+¨ª©%«
#¬;3®!¯±°N²+³
´5µ
Aª¶+·
S¸ +Y¹º¢W%]
Finiteness of abelian fundamental groups with restricted ramification
»%¼5`¾½¤S¿YDÀ)[NYÁ[N]ÃÂ
%ÄNÅ
ÆDÇ;È:É
¢ S
Iwan Duursma
WLÊD]7Ë#Ì
1
°;
Í;Î
8
23
ÐÏN9:00 - 10:00
Ñ A:ÒDÓS¡Ô%YÕÖD×¢%WN]
Hilbert Eisenstein series
#Ø%Ù¾ÚDÛ:®DÜ
10:15 - 11:15
Ñ A#ÒDÓS¡Ô5YÁÖD×±¢%WN]
Hilbert Eisenstein series
Ë
L
Ý¢
11:30 - 12:30
Þ#ß%à
S¿áLâ%[NY[N]
Doi-Naganuma lift
ã!ä1åÌ)æ
¯±É)ç'9'è K%é S
1
]
13:30 - 14:00
Þ#ß%à
S¿áLâ%[NY[N]
Doi-Naganuma lift
ã!ä1åÌ)æ
¯±É)ç'9'è K%é S
2
]
14:15 - 15:15
ê%ë+ì S¡ 5YÁ¢%W5]
GL(2) base change lift
S
1
]
15:45 - 16:45
ê%ë+ì S¡ 5YÁ¢%W5]
GL(2) base change lift
S
2
]
17:15 - 18:15
í#î
SUTNYÁ¢%W5]
Hilbert modular varieties as moduli spaces of abelian varieties
;%
20:00
gÑ
+ï
SUTNY¢%WN]
p
ðÖ+ñ
L
òDóNô :õ×
ªö5÷
ø%ù%ú%û SÐÀYWN]
p
ðÖ+ñ
§BüªýÝ
¢
.ªþD²NÿNè!¯±°5²+³
ë
S¡V5YWN]
Q ( √
2)
Ç
L
¢
.!¯¾°
!
¯±°N²+³
1
8
24
;9:00 - 10:00
í:î
SUT5YÕ¢%WN]
Cohomology groups of Hilbert modular varieties 10:30 - 11:15
v
a SUTNYÁW5]
%%%
`
ð©%«
< Ç
S
1
]
11:30 - 12:15
va SUTNYÁW5]
%%%
`
ð©%«
< Ç
S
2
]
8
25
N9:00 - 10:00
S¡V%YÕWN]
Borcherds
¾
− O (2 , 2)
#i− 10:15 - 11:15
O%P+Q%R SUT5V+WNYW%[N]
Hilbert modular
E!Â
! #"
¢ Ë
+%%
11:30 - 12:30
$BÑ»% S E
YÁW+[N]
Basis problem of Hilbert-Siegel modular forms (after J. Kuang)
S
1
]
13:30 - 14:00
$BÑ»% S E
YÁW+[N]
Basis problem of Hilbert-Siegel modular forms (after J. Kuang)
S
2
]
14:15 - 15:00
&(') ÓSÐÀYÁWN]
D. Lanphier “Petersson norms and liftings of Hilbert modular forms”
*
S
1
]
15:15 - 16:00
&(') ÓSÐÀYÁWN]
D. Lanphier “Petersson norms and liftings of Hilbert modular forms”
*
S
2
]
16:30 - 17:15
+,&.-0/S213NYÁW+[N]
Serre’s p-adic modular forms
S
1
]
17:30 - 18:15
+,&.-0/S213NYÁW+[N]
Serre’s p-adic modular forms
S
2
]
8
26
4;9:00 - 10:00
ÑE56
S¡V%YÕWN]
Katz p-adic modular forms
S
1
]
10:15 - 11:15
ÑE56
S¡V5YÁWN]
Katz p-adic modular forms
S
2
]
2