การประมาณคา 1
2301116 ก II ก ก !""ก
ก 2
ก ก !""ก
#$$
%" $$ &ก n & x0
ก ก !"
ก "ก'&()!*+,ก"+,ก
ก "ก'&()!*& (
ก "ก'&()!*ก$ก- $(
ก "ก'&()!*ก$ก- ./"
#$$
● 012 8.1.1 3* f $4"ก !".5 f "%" f', f'', ..., f(n) , #
$"6"!, [a, b] f(n+1) ก&"!, (a, b) ( c ∈ (a, b)
$ $(ก#7&*, #$$
● 012 8.1.2 )* f $4"ก !".5"%" "& n+1 7&*ก&)"
!,$8& (a, b) f(n) , #$"6"!,8& [a, b] 3* x x0 $4"&
&)" (a, b) #ก# ก" 7&*, c .5(, x x0 )*
fb=faf 'a
1 ! baf ' 'a
2 ! ba2⋯fna
n ! ban fn1c
n1! ban1
fx=fx0f 'x0
1! xx0f ' 'x0
2! xx02⋯fnx0
n ! xx0nfn1c
n1! xx0n1
%" $$ &ก n & x
0● ก#$$ $ ก "&)*
$ $(ก#&ก ,, %" $$ &ก n f & x0
)* Rn $4", #ก# , f(x) ก Tn(x) 7&*
$ $(ก#&ก ,, $91$6%" $$ '&( c (, x ก x0 f(x) = Tn(x) + Rn(x)
Tnx=fx0
∑
k=1
n fkx0
k ! xx0k
Rnx= fn1c
n1! xx0n1
ก 5
'( %" $$
1. ก "&)* f(x) = ln x
1.1 %" $$ &ก 7 f & 1
1.2 ln(3/2) &*,(%" $$ &ก 7 )!*9"( 5
# " ก$#, &$6")"ก 2. ก "&)* f(x) = ex
2.1 Tn(x) f & 0 2.2 | x | < 1/2 | Rn(x) |
ก 6
#,( ก
3. ก "&)* f(x) = ex e0.2 '&(%" $$ )*, &
$6""*(ก, 0.0001
4. ก "&)* f(x) = ln(1 + x) &*,(%" $$
&ก 5 f & 0
%*$#, &$6"ก n #ก#
7$ก" 0.0001
∫
0 0.5
fxdx
∫
0 0.5
fxdx
∫
0 0.5
Tnxdx
ก "ก
กก f(x) &*,( Tn(x) $ (" %" $$ !,()"ก "ก ก&$#'&(
&":"
3* "," M .5 |f(n+1)(x)| < M 7&*,
| Rn(x) | < M |x - x0|n+1/(n+1)!
&":"
fx=TnxRnx
∫
a b
f xdx=
∫
a b
Tnxdx
∫
a b
Rnxdx
∣ ∫ab fxdx∫ab Tnxdx∣n1!M ∫ab∣xx0∣n1dx
∣
∫
a b
f xdx
∫
a b
Tnxdx∣=∣
∫
a b
Rnxdx∣
∫
a b
∣Rnx∣dx
ก "ก
$ , "กก !" f(x) > 0 "!, [a, b] 6%6:"(
)#*$*"'* f $"6ก" X ก x = a 35 x = b
&":" $ 3)!*+,ก%6:"$(+6"+* !,(($;ก%
)"ก %6:"#*ก
ก "ก&*,(+,ก"+,ก
ก "ก&*,(ก$ก- $!$(
ก "ก&*,(ก$ก- ./"
ก 9
ก "ก
➔ )* f:D → R $6$4"ก !""!,8& [a, b]
➔ )* x0, x1, x2, ..., xn $4"& [a, b] ( ,$ ก" h = (b - a)/n a = x0 < x1 < x2 < ... < xn = b
x0 x1 x2 x3 x4 y
x
ก 10
ก '&(+,ก""
➔ $6ก& xi* ก [xi-1, xi] $ )!* ก !" f(xi*)
➔ &":"
∫
a b
fxdx=
∫
x0 x1
fxdx
∫
x1 x2
fxdx
∫
xn1
xn
fxdx
≈
∫
x0 x1
fx1∗dx
∫
x1 x2
fx2∗dx
∫
xn1 xn
fxn∗dx
=fx1∗x1x0fx2∗x2x1fxn∗xnxn1
=
∑
i=1 n
fxi∗xixi1=h
∑
i=1 n
f xi∗
∫
a b
f xdx≈h
fx1∗fx2∗fxn∗
ก '&()!*+,ก"+,ก
● 3* $ $6ก& xi* ก#!,(( [xi-1, xi] 6& ก !""*(& $ 7&*, +% 7&*6ก "ก ก&$#'&(+,ก
● )" "$&(,ก" 3* $ $6ก& xi* ก#!,(( [xi-1, xi] 6& ก !"
ก& $ 7&*, +% 7&*6ก "ก ก&$#'&(+,ก"
➔ #ก $6ก& xi*)* ก !"# &6& $4"$6( ก &":"$ ก"(
$6ก xi* & (!, [xi-1, xi] 3* $6ก xi* = xi-1
➔ $4"ก "ก ก&$#&*,(+,ก"" '&()!*& ( .* (
∫
a b
f xdx≈hfx0f x1f xn1
ก '&()!*& ( ,
3* $6ก xi* = xi
$4"ก "ก ก&$#&*,(+,ก"" '&()!*& ( ,
● )"กก !"$4"ก !"$%
ก "ก ก&$#&*,(+,ก"" '&()!*& ( .* (
$ กก "ก ก&$#'&(+,ก
ก "ก ก&$#&*,(+,ก"" '&()!*& ( ,
$ กก "ก ก&$#'&(+,ก"
∫
a b
f xdx≈hfx1fx2fxn
ก 13
x0 x1 x2 x3 x4 y
x
ก
x
*i3ก$6ก ก& .* (!,ก '&()!*& ( .* (
ก 14
ก
x
*i3ก$6ก$4"& (( ,x0 x1 x2 x3 x4 y
x
ก &*,(& ( ,
012 8.2.1
1. '&()!*+,ก +,ก"
● )* I $4" '&()!*+,ก""
I = h(f(x1*) + f(x2*) + ... + f(xn*))
➔ '&( x0, x1, ..., xn $4"& [a, b] h=(b – a)/n, xi*()" [xi-1, xi]
➔ 3* f $4"ก !""%" "&"5 M $4" ",".5
| f '(x) | < M ก x )"!, (a, b)
➔ 7&*,
2. )"ก * #*" 3* #*ก )*$#, & $6"7$ก"
0.001 $ #*!, [1, 2] $4"ก!,((
∫
1 2 1
xdx , n=5
∫
a b
fxdx
∣
∫ab fxdxI∣
b2 na2Mกก %6:"$( , ∆x &* "" "6 y1
y2$ 7&*, %6:"6
$ $(กก$ก- )!*6ก$ก- $!$(
y2
y1
∆x
ก$ก- $!$(
1
2y1y2∆x
∫
a b
f xdx≈1
2
∑i=1n fxi1fxi∆x
=∆x
2 f x0fx1f x1fx2⋯f xn1fxn
=∆x
2 fx02 f x12 fx2⋯2 fxn1f xn
ก 17
3*
f
$4"ก !"#$"6x0 x1 x2 x3 x4 y
x
ก$ก- $!$(
∫
a b
f xdx≈Tn=x
2 f x02 f x1⋯2 f xn1f xn
ก 18
012 8.3.1
● )* I $4" '&(ก$ก- $!$(
I = h/2 (f(x0) + 2f(x1) + ... + 2f(xn-1) + f(xn))
➔ '&( x0, x1, ..., xn$4"&!, [a, b], h = (b – a)/n
➔ 3* f $4"ก !""%" "& M $4" ",".5
| f''(x) | < M ก x )"!, (a, b)
➔ 7&*,
1. "ก '&()!*ก$ก- $!$( $6 n=8
* #*" 3* #*ก )*$#, &$6"7$ก" 0.001 $ #*!,
[1, 2] $4"ก!,((
∫
0 1
ex2dx
∫
a b
fxdx
∣
∫a bfxdxI
∣
ba12 n23M$ #*ก ก !"&*,( y = Ax2 + Bx + C
% %6:")#*% ' ก–h7(h7&*,
-h 0 h y
x P0(-h,y0) P1(0,y1) P2(h,y2)
ก$ก- ./"
∫
h h
A x2B xC dx=Ax3 3Bx2
2C x∣hh =2Ah3 3C h
y0 = A(-h)2 + B(-h) + C = Ah2 – Bh + C
y1 = C
y2=Ah2 + Bh + C
y0 + 4y1 + y2 = 2Ah2 + 6C
$ 7&*,
ก &*,(ก$ก- ./"
∫
a b
f xdx≈Sn=h
3y04 y1y2h
3y14 y2y3⋯
h
3f xn24 f xn1f xn
ก 21
#ก ./"
● ก$ก- ./"
I = h/3 (f(x0) + 4f(x1) + 2f(x2) + ... + 2f(xn-2) + 4f(xn-1) + f(xn))
➔ *$ก# ก$ก- ./"#*)!* ","&$4"$ $% ก )!* 3 &
➔ 012 8.4.1 )* I $4"ก &*,(ก$ก- ./"
➔ '&( x0, x1, ..., xn$4"&!, [a, b] .5 n $4" "," h = (b – a)/n
3* f $4"ก !""%" "& M $4" ",".5
| f(4)(x) | < M ก x )"!, (a, b)
➔ 7&*,
∣
∫ab fxdxI∣
ba180 n45Mก 22
'(
1. ก "& f(x) )*&#
x 2 3 4 5 6 7 8 9
f(x) 4.5010 5.0246 5.5865 6.1271 6.9037 7.6814 8.6312 9.4258
➔
➔
➔
2. )"ก &*,(ก$ก- $( $6 n = 8
$#, &$6"$ก&5:" (9"( 4 # ")
∫
2
9 1
fxxd x ,∫
2 9
x fxd x
∫
0 1
ex2dx
'(
3. ก "& f(x) )*&#
x 0 0.5 1.0 1.5 2.0 2.5 3.0
f(x) 0.0625 0.0615 0.0588 0.0548 0.05 0.045 0.004
➔ '&()!*
● ก$ก- $!$( $6 n = 3
● ก$ก- ./" $6 n = 6
4. )"ก &*,(ก$ก- ./"'&()*$#
, &$6"7$ก" 0.0001 #* [1, 2] $4"ก!,
∫
0 3
xfxdx
∫
1 2
ln1xdx