1. Linearized PV equation
2. Rossby-Gill problem (Vallis chapter 3.8)
Geostrophic adjustment
Holton (IDM, 2004)
Linearized PV equation
Shallow water equations (u, v, h)
( η = h, if bottom does not exist)
Linearized PV equation ut′+ ¯u u′x+ ¯vuy′− fv = − gηx vt′+ ¯u vx′+ ¯vv′y+ fu = − gηy
ηt′+ ¯uη′x+ ¯vη′y = − H(ux+ vy)
D
Dt (ζ− f0 η
H)= 0
Initial condition
Rossby-Gill problem
η
0− η
0
q0 = f0η0
H x > 0
− f0η0
H x < 0
Will fine geostrophic balance, while conserving PV
Introduce f0u = − g ∂η
∂y, f0v = g ∂η
∂x ζ− f0 η
H = q0 ψ = gη/f0
Initial condition
Rossby-Gill problem
η
0− η
0
q0 = f0η0
H x > 0
− f0η0
H x < 0
PV equation becomes ψxx+ ψyy− f02
g Hψ = q0
Consider uniformity in y ψxx− 1
Ld2ψ = f0
Hη0 sgn(x)
Rossby-Gill problem
q0 = f0η0
H x > 0
− f0η0
H x < 0
Consider uniformity in y
Solution ψxx− 1
Ld2ψ = f0
Hη0 sgn(x)
ψ = − fg
0η0(1− e− x/Ld) x > 0
g
f0η0(1− ex/Ld) x< 0
v = − fg0ηL0de− x/Ld x > 0
− fgη0
0Ldex/Ld x< 0
Rossby-Gill problem
q0 = f0η0
H x > 0
− f0η0
H x < 0