N g h i e n CLFU S I > d u n g t h u a t t o a n di truydn t h i l t k l t l i u-u san phanq be t o n g i i n g lipc tru'O'c
Optimization of prestressed concrete flat slabs using genetic algorithm Ngay nhan bai: 06/4/2017
NgaysCra bai' 11/5/2017 Ngay chap nhan dang: 05/6/2017
T 6 M TAT:
Thiet ke loi Uu ket cau la chu de cua nhieu nghien cflu trong linh vdc thiet ke ket cau. Muc lieu ciia viec thiet ke ket cau tdi itu l i phai giai quyet hai hoa moi quan he giCfa yeu cau sfl dung, do bgn vflng, Uet kiem va phii hop v6i trinh dd thi cdng nham dat ddoc phddng an co gia ihanh n h o nhaL Trong bai bao n i y se nghien cflu flng dung ngon ngfl lap trinh Matlab, xay dilng chilcrng trinh ttf ddng tinh loan thiel ke toi iJu san phang be tdng flng ldc triierc {BT ULT) sfl dung thuat toan di truyen (Genetic Algorithm - GA), v6i cac rang bu^c theo ti^u chuiin TCVN 5574:2012. De chflng minh diiffc do tin cay va khd nang vflot trot cua bai loan toi du sfl dyng GA, tac gia lay ket qua so sanh vdi cdc ket qua ciia phflcrng phap toi Uu thong dung va k^t q u i da cong bo.
Tiikhoa: toi Uu; thudt tt linglUc trddc
(I dl truyen; sdn; be tong
the reliability a n d superiority of the optimal problem by using the genetic algorithm, the author compares the results with the results of the most commonly used and announced melhod Keyword: optimal; genetic algorithm; flat slab;
prestressed concrele
' TrUdny dm hoc Supham Ky thuat TP.HCM
Tran Minh Man, Tran Tuan Kiet
1 , Qatva
truyen (Genetic Algorithm - GAI la phuong phap dua tien qity lu^t tten 11..=, 1-..UI IFUL tLf nhien 6e tim cJuoc phuong i n toi Uu cho kit clu la mot huong 31 moi SOI vdl nhiing ngUdi thiet ke xay duTig tren the gtdt tcong khoing 5 nam gan day 11]
Muc tieu ccr ban ciia GA 1^ cocau tmh toin nhSn. 130 ra su tien hoa cua quan the gom nhieu ci th^ vdi muc flich qu3n the sau "tot hon" quan the Iti/oc Cae toan tCl sir dung trong GA bao gom lai ghep (crossoverl, dot bten (mutation) va chon loc (seleetionl Cli:
toan tir nay ket hop «0i nhau trong mot mo hinh lien hoa v l duoc dieu khien b * mot vai tham so nhir kieh ccr quan the, xic iuat lai gh^p, ide suat dot bien Tinh nu viet va kh^ nang ilng dung cua GA trong tot uu hoa ket elu ma cae phuong phap loi uu tru-oe fliy khong cfl du'OC, nhu cfl the lam viec bai toan co khoi luong bien thiet kl Ion. ml bien cfl the rdi rac hole lien tuc, diiu kien rang buoc phLTc tap, 6a muc tieu voi phuong phap tim kiem trong kh6ng gian voi nhilu phuong an, vi ihe hiem khi chung bi lie nghen i gia tn cyc b6 nhu cac phuang phap khae. Ket qu^ thu duoc lii GA thuding la ket qua toi Uu toan cue 11-31,
Trong bli bio nay gial phip kit cau duoc chon la san phing BT l/LT Kel clu nay co nhung Uu diem ma kit cSu san be tong celt thSp IBTCT) thUcmg khong co duoc, nhuco kh^ nang vucrt nhip Ion nln thuan loi khi Ihay doi chu'c nang sil dung cua cong trinh, giam ehieu dSysSn dan den gilm chieu cao tang, gilm trong luong kel clu vl tilt kilm vat lieu, kha nang chiu lu'c tot va kiem soat duoc do vong, nUt, do han chl duor: nUt, nen tranh duoc 5Uxam thUe gay In mon ciia moi trUdng, thoi gian thi cong nhanh (4,5|
(viae du du'OC su- dung long lat nhifng Ket san phlng BT UU van con nhO'ng han chl ttong thilt ke, ung dung thi cong pho thong, die biet II cong tnnh yeu eau cao ve ky thuit, quin li? va kmh nghiem thi cong C6 nhilu nguyin nhan dan den tinh trang Win- l u ehuan TCVN 5674 2012 duoc biln 50an tren eO sel tieu chuan CHHH 2 03 01-84 Lien bang Xflviltlnay II Lien bang Nga). nhung hiln nay cac tli lieu ky thuit hu6ng Ipdung tieuchuan tu day vio nu'Octa r^th^nche Ngoai ra hien nay cic nhi thilt in apdung ele tieu chuIn nuoe ngoai (AG 318 cita My, BS EN 1992 Eunjcode 2 ciia , AS 3600 ciia Uc . ).Tuy nhiln, vile am hieu cac tieu chuan nUOc ngoai va ap dung hopvcJi thuc te tat Viet Nam II van de khong dedang, cOn nhilu vucjng mac, chua g bo Irong ca khiu thiet k l va thi cong Nen vieC thret ke ket cau BT ULT dang gap khan va chu^ quen thudc dot voi cie ky suViet Nam
in phlng BT ULT sfl dung be long va cot thlp cUcrng do cao, ngoar ra eon eic vat phu nhu neo, 6ng ghen, vHa bom cae vat lieu nly co gia thanh eao Cong tie 1 soat chat luong cao hon so vfli BTCT thuang vi vay cin CO quin ly CO kmh nghllm ing nhan tay nghe cao Vile nay dan din nang cao gia Ihlnh, gilm hieu qua kmh te.
m thio genhuTig van d l con ton tai, viec nghiln ciAi iing dung thuit tolndilruyen net ke tor Uu san phlng 6T ULT nhim lam gilm ehi phi trong xay dUng, nang cao qua kinh t l , da duoc sU quan tam die biel ciia cic nhh thilt k l De chiing minh dLfoc dfl tin cly vl kha nang tot uxi ciia bai toin toi uu sir dung GA, tie gia \iy kit qui - Kit qui ciia phu'dng phip toi uu sil dung cong cu Euc
eo 2 phu'ong phap sir ly bai toan II Generalized Reduc Nonlinear] va Evolutionary (El
- Ket gui da cong bfl [7] blng phu'ong phip tinh lap 2. XAY DlfNG BAI TOAN T H I I T K E T 6 | U U Sfl CA TRONG MATLAB
2,1 Cac hSng SO thiet k l
- So do, mat blng tinfi toan (Hmh 2), chilu dli nhip tinh t ehilu cao (HJ ting tdn. tang du6i; vlt Illu clu tao t Neo- DIu neo cong tie loai det, dau neo chit loai chQ'H
Pi Solver
PHANGBT ULT SLT DUNG
6.2077aDn(ElfBll15
1 < «(4) < 4 Trong d o 0 ^ • k h i n a n g c h i u c i t ciia b e tong tai + Cot t h e p t h u a n g 2 loai Cl va CIM
- T i l t r o n g g o m t i n h l i t hoan thien (eac lop hoc
Z.3 H i m t h i c h n g h i I H a m T h i c h N g h i . m )
O l t i n h gia t l i thich nghi ta d u a vao m o t h a m , g o i la ham thich nghi Ham thich n g h i du'OC x a y d u n g
Ham muc lieu Iduoc xac d m h ban dau> c h i d o l o i d e xac d m h t m h Ihich nghi ciia c l t h e d f l a) H i m muc l i e u Muc t i l u g i l m I h a p n h l t l o n g gia t n k h o i l u o n g , ham muc t i l u duoc thiet lap, n h u s a u -
ehu VI t i e t d i l n —, %„ - ^bi n i n g ehiu ell eiia edt dai, Q„| - l u c e l t nSn thCing tai
c h u VI t i l t dien -j-, - Kiem tra kha n a n g ^ c h o n g niJt cau ki&n tai l i l t d i e n , d o m f l m e n gay nirt bdi I I I t m n g tieu
M „ > M , (9) Trong d o M ^ - m o m e n k h l n g n i n c i i s
l i l t d i l n tiudc khi h m h t h a n h v l t n i r t M, •
(5) (c d a t cr i t phia
<!> (D 't' •
A ; ' B ' C ;
J , 2 3.' Hinhl Scda.irllbitiglinlila^ii
Cac b i e n s d t h i e t ke va g i d i
C l c b i e n s o l h i e t k e J i d l - C h i l u d a y s a n ,
nOI - So e l p u n g luc truoc cho m o t buoc k h u n g , x(3) - Loai b l t o n g s i r d u n g , g d m 4 loai co cap d o Trong d b i n c h i u n e n IUB25 d e n 840 (M350 d i n MISOO)
Trong dfl. Z • t o n g gia t n khoi l u o n g v l t t u thuc d i e n d a n g xet. lay d o i v 6 i t r u e s o n g song vdri truc hren, A • dien lich s a n « ( ! ) - chieu d l y san, ' r u n g hda va d i qua d i e m I6i e l c h xa vung chju Cj J - d a n g i l b l t o n g , p h u t h u o e vao loai be k e o ^ n n i t ;
t o n g ' s i f d u n g i ( 3 ] ; x{2) - sd lUang c i p , L - chieu " Kiem tra d f l v f l n g d o v o n g t o a n p h ^ n so v6i do v o n g gidl han-
d i l c i p , p ^ - t r o n g l u o n g r i l n g , p h u t h u f l c vao loat cap sir d y n g ;((4], C - d o n gia d p , p h u thuoc vao loai cap sir d u n g x(4), Z_,^„^ - t d n g cht
phi vat lieu p h u (neo, d n g g h e n , eot t h l p C ^ ^ ^ i ^ Chl chu- dan gid ciia v o l lieu lay theo Cong bo gid
vdt lieu xdy dung trin dia bdn thanh phd Ho Chi Mmh quy 111/2016 va kham khao til [6].
- Kiem tra u'ng s u i t n l n Ifln nhat t r o n g be t d n g
+ Loai 1 va loai 2 e a p d o n 7 sot AST/ul A416M-98 cap 270 (iulyl OK 12,7 mm va OK 15,24 mm + Loai 3 va loai 4 eap d o n 7 soi EURONOR/ul ] 38- 79 h o l e BS 5896-1980 ( C h i u l u ) OK 12,9 m m va b) Gioi h^n ciia bien sd
« l l ) , x ( 2 U ( 3 ) , x ( 4 1 I I sd nguyen K i n n l m t r o n g k h o i n g
5i""'4
r(21 n l m t r o n g khoang 1 6 c a p s » ( 2 ) < l 2 8 c a p
xf3J n i m t r o n g 4 loa l o n g sir d u n g
1 S X ( 3 ) £ 4
(11
(21 he
13)
t r o n g giai doan n e n truOc, sfl Ling s u i t nen truoc t r o n g giai d o a n truOc gifli han t h e o tieu c h u a n TCVN 5 5 7 4 , 2 0 1 2 ,
- K i l m tra cu'dng d o chiu u o n tai vi t n
U^ > M,„5,
kien t i l t d i e n t m h t o i n . M , ^ - r t i l t d i e n l i n h t o a n d o t i l t r o n g t i n
^ K ^ l m ' t n ' d l u l l ^ ^ n choc t h i i n g ciia
Oi, + 0,8Q,„>Q„|
l 5 4 I H S | [ F . a B l 6.2017
<HU
tn; [I] - TCVN 5574.2012,
3- so s a n h h e ! q u ^ b a i t o i n t o i Uu iil d u n g g a vdti k e t qui b a i t o a n t o i u u su' d u n g c o n g c u e x c e l s o l v e r v i k e t q u i d a c d n g b o
Sd lieu t i n h toa T r u o n g H o i i C h i
• So d o va mat b l n g c h i e u d a i n h i p t i n h to, - T i e t d i e n cac c o t t i n e [71
- T i n h t i i h o a n t h i | n : 2 0 0 daN/m' - Hoat t i l s i r d u n g ' 2 0 0 daN/m' 3 1 Ket q u i t o i n t d i u u sir d u n g t h u a t t o i n d i t r u y e n (GA)
Sau 5 v o n g t i n h t o a n co t h i l t l i p b a n d a u v o i so c l t h e ' SO cac t h e , so lan t i n h t o a n c i i a 1 v o n g S lan; sd t h e h | g r a m d i n t U 2,000 d e n 100 the he, t h i ed e i i n g m o t ket q u i la c l t h e m a n g NST [2 3 3 2], cfl g i l t n k h f l i lu'ong 456,S6(fieo tfong
• ' d d d t h i c h n g h i cao n h l t t r o n g 25 r o n g k h o i n g tti K i t q u i h d i t u cila 5 ve
77 d i n 91 t h i h i , c i t h e eo m a n g n h i e m sac t h e CO d o thi'ch n g h i eao n h a t xuat h i l n tat s d m 6 t h e h l t i I t h u ' 3 - 1 1 .
Xet ket q u i t i n h t o a n v o n g 5 (xem H i n h 3), v6i thiet lap b a n d a u so t h e h i 100 t h e he. ket q u i n h l n d u c K sau 3 212,03 g i i y v d i 5 I i n t i n h l o a n CO c i i n g 1 k e t q u a v d i c i c v f l n g t r u o c va h o i t u f l the tie thil'il, ca t h e cfl m a n g n h i e m s i c t h e co d d t h i c h n g h i cao n h a t x u a l h i e n d t h e he t h i i 3 ln:>ng lan t i n h t o a n t h u ' 3. N h u v l y , bai t o i n t d i Uu Sli d u n g GA t r o n g M a t l a b v d i 100 t h ^ he v l then g i a n t i n h l o i n 3 212,03 giay, t h i l i m ra du'pc k i t q u i n h d n h a t
Ma hda NST [2 3 3 2], n h i n dUac k e l q u i sau;
x{\) = 190 m m - Chiiu day s i n , x(2) = 24 cdp - Sd e l p i l n g luc i r u o c c h o m o t budc k h u n g ,
j;(3) = loai 3, ed d p d f l b i n c h i u nen cua be l o n g B35 (M4S0) - Loai b e t f l n g s i r d u n g , Ji(4) = loai 2 c a p d a n 7 sai ASTM A 4 1 6 M - 9 8 c a p 270 IMv) e K 15,24 m m - Loai cap sir d u n a .
n h t o a n n h U Hinh 2, c 6 i: L = 9.0 m ren, d u f l i b l n g n h a u c d .
DANH GIA KET QUA
S T T 1 2 3 4 5 6
N o i d u n g C h i l u d a y san
Sd c a p u n g lite t r u d c e h o m d t b u f l c k b u n q
Be t o n g C d t t h l p e a n g C o t t h l p t h u a n g Gia t r i l o n g k h o i l u a n g
f . « , i mm Cdp Loai ioai Ton
'Z
K e t q u i GA 190,00
24,00 3,00 2,00 8,6S 456,56
E 190,00 24,00 3,00 2,00 8,65 456,56
GRG 200,00 24.00 2,00 2,00 8,59 457,43
225,00 22,00 2,00 2.00 10,89 498,47 t q u i b i i t o a n t o i iTu s i i ' d u n g
c d n g c u Excel S o l v e r
a) X a y d u n g b l i t o i n tfli u u s i f d u n g edng eu solver t r l n phan m I m Excel BUdc 1. X i y dUng q u i t r m h t i n h t o i n va thiet lap t h a m sfl cila b i i t o i n ( h i n g sd, bien sd, gioi han bien sol, h a m muc t i l u , c i c r i n g budc tUang t U n h u muc 2 Iren p h a n m e m Excel BUOC 2. Khar b a o c l e d ehira bien sd, h i m mue t i l u va c i c rang b u o c t h i l t k l vao h o p c o n g cu Solver Parameters
Bi/dc 3 e h o n 1 n g h i e m bat dau thoa l a t c i cac dieu k i l n rang b u d c va c h o n p h u a n g I n xii Iy bai toan (GRG Nonlinear, Evolutionary - El T i l n h a n h l i n h l o a n , n h a n ket q u i va d a n h g i i k l l q u i
b) K i t q u i bai t o i n tdt Lfu b i n g p h u a n g p h i p GRG Nonlinear C h o n 25 n g h l l m l l m n g h i i m bat dau eho b i i t o i n t d i u u sir d u n g c d n g eu Excel Solver - GRG Nonlinear Sau 25 lan l i n h t o a n , nhan duoc 16 k i t q u i D o t i n h chat cua t h u i t t o a n chi t i m d u o c ket q u i t d t khi m i e n n g h i i m loi (trong b i i t o a n t h i m i l n n g h i e m k h o n g lot), nen k l l q u i s l p h u I h u o c v i o sd n g h i e m b i t dau ed duoc.
C h p n n g h l l m t r o n g lan t m h l o i n thir 15 co g i l tri n h d n h a t I I ket qua cua b l i toan t d i Uu sif d u n g c o n g c u Excel Solver - GRG Nonlmeat.
K e t q u I lan t i n h t o i n t h i i i e x{t) = 20O m m - Chieu day s i n , x(2) = 24 ccip - Sd c i p u n g lue truoc cho m f l t
B30 (M400I - Loai be t d n g sir d y n g , x(41 = loai 2i cap d o n 7 soi ASTM A416M-98 cap 270 [Myi DK 15,24 m m - Loai d p s i i d u n g , Z = 457,43 tneu ddng • t d n g gia i n khdi l u o n g
p h u a n g p h i p Evolutionary (E) C h o n n g h i e m k l l thuc ciia l l n t m h l o a n t h t r o n g muC b l i n g h i e m b i t d i u khi t i n h I b l n g p h u o n g p h a p Evolutionary K i t q u i toan 1 0 l a n n h u sau
- Ket q u i l l n t m h loan t h u 1 den lan thir i t h a i gian t i n h toan t u 540,25 • 4.635,22 gidy kit q u i t i n h t o i n k h d n g thay d d i so vdi ngh b i t d i u .
- Lan t m h toan t h u 7 vdi t h d i gian t i n h I 5 866,23 gray t i m ra n g h i i m co gia t n khoi lu 456,56 tneu dong.
- T u l l n t m h t o a n t h i i s d l n t h O I O v d i t h f l i i t i n h toan 11/6 830,85 - 13 351,50 srci/CD c k i t q u i VOI lan t i n h l o i n t h u 7 Nghidm cfl g i l t n khoi l u a n g 456,56 ineu d va Ihfll gian t i n h toan l i 5 866,23 giay la q u i ciia bai t o i n t o i uu sir d u n g c o n g eu E Solver • Evolutionary Qua k i t q u i 10 lan t o i n t h e o p h u o n g p h a p Evolutionary, eo eho r i n g p h u o n g p h i p nay k e l ciua t m h t p h u thudc vao t h a i gian, thfli gian t i n h t o a r
e.2oi7EiEini:[iBi 15
d u n g cong cu Excel s o l v e r v a k l t q u i d a c d n g bo 17]
Cac k i t q u a l i n h toan t h e o cac p h u a n g p h a p d u o c t d n g h o p t r o n g B i n g 1 Oo g i l I n khoi l u o n g eua k i t qua d i c d n g b o [7| ap d u n g d o n gia n i m 2008, de so sanh vol ket q u i 3 bai toan l o i uu nen gia t n khdi luang d u o c I p lai d o n gia lai t h d i d i l m h i l n tai n a m 2 0 1 7
- Xel v l k i t q u i ciia 4 bai l o a n (xem B i n g 1], k i t q u a ed gia I n khoi Iucmg 456,56 i n e u d o n g la ket qua t d i Uu nhat eua bai t o a n n i y Deu sir d u n g e h u n g 1 loai cot t h e p c a n g co d u a n g kinh 15 m m , CO d i l n l i c h 1 4 0 m m ' Loai be t d n g s i i d u n g eiia b l i t o i n GA v i E cd c u n g 1 loai cd cap d d ben chiu nen ciia be t d n g B35 (M450) Loai b l t d n g sir d u n g ciia b i i t o a n GRG v l ket q u i d l c d n g b d |7] la loai 2 cd cap d o b i n chiu n l n ctia be t d n g B30 (M4001.
- K i t q u i chieu d l y san ciia 4 bai toan. q u a n sal Hmh 5, true d i r n g t h e o phu'ong y b i l u d i e n c h i l u d i y san (mm), n h i n t h i y , -I- Bai l o i n GA va E eo eung 1 k i t qua chieu day s i n v l g i l m 15,56% so v6i ket q u i d l c d n g bd [71
-I- B l i t o i n GRG cfl k i t q u i chieu day s i n g i i m 11,11% so vol ket q u i da c d n g b f l [71, + B i l l o i n GA c 6 k i t qua ehieu day s i n g i i m 5,00% 50 vfli bai t o i n GRG
I I
- Quan s i t Hinh 5, k i t q u i sd l u o n g cdt t h e p cang cho 1 budc k h u n g ( t r u c d i i n g t h e o p h i / o n g yl cua 4 b i i t o a n , nhan t h i y 3 b l i l o a n GA. E va GRG ed c l i n g 1 k i t q u i va t a n g 9 0 9 % so viH ket GRG ed c l i n g , r
q u i c d n g b d [7|
II i I
so santiiS luong col lliep ring Itong inc
- Xel kel g u i sd l u o n g cdt t h e p t h u o n g cua 4 bai l o i n , khao sat Hmh 7. true dUng t h e o p h u o n g y b i l u dien so l u o n g edt t h l p t h u o n g (tSn), nhan thay
-I- Bat l o i n GA va E co c u n g 1 ket q u i sd l u a n g edt t h l p t h u o n g v l g i l m 20,57% so vdi ket q u i d i c d n g b d (7]
-I- Bai l o a n GRG eo ket q u i so l u o n g cdt t h e p t h u d n g g i a m 2 1 , 0 9 % s o v a t k e t q u l da c o n g b o
[71
] i i m 8 , 4 1 % 5 C i I t q u i d l e d n g b d a gia t n k h d i luong I i c f l n g b d l 7 ]
:n khdi l u o n g g i l m
nh? Bieuit6!o;anh;olilfmgdtth^plliiforg
II f I
B l i l o i n GRG c d g i l m 8,23% so voi k.
+ 6ai l o i n GA cd k i t q u i gia 0,19% so v d l bat t o a n GRG
• Qua ket q u i t i n h t o a n (xem B i n g 1) v l k h i o s l t cac b i l u d o so sanh, bat t o a n sir d u n g GA cfl k e l q u i tor Uu b a n so voi phu'ong p h i p tinh lap ciia ket q u i c d n g b d [7] va b l i t o i n l d i uu t h d n g d u n g s i r d u n g c d n g eu Excel Solver- GRG Nonlinear vcfi n h u o c d i e m p h u t h u d c v i o so n g h i e m ban dau tiudc khi t m h t o i n K i t q u i ciia 2 phu'ong p h a p GA va E co c u n g 1 ket q u i , n h u n g so v d i bai t o i n t d i uu t h d n g d u n g sil d u n g c d n g cu Excel Solver - Evolutionary (E) co thai gian t m h t o i n 5.866,23 g t l y t h i b l i t o i n sii d u n g GA vdl t h a gian n g i n b a n 3 212,03 da tim ra ket q u i t d i Uu n h a t N h u v i y cfl t h e chiing m i n h r i n g b l i t o a n t d i u u s u ' d u n g GA d u a c l i p t r i n h tcong M a t l a b e d d d t i n eay c a o v a k h i n i n g t i n h t o a n , t i m k i l m n h a n h , ket q u a l d i Uu hon 3 4 So s i n h k i t q u i b i i t o i n t6i uu sH d u n g GA vol ket q u ^ da cong b d [7J theo cac nhip p h d b i e n tif 8 m d e n 12 m Sd lieu t i n h t o i n lay t h e o bat bao cOa Tic g i i T r u a n g Hoai C h i n h [7]
- So d f l v i m i l b i n g t m h t o i n n h u Hmh 2, cd
- T i e t d i - T i n h t i t h o i n thien n g i n ] 200 ddN/m' - Hoat t i l sil d g n g ( c
Jt t a n g t r e n . c
nhe Bieuiososanhgia triUniluong N h i n xet
• Xet ve ket q u i g i i t n k h o i l u a n g cac n h i p phd b i l n t i f 8 m d e n 1 2 m ( x e m B l n g 2), n h i n thay bai toan s i i d u n g GA g i a m t i i 5 , 8 4 % d i n 10,53%
« ve k i t q u i gia t n khdi l u o n g (truc d i r n g so v d i ket q u i d l c f l n g b d [7]
0 p h u o n g y Hlnh 8) cua 4 bai toan, n h i n 4 . K E T L U A N / Vol muc t i l u g i i m t h a p n h a t t d n g g i i i n khfli at t o i n GA va E cd c u n g 1 k i t q u i g i l t n k h d i l u a n g v l t t U thu'c hien. bat l o i n l d i Uu t h i l t ke
Bang? KnghOpkelquilintitoatinliipljetrilFnlZm
N d i d u n g
L - a m
L . n m
L = 1 2 m GA Ul GA (71 GA
|/|
GA [71
C h i e u
190 2 0 0 2 2 0 2 5 0 240 275 2 7 0 300
Cho
(ccip) 2 4 18 28 24 3 6 32 4 8 38
Be t d n g
[Loai) 1 2 4 2 3 2 2 2
Cot t h e p
[Lopjl 1 2 2 2 2 2 2 2
Cdt t h e p t h U c m g
(Ton) 7.11 7,69 10,37 15,57 12,38 18,58 14,5 2 6 9 4
k h o i '
335,56
627,43 666,S 797,81 880,48 1046,79 1170,05
S o s a n h gia tri
k h o i
(96)
9 4 , 1 6 %
94,14%
9 0 , 6 1 %
89/47% 100,00%
1 5 6 iHinif [mv 6.2017
san p h l n g BT LfLT s i i d g n g GA d u o c t h i e l l i p b i n g n g d n n g u lap t n n h M a t l a b d a t d u o c n h u n g k i t q u a sau
- B i t t o a n sir d u n g GA t h i h i | n d u o c d f l t i n cay va k h i n a n g v u o t trdi cua n o k h i so sanh k i t q u a p h u o n g p h i p t d i Uu t h o n g d u n g (GRG Nonlinear v l E v o l u t i o n a i y l d i / o c l i p t d o h t r o n g Excel solver D o cac phu'ong p h i p n l y c o n
t h u d c v l
- Khi so 5 GA t h ^ 1-
hClng n h u o c diei 0 sd n g h l l m bai i n h v d i k l t q u i c uen k h i n i n g vU t h d n g t h i / d n g . K i t q u a nt- bai toan b o [71- C d t h l n . t r o n g lln n i n g cat
s i r d u n g GA g i l r
J h i e u q u i k m h b m m i bai t o i n s n d a u trUdc khi i h t o a n d i l la e d n g b d t 7 1 , t l o t t r f l i c i i a n d kl l l n d u o c v d l cac
•n t i t 5,84% d e n . i i d u n g i t m h toar l i m o t l i t hi so v d l
3A k h d n g c d nf 1, kit qua c h o r 1 nira b l i toan si p h i / o n g p h a p f n h i p p h d b i e n t u S m d e i 1 0 , 5 3 % ' u y i n la m d t p h u o n g pha Ol u u h o a k e l c l
; ciia p h u a n g ar
>o VOI k e l q u i d p t d i U u d a y t r i l
l U p h u
J d u n g inh l i p i l 2 m , 1 cflng n v o n g u va c d n g t i c t h i l t ke, nhSm de 1 k e l c l u
TitI LIEJ KHAM KHAO
HI le Kuan Huynh Tinh toan kel can theo ly Wiuyel tot rni Hha xuit ban Khoa hoc va Ky Ihna NOI, 2006.
[21 Vi miSQii Tinti kit cau Iheo phiror g phap loi Uu Nha mit bsn lay dung, nam 2003
|3| Nguyen Oinh Ttiuc Tri tue nhan tao - tap tnnh tren hoa Nha m i t ban giao due, nam 20D1 14! Nguyen Tie'n Chumg Ke't ciu be ling iJng suai truSc Nha xuat ban Xsy dung. Ha Noi. 2D10 IS] Kqiiyet^ Tien Chuung, Kit cau b§ long flng suat iru*c cing sau NhS iiiiat bin Kay rl img, H;
2014, 16]http//wwwiiatgiaeom^
17) Tnicmg Hoai Chinb DanhgiS TCXDVN 356 20DS Tap chl Ktio;
IfilHuano M W anilAioia,) 5,PerfoimanteofaOeneticfllgoritKm ForStmtlnrsi Design Using MableSecticni BN,ldiiigWlastSt™aures0.ngress Proceedings, Vol 2,793-797,1997 191 Mamoun Alqedi'-i, Mohammed Arafa and Mohammed Ismail Optimum Cosl of Prestressed and Reinforced Concrrte Bf.'ms using tenelit Algnrilhms Journal of Artihoal Intelligence, 4 76-88, 2011,