• Tidak ada hasil yang ditemukan

An Adaptive Algorithm For The Tuning Of Two Input Shaping Methods.

N/A
N/A
Protected

Academic year: 2017

Membagikan "An Adaptive Algorithm For The Tuning Of Two Input Shaping Methods."

Copied!
24
0
0

Teks penuh

(1)

AN ADAPTIVE ALGORITHM FOR THE TUNING OF TWO INPUT SHAPING METHODS

NUR HAFIZAH BINTI HASSAN

This report is submitted in partial fulfilment of requirements for the Bachelor Degree of Electronic Engineering (Industrial Electronic) With Honours

Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

(2)

UNIVERSTI TEKNIKAL MALAYSIA MELAKA

FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

Tajuk Projek : AN ADAPTIVE ALGORITHM FOR THE TUNING OFTWO INPUT SHAPING METHODS Sesi

Pengajian : 1 0 / 1 1

Saya NUR HAFIZAH BINTI HASSAN mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4. Sila tandakan ( ) :

SULIT* *(Mengandungi maklumat yang berdarjah keselamatan ataukepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD** **(Mengandungi maklumat terhad yang telah ditentukan olehorganisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

__________________________ ___________________________________ (TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

(3)

iii

“I hereby declare that this report is the result of my own work except for quotes as cited in the reference”

Signature : ………..

Author : NUR HAFIZAH BINTI HASSAN

(4)

iv

“I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for award of Bachelor of Electronic

Engineering (Industrial Electronics) with Honours”

Signature : ……….…

Supervisor’s Name : PN AZDIANA BT MD YUSOP

(5)

v

(6)

vi

ACKNOWLEDMENT

(7)

vii

ABSTRACT

(8)

viii

ABSTRAK

(9)

ix

CONTENTS

CHAPTER TITLE PAGE

PAGE TITLE i

BORANG PENGESAHAN STATUS LAPORAN ii

DECLARATION iii

SUPERVISOR VERIFICATION iv

DEDICATION v

ACKNOWLEDGEMENT vi

ABSTRACT vii

ABSTRAK viii

CONTENTS ix

LIST OF TABLES xiii

LIST OF FIGURES xiv

LIST OF SYMBOLS xvii

I PROJECT INTRODUCTION

1.1 Introduction 1

1.2 Objective 2

1.3 Problem Statement 2

1.4 Scope of Work 3

1.5 Methodology 4

(10)

x

II LITERATURE REVIEW

2.1 Definition of Crane 8

2.2 Control System 12

2.2.1 Open-loop and Close-loop Control System 12 2.2.2 Manually and Automatic Control 14

2.3 Input Shaping Methods 15

2.3.1 Definition of Input Shaping 16

2.3.2 Posicast Control 17

2.3.3 Command Shaping Method 18

2.3.4 Bang-bang Control 19

2.3.5 System Inversion Based Method 19

2.3.6 Delayed Input Method 20

2.3.7 Pole/Zero Cancellation Method 20 2.3.8 Advantages of Input Shaping 21

2.4 Adaptive Algorithm 22

III MATHEMATICAL MODELING

3.1 Nonlinear Feedback Control of a Gantry Crane 23

3.2 Desired Motion 24

3.3 Modeling of the Gantry Crane 26

3.4 Derivation of the Equation of Motion 27

(11)

xi

IV INPUT SHAPING ANALYSIS

4.1 Input Shaper Analysis 32

4.1.1 Delayed Input Method 33

4.1.2 Pole/Zero Cancellation Method 35

4.1.3 Adaptive Algorithm 36

V SIMULATION RESULT AND ANALYSIS

5.1 MATLAB and SIMULINK 39

5.1.1 MATLAB 42

5.1.2 SIMULINK 45

5.2 SIMULINK Model for the Gantry Crane in 2nd

Order System 49

5.2.1 System Model 49

5.2.2 Pole/Zero Cancellation Input Shaper 52 5.2.3 Delayed Input Method – Input Shaper 55

5.3 SIMULINK Model for the Gantry Crane in 4th

Order System 57

5.3.1 Generation of Bang-bang Input Force 58

5.3.2 Generalize Model 59

5.3.3 Sway Motion of a Gantry Crane 60

5.3.4 Sway Angle 61

5.3.5 Position of the Trolley 66

5.3.6 Pole / Zero Cancellation with Inverse

Dynamic Analysis 68

5.3.7 Pole / Zero Cancellation with Inverse

(12)

xii

VI CONCLUSION

6.1 Conclusion 79

6.2 Future Works 81

6.2.1 Experimental Setup 81

6.2.2 Design of the Close-loop Control System 81

6.2.3 Tower Crane 81

(13)

xiii

LISTS OF TABLES

NO TITLE PAGE

5.1 Categories of MATLAB Works 44

5.2 Simulink Description 45

5.3 Simulink Product 46

5.4 Peak-to-Peak and Sway Angle for Bang-Bang Input 64 5.5 Settling Time and Trolley Position for Bang-Bang Input 67 5.6 Peak-to-Peak and Sway Angle for Inverse Dynamic

with Pole / Zero Cancellation Input 71

5.7 Settling Time and Trolley Position for Inverse Dynamic

with Pole / Zero Cancellation Input 73

5.8 Peak-to-Peak and Sway Angle for Closed-Loop and

Open-Loop Control System 76

5.9 Settling Time and Trolley Position for Closed-Loop and

(14)

xiv

LIST OF FIGURES

NO TITLE PAGE

1.1 Project Flow Chart 5

2.1 Difference between Crane and Hoist 9

2.2 Bridge Crane 10

2.3 Gantry Crane 10

2.4 Tower / Jib Crane 11

2.5 Block Diagram of a Control System 12

2.6 Open-Loop Control System 13

2.7 Close-Loop Control System 13

2.8 Manually Control for Gantry Crane 14

2.9 Automatic Control for Gantry Crane 15

2.10 Destructive Interference 16

2.11 Input Shaping Process 17

2.12 Posicast Control 18

2.13 Multi Pulse Shaped Input 19

2.14 Input Shaper Position in a System 21

3.1 Model of a Gantry Crane 26

5.1 MATLAB Software Design Flow Chart 41

5.2 Default Appearance of the Desktop 43

5.3 SIMULINK Library 47

5.4 SIMULINK Library Browser for Real-Time Workshop 48

(15)

xv

5.6 Function Block Parameter 50

5.7 Parameters Labelling in Block Mask Editor 50

5.8 Simulation Model using MATLAB with Step Input Function 51 5.9 Output Response of the System with Step Input Function 51 5.10 Subsystem 1 for Transfer Function P-1(s) 52

5.11 Function Block for M(s) 52

5.12 Pole/Zero Cancellation Input Shaper 53

5.13 Gantry Crane System with Pole/Zero Cancellation Input Shaper 53 5.14 Output Response of the System with Step Input Function

and Pole/Zero Cancellation 54

5.15 Function Block for C(s) 55

5.16 Block Parameter for Delayed Input 56

5.17 Gantry Crane System with Delayed Input – Input Shaper 56 5.18 Output Response of the System with Step Input Function

and Delayed Input Method 57

5.19 Generation of Bang-bang Input Force 58

5.20 Parameters of Bang-bang Input 58

5.21 General Model 59

5.22 (a) Sway Motion when Input Force is Positive 60 5.22 (b) Sway Motion when Input Force is Negative 60

5.23 Input Plot 62

5.24 Sway Angle 63

5.25 Arc Length and Chord Length 65

5.26 Trolley Position 66

5.27 General Model for Inverse Dynamic Analysis with

(16)

xvi

5.28 Look under Mask for Input Shaping 1 69

5.29 Function Block Parameter for Input Shaping 1 69 5.30 Sway Angle for Inverse Dynamic Analysis with

Pole / Zero Cancellation Input 70

5.31 Trolley Position for Inverse Dynamic Analysis with

Pole / Zero Cancellation Input 72

5.32 General Model of Closed – Loop System 74

(17)

xvii

LIST OF SYMBOLS

ωn - Natural frequency

ξ - Damping ratio

K - Stiffness

u - Normalized time

α - Speed motion

β - Relationship between α and ωn

M - Trolley mass

m - Payload mass

l - Length of the hoisting rope Fx - Input force

g - Gravitational acceleration = 9.81ms-2

G - Centre point

S - Point of suspension x - Trolley position

x - Velocity

x

 - Acceleration

θ - Sway angle

(18)

1

CHAPTER I

PROJECT INTRODUCTION

This chapter will discuss about the adaptive algorithm for the tuning of two input shaping methods. The project introduction, project objective, problem statement and scopes of work, methodology and thesis outline will also be presented.

1.1 Introduction

(19)

2

The first method is referred to as the delayed input method, and the second method as the pole/zero cancellation method. The two methods are compared and an algorithm is proposed for the tuning of the pole/zero cancellation method. This project includes the previous work in three ways. First, the tuning algorithm is made adaptive by replacing the batch least squares algorithm by the recursive least-square algorithm recommended. Second, it is shown that the adaptive algorithm can be used to tune the delayed input method as well as the pole/zero cancellation method. Finally, the adaptive algorithm is shown to be effective for the tuning of the input shaping methods with double zeros placed at the locations of the plant poles instead of single zeros. The results are all demonstrated experimentally using a simulation of MATLAB software. The algorithm has major interest because of its simplicity, thus it is easily implemented in real-time.

1.2 Objective

The objective of this project is to specify a controller function by using an adaptive algorithm for the tuning of two input shaping methods for gantry crane that can move as robustness, quickly, accurately, and safely as possible without vibration from an initial position to target position.

1.3 Problem Statement

(20)

3

movement the load. Vibration is a serious problem in a mechanical system. The problem can be solved by placing an appropriate controller with input shaping methods to the gantry crane system.

1.4 Scope of Work

While doing the project, the scope of work plays very important role, which is a guidelines for student should attain to fulfil the requirement of the project. For this project, the scopes of work are such as listed below:

i. Study the basic concept of the gantry crane system, input shaping methods and design, and adaptation.

ii. Study the mathematical modelling, nonlinear feedback control of a gantry crane, desired motion, modelling of the gantry crane, derivation of the equations of motion, and linearization.

iii. Understand theoretically about input shaping methods involved.

(21)

4

(22)

5

(23)

6

The flow of this project can be represented by Figure 1.1: Project Flow Chart. The project started with literature review of the project such as review about adaptive algorithm, input shaping methods, mathematical modelling, and gantry crane. The literature review is usually a theoretical understanding about the project being developed. Next, proceeds with mathematical modelling by which it is an understanding process of the mathematical modelling of input shaper, for this project the input shapers are pole / zero cancellation method, and input delayed method.

Then, the flow is to design the pole / zero methods equations and analysis in MATLAB, where the nonlinear input shaping model is develop using MATLAB and Simulink, and apply the adaptive algorithm into the nonlinear crane for open loop. If the response does not satisfy, the operation will reverse back to the mathematical modelling. The analysis is made based from the simulation results. Two parameters to be analysed – position of the trolley and sway angle of the hoisting rope.

Next, proceeds with mathematical modelling by which it is an understanding process of the mathematical modelling of input shaper - input delayed method. Then, the flow is to design the input shaper methods equations and analysis in MATLAB, where the nonlinear input shaping model is develop using MATLAB and Simulink, and apply the adaptive algorithm into the nonlinear crane for open loop. If the response does not satisfy, the operation will reverse back to the mathematical modelling. The analysis is made based from the simulation results. Two parameters to be analysed – position of the trolley and sway angle of the hoisting rope.

(24)

7

1.6 Report Structure

This thesis is a documentary to deliver the generated idea, the concepts applied, the activities done, and the final year project product produced. The thesis consists of six chapters. This paper is organized as follows.

Chapter I is regarding of the background studies of the project including introduction of the project, objective, problem statement, scopes of work and methodology.

Chapter II enclose literature review about gantry crane including history, applications, and working principle. Furthermore, the standard techniques of input shaping that will reduced the vibration for the gantry crane is also covered in this chapter.

Chapter III will introduce the derivation of equations of adaptive version of input shaping techniques explaining the purpose of this study. On the other hand, this chapter will explain how to get equations for the input shaping in s-domain.

Chapter IV will illustrates more on the input shaping analysis. This method will review the process by specifying the system input function.

Chapter V contain the utilized methodology for software. The design flow and construction of the project is introduced. It gives brief description about each procedure in completing the project. It also covered the experimental result, analysis and discussion, for both input shaping methods. Furthermore, the comparison between both techniques is also scrutinized.

Referensi

Dokumen terkait

complementary of slackness maka metode wolfe melakukan modisikasi metode simpleks dalam hal pemilihan variabel yang akan. masuk sebagai basic

Permasalahan dalam penelitian ini adalah: Seberapa besar pengaruh sikap siswa pada pergaulan teman sebaya terhadap penyesuaian diri remaja di Kelas II SMA Teuku Umar

Laporan keuangan pada dasarnya adalah hasil akhir dari proses akuntansi periode tertentu (Sawir, 2005: 2) yang dapat digunakan sebagai alat komunikasi perusahaan

Sekolah Tinggi Ilmu Ekonomi Adhi Unggul Bhirawa Surakarta (STIE

Bangkit Wahyu Nur Suciningrum. PENGGUNAAN RAGAM BAHASA JAWA KRAMA DALAM PROGRAM BERITA PAWARTOS NGAYOGYAKARTA DI JOGJA TV SERTA RELEVANSINYA TERHADAP PEMBELAJARAN

Penelitian ini dilakukan berdasarkan survei keberadaan penyakit bulai jagung di area pertanaman jagung pada beberapa provinsi di Indonesia untuk mendeteksi dan

Salah satunya adalah dalam memanfaatkan sisa limbah dari proses produksi mebel seperti serbuk kayu, karena kayu merupakan salah satu sumber daya alam (SDA) yang

Salah satu upaya yang dilakukan untuk merespon yang telah dicanangkan dalam FAO (1995), yaitu dengan meningkatkan selektivitas alat tangkap trawl dasar untuk mengurangi masalah