Gr.11 Totaal: 90 Tyd: 1,5 uur
Junie-eksamen, Vraestel 1 2023 β Memorandum Vraag 1
1.1 Vereenvoudig volledig, sonder die gebruik van βn sakrekenaar:
1.1.1 β(ββ2 + 1)2β β50 (3)
= β(2 β 2β2 + 1β) β 5β2β
= β2 + 2β2 β 1 β 5β5
= β3 β 3β5β
1.1.2 ( 16
81π₯β2)β
1
2 (3)
= (24π₯2β
34β )
β12
= ( 34
24π₯2)
1 2
= 32
22π₯
= 9 4π₯β 1.1.3 4.2
βπ₯β2+8.22βπ₯
2βπ₯β1 (3)
=
2βπ₯(4.1 4+8.4)β 2βπ₯.1
2β
= 66
β1.2 Indien β12ββ18
β80 =2πβ3π
20 , bereken ππ in sy eenvoudigste wortelvorm. (5)
2β3ββ3β2β
4β5 Γβ5
β5β=2β15β3β10
20 β
= β15 Γ β10
= β150
= 5β6β
1.3 Die wortels van βn kwadratiese funksie π(π₯) = 0 word gegee as:
π₯ =
24Β±β570β10π30
;
π β π1.3.1 Vir watter waarde(s) van π sal die wortels van π(π₯) gelyk wees? (2)
β= 0β
570 β 10π = 0 570 = 10π π = 57β
1.3.2 Bepaal die waarde(s) van π waarvoor die wortels van π(π₯) reΓ«el en ongelyk sal wees. (2)
β> 0β
570 β 10π > 0 570 > 10π π < 57β
[18]
Vraag 2
2.1 Los op vir π₯:
2.1.1 π₯2 = β6π₯ (3)
π₯2 + 6π₯ = 0β
π₯(π₯ + 6) = 0β
π₯ = 0 ππ π₯ = β6β
2.1.2 2π₯2β 5π₯ = 7 (4)
2π₯2 β 5π₯ β 7 = 0β
π₯ =
β(β5)Β±β(β5)2β4(2)(β7)2(2) β
π₯ = 3,5β ππ π₯ = β1β
2.1.3 3 β 22π₯ = 12 β 2βπ₯ (3)
3 β 23π₯β = 12 23π₯ = 22β 3π₯ = 2 π₯ =2
3 β
2.1.4 12 β₯ 2π₯2 + 2π₯ (4)
0 β₯ 2π₯2+ 2π₯ β 12 β 0 β₯ π₯2+ π₯ β 6 0 β₯ (π₯ + 3)(π₯ β 2) β
β3 β€ π₯ β€ β2 βgrense 2.1.5 ππ₯+π¦. π2π₯+ 1
πβ3π₯= ππ¦+1
πβ(π₯+4) (6)
π3π₯β+π¦ + π3π₯β= ππ₯+4β(ππ¦+ 1) π3π₯(ππ¦+ 1)β = ππ₯+4(ππ¦+ 1) π3π₯ = ππ₯+4
3π₯ = π₯ + 4β
2π₯ = 4 π₯ = 2β
2.1.6 βπ₯2+ 11 = π₯ + 1 (3)
(βπ₯2 + 11)2 = (π₯ + 1)2 π₯2 + 11β= π₯2+ 2π₯ + 1β
0 = 2π₯ β 10 π₯ = 5β
2.1.7 2π₯β1π₯β1 β 2
4π₯2β1= 7
2π₯+1 (6)
π₯ β 1
2π₯ β 1β 2
(2π₯ β 1)(2π₯ + 1)= 7 2π₯ + 1 (π₯ β 1)(2π₯ + 1) β 2 = 7(2π₯ β 1) 2π₯2 β π₯ β 1ββ2 = 14π₯ β 7β
2π₯2 β 15π₯ + 4 = 0β
π₯ =
β(β15)Β±β(β15)2β4(2)(4)2(2) β
π₯ = 0,28β ππ π₯ = 7,22β
2.2 Los op vir π₯ en π¦, indien:
π₯ β π¦ + 1 = 0 en π₯2β π₯π¦ + π¦2 = 57 (7)
π₯ = π¦ β 1 β¦ . . (1)β
Stel (1) in (2):
(π¦ β 1)2β π¦(π¦ β 1) + π¦2 = 57β
π¦2β 2π¦ + 1 β π¦2+ π¦ + π¦2 = 57 π¦2β π¦ β 56 = 0β
(π¦ β 8)(π¦ + 7) = 0β
π¦ = 8 ππ π¦ = β7β
π₯ = 7β ππ π₯ = β8β
[36]
Vraag 3
3.1 Bepaal die algemene term vir elk van die volgende patrone:
3.1.1 23; 1;8
7;11
9 ;14
11β¦ (2)
ππ =3πβ1β
2π+1β
3.1.2 10 Γ 11; 15 Γ 22; 20 Γ 33; 25 Γ 44; β¦ (2)
ππ = (5π + 5)βΓ 11πβ
3.2 Gegee: 3; 14; 3; 18; 3; 22; 3; β¦
3.2.1 Skryf die volgende twee terme in die ry neer. (2)
26β; 3β
3.2.2 Bepaal die waarde van die 42ste term in die ry. (3)
ππ = 4π + 10β
π21= 4(21)β+10 π21= 94β
3.3 Beskou die reeks: 3; π₯; 10; π¦; 21. Die reeks het βn konstante tweede verskil van 1. Bepaal die πππ
term van die reeks. (8)
1π π‘π π£πππ πππππ: π₯ β 3; 10 β π₯; π¦ β 10; 21 β π¦β
2ππ π£πππ πππππ: 10 β π₯ β (π₯ β 3); 21 β π¦ β (π¦ β 10) β 10 β π₯ β π₯ + 3 = 1β
β2π₯ = β12 π₯ = 6β
2π = 1 3 (1
2) + π = 6 β 3 1
2+3
2+ π = 3 π =1
2 β π =3
2 β π = 1β
ππ =1
2π2+3
2π + 1β
[17]
Vraag 4
Gegee: π(π₯) = (1
4)π₯β 2
4.1 Skryf die vergelyking van die asimptoot van π neer. (1)
π¦ = β2β
4.2 Bepaal die koΓΆrdinate van die snypunte van π met die π₯- en π¦-asse. (4)
π(π₯) = (1
4)0β 2β
π(π₯) = β1
β΄ (0; β1)β
0 = (1
4)π₯β 2 β 2 = (2β2)π₯ 1 = β2π₯ π₯ = β1
2 (β1
2; 0) β
4.3 Skets die grafiek van π en toon alle afsnitte met die asse en enige asimptote. (3) βπ£πππ β π₯- en π¦-afsnitte
>
(β1 2; 0)
(0; β1)
π¦ = β2β
D C
B
A
O >x
^y
4.4 Skryf die vergelyking van β(π₯) neer, indien β(π₯) gevorm word deur π(π₯) in die π¦-as te reflekteer
en daarna 1 eenheid op te skuif. (2)
π(βπ₯) + 1 = (1
4)βπ₯β 2 + 1 β(π₯) = (1
4)βπ₯ββ 1 β
[10]
Vraag 5
Gegee: π(π₯) = 6
π₯β1β 3 en π (π₯) = π₯ β 2:
5.1 Bereken die koΓΆrdinate van A en B. (4)
π¦ = 6
0β1β 3β
π¦ = β9 π΄(0; β9) β 0 = 6
π₯β1β 3 β 3 = 6
π₯β1 3π₯ β 3 = 6 3π₯ = 9 π₯ = 3 π΅(3; 0) β
5.2 Skryf die waardeversameling van π neer. (2)
π¦ β π β; π¦ β β3β
5.3 Bepaal die vertikale lengte van πΆπ·, indien die koΓΆrdinate van π· (6; π¦) is. (3) πΆπ· = (6 β 2)ββ( 6
6β1β 3) β πΆπ· = 5,8 πππβπππβ
[9]
Totaal: [90]