• Tidak ada hasil yang ditemukan

PENGARUH PEMBELAJARAN BERBASIS MASALAH TERHADAP KEMAMPUAN REPRESENTASI DAN MINAT BELAJAR MATEMATIKA SISWA SMK NEGERI 11 MEDAN.

N/A
N/A
Protected

Academic year: 2017

Membagikan "PENGARUH PEMBELAJARAN BERBASIS MASALAH TERHADAP KEMAMPUAN REPRESENTASI DAN MINAT BELAJAR MATEMATIKA SISWA SMK NEGERI 11 MEDAN."

Copied!
48
0
0

Teks penuh

(1)

PENGARUH PEMBELAJARAN BERBASIS MASALAH TERHADAP KEMAMPUAN REPRESENTASI DAN MINAT BELAJAR

MATEMATIKA SISWA SMK NEGERI 11 MEDAN

TESIS

Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Magister Pendidikan

Program Studi Pendidikan Matematika

Oleh:

RANI SARI IRWANITA DAMANIK

(8106172016)

PROGRAM PASCASARJANA

UNIVERSITAS NEGERI MEDAN

(2)
(3)
(4)
(5)
(6)

i ABSTRAK

RANI SARI IRWANITA DAMANIK. Pengaruh Pembelajaran Berbasis Masalah Terhadap Kemampuan Representasi dan Minat Belajar Matematika Siswa SMK Negeri 11 Medan, Tesis. Medan. 2013. Program Studi Pendidikan Matematika, Pasca Sarjana, Universitas Negeri Medan

Kata Kunci: Pembelajaran berbasis Masalah, Representasi Matematik, Minat

(7)

ii ABSTRACT

RANI SARI IRWANITA DAMANIK. The Influence of Problem Based Learning to SMK Negeri 11 Medan Student’s Ability of Mathematical Representation and Interest. Thesis. Medan. 2013. Department Mathematics, Master of Degree Program, State University of Medan.

Key words: Problem Based Learning, Mathematical Representation, Interest

(8)

iii KATA PENGANTAR

Puji Syukur penulis panjatkan kepada Tuhan Yang Maha Esa atas limpahan rahmat dan karuniaNya, sehingga Tesis yang berjudul “Pengaruh Pembelajaran Berbasis Masalah terhadap Kemampuan Representasi dan Minat Belajar Matematika Siswa SMK Negeri 11 Medan ini dapat diselesaikan.

Penyusunan tesis ini dilakukan dalam rangka memenuhi salah satu syarat untuk memperoleh gelar Magister Pendidikan pada Program Studi Pendidikan

Matematika Sekolah Pasca Sarjana UNIMED. Pada tesis ini ditelaah penggunaan model model pembelajaran berbasis masalah untuk melihat pengaruh model

pembelajaran tersebut terhadap kemampuan representasi dan minat belajar matematika siswa SMK Negeri 11 Medan. Subyek penelitian yang diambil adalah siswa kelas XI SMK Negeri 11 Medan.

Penelitian yang dilakukan dilatarbelakangi oleh suatu upaya untuk mendukung ketercapaian kompetensi yang dikembangkan pada mata pelajaran

matematika dalam kurikulum KTSP. Selain itu kondisi pembelajaran matematika di sekolah secara umum kurang melibatkan siswa baik secara mental, fisik, maupun sosial. Berdasarkan hasil penelitian yang diperoleh siswa, ternyata

pembelajaran yang dilakukan lebih efektif bila dibandingkan dengan pembelajaran biasa.

(9)

iv 1) Bapak Dr. Hasratuddin, M.Pd. selaku Pembimbing I dalam penyusunan tesis ini, yang dengan penuh ketelitian, kesabaran, kesediaannya menerima keluh

kesah penulis, dan pengertian yang luar biasa dalam membimbing penulis di sela-sela kesibukannya.

2) Bapak Prof. Dr. Harun Sitompul, M.Pd. selaku pembimbing II dalam penulisan tesis ini, yang dengan kesabaran dan pengertiannya dalam membimbing penulis.

3) Bapak Dr. Edi Syahputra, M.Pd, selaku Ketua Program Studi Pendidikan Matematika Program Pasca Sarjana UNIMED yang telah banyak membantu

kelancaran penelitian ini.

4) Bapak Ibu dosen pengasuh matakuliah pada Program Studi Pendidikan

Matematika Pasca Sarjana UNIMED, yang telah mengajar dan membimbing penulis selama menuntut ilmu.

5) Kepala SMK Negeri 11 Medan yang telah memberikan kesempatan dan

bantuan sehingga penulis dapat melakukan penelitian.

6) Bapakku tercinta; Jabat Damanik, S.Pd, Ibuku tercinta; Nina Ariati Saragih,

serta adik-adikku; Noverini Estetika Damanik, SKM dan Adi Syahputra Damanik; atas sumbang sarannya sehingga penulis dapat melanjutkan studi dan dorongan baik moril maupun materil yang telah mereka berikan, serta doa

yang tulus bagi keberhasilanku.

7) Suamiku; Haposan Rajagukguk, S.Si: atas segala pengorbanan baik moril

(10)

v selama penulis menuntut ilmu, juga kesabaran dan doa yang senantiasa dipanjatkan untuk keberhasilanku.

8) Ibu Mertuaku serta adik iparku yang juga turut mendukungku dalam melanjutkan studi ini.

9) Teman-teman program studi pendidikan matematika UNIMED angkatan tahun 2010 Pak Arianto, Bang Candra, Kak Endang, Fitri, Bang Heri, Bang James, Pak Kafrawi, Lola, Bang Marthin, Pak Mul, Kak Nora, Bang Purba,

Kak Ragusta, Ros, Sri, Suci, Aini, Pak Ir, dan Yunita yang telah memberikan kenangan baik suka maupun duka di Pasca Sarjana Unimed.

Dengan segala kekurangan dan keterbatasan, penulis berharap semoga tesis ini dapat memberikan sumbangan dan manfaat bagi para pembaca, sehingga

dapat memperkaya khasanah penelitian-penelitian sebelumnya, dan dapat memberi inspirasi untuk penelitian lebih lanjut.

Medan, Agustus 20143 Penulis,

(11)

vi DAFTAR ISI

Halaman

ABSTRAK ... i

ABSTRACT ... ii

KATA PENGANTAR ... iii

DAFTAR ISI ... vi

DAFTAR TABEL ... xi

DAFTAR GAMBAR ... xiii

DAFTAR LAMPIRAN ... xiv

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah ... 1

1.2. Identifikasi masalah ... 15

1.3. Batasan Masalah ... 16

1.4. Rumusan Masalah ... 17

1.5. Tujuan Penelitian ... 17

1.6. Manfaat Penelitian ... 18

1.7 Definisi Operasional ………. 19

BAB II KAJIAN PUSTAKA 2.1. Kerangka teoretis ... 21

2.1.1. Hakikat Belajar Matematika ... 21

2.1.2. Kemampuan Representasi Matematik ... 23

2.1.3. Pembelajaran Berbasis Masalah ... 32

2.1.4. Pembelajaran Biasa ... 39

2.1.5. Minat Belajar Matematika ... 41

2.2. Teori Belajar yang melandasi Pembelajaran Berbasis Masalah ... 49

(12)

vii

2.4. Kerangka Konseptual ... 55

2.4.1 Perbedaan kemempuan representasi matematik Siswa yang memperoleh model pembelajaran

3.6.1. Tes Kemampuan Representasi Matematik ... 71

3.6.2. Angket Skala Minat Siswa ... 73

3.6.3. Analisis Validitas Tes ... 74

3.6.3.1 Uji Coba Instrumen ………. 74

(13)

viii

3.6.5. Daya Pembeda Butir Soal ………. 80

3.6.6. Tingkat Kesukaran Butir Soal ……….. 81

3.7. Pengontrolan Perlakuan ... 82

3.7.1. Validitas Internal ……….. 82

3.7.2. Validitas Eksternal ……… 83

3.8. Teknik Analisis Data ... 83

BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1. Hasil Penelitian Kemampuan representasi Matematis ... 87

4.1.1. Deskripsi Kemampuan Representasi ... 88

4.1.2. Uji Normalitas Data Kemampuan Representasi ... 91

4.1.2.1. Uji Normalitas Data Pretes ……….. 91

4.1.2.2. Uji Normalitas Data Postes ………...……….. 92

4.1.3. Uji Normalitas Data Kemampuan Representasi ... 92

4.2. Hasil Penelitian Skala Minat Matematis ... 95

4.2.1. Uji Normalitas Minat Matematis ... 96

4.2.2. Uji Homogenitas Minat Matematis ... 97

4.3. Pengujian Hipotesis ... 97

4.3.1. Hipotesis Pertama ………... . 97

4.3.2. Hipotesis Kedua ………... ... 99

4.3.3. Hipotesis Ketiga ………... ... 101

4.3.4. Analisis Keragaman Proses Penyelesaian Jawaban Siswa Tes Kemampuan Representasi Matematika …….. . 104

4.4. Pembahasan hasil Penelitian ... 111

4.4.1. Faktor Pembelajaran ... 111

4.4.2. Kemampuan Representasi Matematis ... 117

4.4.3. Minat Matematis ... 119

(14)

ix BAB V SIMPULAN DAN SARAN

5.1. Simpulan ... 122

5.2. Implikasi ……….. 122

5.3 Saran ... 125

(15)

DAFTAR TABEL

Tabel

Halaman

2.1. Bentuk-bentuk indikator representasi

matematika ... 2.2. Sintaks Pembelajaran Berbasis Masalah………...

3.1. Rancangan Penelitian ………... 3.2. Tabel Weiner tentang keterkaitan antara variabel bebas dan

terikat ... 3.3. Kisi-kisi tes kemampuan representasi matematik……... 3.4. Kriteria skor kemampuan representasi matematik ... 3.5. Kisi-kisi angket minat siswa ….………... 3.6. Rangkuman hasil validasi perangkat pembelajaran …………... 3.7. Hasil validasi tes kemampuan representasi matematis……..…. 3.8. Hasil Validasi angket minat matematika...

3.9. Validitas butir soal kemampuan representasi matematis ... 3.10. Hasil perhitungan koefisien reliabilitas tes kemampuan

representasi matematis ………..……….. 4.1. Deskripsi kemampuan representasi matematis siswa tiap kelas

sampel berdasarkan nilai pretes... 4.2. Deskripsi kemampuan representasi matematis siswa tiap kelas

(16)

sampel berdasarkan nilai postes... 4.3. Hasil uji normalitas pretest kemampuan representasi……... 4.4. Hasil uji normalitas postest kemampuan representasi………... 4.5. Hasil uji homogenitas hasil pretes kemampuan representasi

matematika kelas model PBM dan kelas model PB ... 4.6. Hasil uji homogenitas hasil pretes kemampuan representasi

matematika kelas model PBM dan kelas model PB... 4.7. Hasil uji normalitas minat matematis kelas model PBM dan

kelas model PB ...

4.8. Hasil uji homogenitas varians minat matematis kelas model PBM dan kelas model PB ... 4.9. Rangkuman Anova dua jalur perhitungan kemampuan

representasi matematis antara model pembelajaran ………...

89 91 92

94

94

95

96

(17)

DAFTAR GAMBAR

Gambar Halaman

1.1. Salah satu pola jawaban siswa SMK Negeri 11 Medan ... 7

1.2. Daerah penyelesaian pertidaksamaan pada bidang kartesius ... 8

2.1. Interaksi timbale balik antara representasi internal dan eksternal ... 28

3.1. Prosedur Penelitian ... 69

4.3. Interaksi antara pembelajaran dengan minat terhadap kemampuan representasi matematika siswa ... 100

4.4. Ragam proses penyelesaian jawaban kemampuan representasi matematis siswa butir soal nomor 1………. 101

4.5. Ragam proses penyelesaian jawaban kemampuan representasi matematis siswa butir soal nomor 2………. 102

4.6. Ragam proses penyelesaian jawaban kemampuan representasi matematis siswa butir soal nomor 3………. 103

4.7. Ragam proses penyelesaian jawaban kemampuan representasi matematis siswa butir soal nomor 4………. 105

(18)

vi DAFTAR LAMPIRAN

LAMPIRAN 1 Halaman

1. Rencana Pelaksanaan Pembelajaran Kelas Eksperimen 1 ... 134

2. Rencana Pelaksanaan Pembelajaran Kelas Kontrol 1 ... 151

3. Lembar Aktifitas Siswa ... 163

LAMPIRAN 2 1. Kisi-kisi tes kemampuan representasi matematika ... 187

2. Butir Soal Tes Kemampuan Representasi Matematika Siswa ... 188

3. Rubrik Penilaian Kemampuan Representasi Matematika ... 191

4. Kisi-kisi Lembar Angket Skala Minat ... 194

5. Angket Skala Minat ... 195

LAMPIRAN 3 1. Hasil Validasi Rencana Pelaksanaan Pembelajaran ... 197

2. Hasil Validasi Tes Kemampuan Representasi Matematika ... 206

3. Hasil Validasi Pretes/ Postes Kemampuan Representasi ... 210

4. Hasil Validasi Angket Minat Matematis ... 248

LAMPIRAN 4 1. Deskripsi Hasil Pretes Kemampuan representasi Kelas eksperimen 221

2. Deskripsi Hasil Pretes Kemampuan Representasi Kelas Kontrol ... 222

3. Deskripsi Hasil Postes Kemampuan Representasi kelas Eksperimen ... 223

4. Deskripsi Hasil Postes kemampuan Representasi Kelas Kontrol ... 224

5. Deskripsi Hasil Minat kelas Eksperimen ... 225

6. Deskripsi Hasil Minat kelas Kontrol ... 226

7. Hasil uji Normalitas Pretes Kelas Eksperimen dan Kontrol ... 227

8. Hasil Uji Normalitas Postes Kelas Eksperimen dan Kontrol ... 227

(19)

vii 10.Hasil Uji Normalitas Minat Kelas Eksperimen dan Kontrol ... 228

11.Hasil Uji Homogrnitas Minat Kelas Eksperimen dan Kontrol. .. 228 12.Rangkuman Hasil Anava secara keseluruhan terhadap

kemampuan Representasi Matematika Siswa ... 229

LAMPIRAN 5

1. Jadwal Penelitian Kelas Eksperimen SMK Negeri 11 Medan .... 230 2. Jadwal Penelitian Kelas Kontrol SMK Negeri 11 Medan ... 230 LAMPIRAN 6

1. Foto Penelitian di SMK Negeri 11 Medan ... 231 LAMPIRAN 7

1. Surat Penelitian dari Pasca Sarjana UNIMED

2. Surat telah melakkukan Penelitian di SMK Negeri 11 Medan 3. Surat Keputusan (SK) Pembimbing

(20)

1

BAB I PENDAHULUAN

1.1 Latar Belakang Masalah

Kekayaan sumber daya alam yang melimpah pada suatu negara belum tentu merupakan jaminan bahwa negara tersebut akan makmur, jika pendidikan

sumber daya manusianya terabaikan. Suatu Negara yang memiliki sumber daya alam yang banyak jika tidak ditangani oleh manusia yang berkualitas maka pada suatu saat akan mengalami kekecewaan. Upaya untuk meningkatkan sumber daya

manusia merupakan tugas besar dan memerlukan waktu yang panjang. Meningkatkan sumber daya manusia tidak lain harus melalui proses pendidikan

yang baik dan terarah. Masa depan suatu negara sangat ditentukan oleh bagaimana Negara tersebut memperlakukan pendidikan.

Dalam menghadapi era globalisasi yang penuh tantangan, pendidikan

merupakan aspek yang sangat penting karena diharapkan mampu membentuk sumber daya manusia yang terampil, kreatif dan inovatif. Pendidikan menekankan

pada proses belajar yang bertujuan untuk mengembangkan seluruh potensi yang ada pada diri manusia baik aspek kognitif, afektif maupun psikomotorik. Pendidikan formal yang dilakukan di sekolah-sekolah sampai sekarang tetap

merupakan lembaga pendidikan utama yang merupakan pusat pengembangan sumber daya manusia dengan didukung oleh pendidikan dalam keluarga dan

masyarakat.

Matematika sebagai salah satu sarana berfikir ilmiah sangat diperlukan

(21)

2

dalam diri peserta didik. Demikian pula matematika merupakan pengetahuan

dasar yang diperlukan oleh peserta didik untuk menunjang keberhasilan belajarnya dalam menempuh pendidikan yang lebih tinggi. Bahkan matematika

diperlukan oleh semua orang dalam kehidupan sehari-hari. Karena itulah peserta didik perlu memiliki pengetahuan matematika yang cukup untuk menghadapi masa depan.

Menurut Sidi ( dalam Mudjakkir, 2006) matematika dapat dipandang sebagai ilmu dasar yang strategis dan berfungsi untuk 1) menata dan

meningkatkan ketajaman penalaran siswa sehingga dapat memperjelas penyelesaian masalah dalam kehidupan sehari-hari; 2) melatih kemampuan berkomunikasi dengan menggunakan bilangan dan simbol-simbol; 3) melatih

siswa untuk selalu berorientasi pada kebenaran dengan mengembangkan sikap logis, kritis, kreatif, objektif, rasional, cermat, disiplin dan mampu bekerja sama

secara efektif; dan 4) melatih siswa untuk berfikir secara teratur, sistematis, dan terstruktur dalam konsepsi yang jelas.

Tujuan pembelajaran matematika yang tertuang dalam permendiknas No.

22 (Depdiknas, 2006) tentang Standar Isi Mata Pelajaran Matematika yaitu: 1) memahami konsep matematika, menjelaskan keterkaitan antar konsep dan

mengaplikasikan konsep atau algoritma secara luwes, akurat, efesien dan tepat dalam pemecahan masalah. 2) menggunakan penalaran pada pola dan sifat, melakukan manipulasi matematika dalam membuat generalisasi, menyusun bukti,

atau menjelaskan gagasan dan pernyataan matematika. 3) memecahkan masalah yang meliputi kemampuan memahami masalah, meracang model matematika,

(22)

3

mengkomunikasikan gagasan dengan simbol, tabel, diagram atau media lain untuk

memperjelas keadaan atau masalah. 5 memiliki sikap menghargai kegunaan matematika dalam kehidupan, yaitu memiliki rasa ingin tahu, perhatian dan minat

dalam mempelajari matematika, serta sikap ulet dan percaya diri dalam pemecahan masalah.

Standar matematika di sekolah menurut CIAI (Curriculum Instruction

Assessment Improvement) Pinellas County Schools meliputi standar isi atau

materi (mathematical content), mathematical abilities dan standar proses

(mathematical processes). Standar proses meliputi pemecahan masalah (problem

solving), penalaran (reasoning) komunikasi (comunication), koneksi (connections), dan representasi (representation). NCTM menyataka bahwa baik

standar materi maupun standar proses tersebut bersama-sama merupakan keterampilan dan pemahaman dasar yang sangat dibutuhkan para siswa pada abad

ke-21 ini (Together, the standards describe the basic skills and understanding that students will need to function effectively in the twenty-first century). Tujuan

pembelajaran matematika menurut NCTM meliputi kemampuan pemecahan

masalah (problem solving), kemampuan berkomunikasi (communication), kemampuan berargumentasi (reasoning), kemampuan membuat koneksi

(connection).

Dari uraian di atas terlihat bahwa kemampuan komunikasi matematika merupakan bagian dari kemampuan yang diharapkan pada pembelajaran

matematika. Kemampuan komunikasi sangat perlu dihadirkan secara intensif agar siswa terlibat aktif dalam pembelajaran dan hilangnya kesan bahwa matematika

(23)

4

matematik juga sangat penting karena matematika pada dasarnya adalah bahasa

yang sarat dengan notasi dan istilah sehingga konsep yang terbentuk dapat dipahami dan dimanipulasi oleh siswa.

Menurut Baroody seperti dikutip Mudjakkir (2006) matematika bukan hanya sekedar alat bantu berfikir, menemukan pola, menyelesaikan masalah, atau menggambarkan kesimpulan, tetapi juga sebagai suatu bahasa atau alat yang tak

terhingga nilainya untuk mengkomunikasikan berbagai macam ide secara jelas, tepat, dan ringkas. Bahkan Lindquist dan Elliott (1996) menuturkan bahwa jika

disepakati matematika itu merupakan suatu bahasa dan bahasa tersebut sebagai bahasa terbaik dalam komunitasnya. Untuk itu Pugalee (dalam Putri, 2001) menyebutkan bahwa jika siswa diberi kesempatan berkomunikasi tentang

matematika, maka siswa akan berupaya meningkatkan ketrampilan dan proses fikirnya yang krusial dalam pengembangan kemahiran menulis dan membaca

matematika atau melek matematik. Dengan demikian, mudah difahami bahwa komunikasi merupakan salah satu esensi dari pengajaran, pembelajaran, dan pelaksanaan asesmen matematika.

Untuk menjadikan matematika sebagai alat komunikasi seperti paparan di atas, NCTM (1989) telah menggariskan secara rinci ketrampilan-ketrampilan

kunci komunikasi matematik yang dapat dilakukan di dalam kelas dan harus dipandang sebagai bagian integral dari kurikulum matematika. Ketrampilan-ketrampilan kunci komunikasi matematik tersebut adalah membuat representasi,

berbicara atau berdiskusi, menyimak atau mendengar, menulis, dan membaca. Tetapi kenyataan di lapangan menunjukkan bahwa

(24)

5

maksimal. Seringkali siswa tidak terbiasa melibatkan diri secara aktif dalam

pembelajaran. Bahkan siswa terkesan ingin disuapi atau dituangi, dan jika ada pertanyaan atau soal siswa lebih suka diberitahu jawabannya (Sa’dijah, 2002). Hal

ini dapat terjadi jika siswa tidak menguasai konsep dasar (pengetahuan prasyarat) dan cara pandang siswa kurang positif terhadap pelajaran matematika. Misalnya, siswa menganggap matematika tidak bisa dipelajari sendiri sehingga siswa selalu

menunggu bantuan guru; matematika dianggap sulit dan menakutkan karena terlalu banyak rumus; atau materi matematika tidak biasa didiskusikan.

Akibatnya, siswa tidak memahami materi pelajaran secara mendalam yang membuka peluang siswa tidak menyenangi mata pelajaran matematika.

Kemampuan representasi merupakan salah satu komponen penting dan

fundamental untuk mengembangkan kemampuan berpikir siswa, karena pada proses pembelajaran matematika kita perlu mengaitkan materi yang sedang

dipelajari serta merepresentasikan ide/gagasan dalam berbagai macam cara. Sumarmo (2005) juga berpendapat bahwa penyajian representasi dalam pembelajaran matematika semakin penting. Para pakar pembelajaran matematika

yang tergabung dalam NCTM menetapkan representasi matematika sebagai suatu standar kemampuan tersendiri yang harus dikembangkan dalam pelaksanaan

kurikulum matematika di sekolah.

Menurut Jones (dalam Hudiono, 2005), terdapat beberapa alasan perlunya representasi, yaitu: memberi kelancaran siswa dalam membangun suatu konsep

dan berpikir matematik serta untuk memiliki kemampuan dan pemahaman konsep yang kuat dan fleksibel yang dibangun oleh guru melalui representasi matematik.

(25)

6

matematik lebih konkrit dan membantu siswa untuk memecahkan suatu masalah

yang dianggap rumit dan kompleks menjadi lebih sederhana jika strategi dan pemanfaatan representasi matematika yang digunakan sesuai dengan

permasalahan. Selanjutnya, Sumarmo (dalam Mudzakkir, 2006) mereview beberapa artikel tentang representasi (Goldin, 2002. Downs dan Downs, 2002. Kaput dalam Swafford dan Langrall, 2000, NCTM, 1989, dan Mc.Coy, Baker,

dan Little, 1996). Dalam artikel-artikel di atas, representasi dapat diartikan sebagai : (1) konfigurasi atau gambaran suatu bentuk matematika dalam beberapa

cara yang berbeda (Goldin, 2002), (2) konstruksi matematik yang menggambarkan konstruksi matematik lainnya (Downs dan Downs, 2002), (3) gambaran hubungan-hubungan atau operasi-operasi dari suatu situasi atau

masalah matematik (Kaput, dalam Swafford dan Langrall, 2000), (4) penggambaran atau pengungkapan kembali suatu ide atau masalah matematik ke

dalam bentuk baru (NCTM, 1989).

Pemahaman matematika melalui representasi adalah dengan mendorong siswa menemukan dan membuat suatu representasi sebagai alat atau cara berpikir

dalam mengkomunikasikan gagasan matematika dari abstrak menuju konkrit. Representasi matematik melibatkan cara yang digunakan siswa untuk

mengkomunikasikan bagaimana mereka menentukan jawabannya sebagaimana yang diungkapkan Jakabcsin dan Lane (dalam Yuniawatika, 2001). Komunikasi dalam matematika memerlukan representasi yang dapat berupa: simbol tertulis,

diagram, tabel ataupun benda karena matematika yang bersifat abstrak membutuhkan sajian-sajian benda konkrit untuk memudahkan siswa memahami

(26)

7

Begitu penting kemampuan representasi matematis dalam proses

pembelajaran, namun kenyataannya kemampuan representasi matematis siswa SMK masih rendah. Sebagaimana tercermin pada observasi awal yang penulis

lakukan di SMK Negeri 11 Medan. Adapun soal tes yang diberikan adalah: “Seorang pedagang buah membeli apel dan jeruk dengan menggunakan sepeda

motor. Harga apel Rp 8.000/kg dan harga jeruk Rp 4.000/kg. Ia merencanakan

tidak akan mengeluarkan uang lebih dari Rp 200.000 dan ia hanya dapat membawa tidak lebih dari 40 kg. Bila apel dan jeruk yang ia beli berturut-turut x

kg dan y kg. Sedangkan laba yang ia peroleh sebesar Rp 2.500/kg apel dan Rp 1.200/kg jeruk, berapa berat apel dan jeruk yang harus dibeli agar memperoleh laba yang sebesar-besarnya? Hitunglah laba maksimum tersebut! ”

Adapun jawaban yang dituliskan oleh salah satu siswa dapat dilihat pada Gambar 1.1 sebagai berikut:

(27)

8

yang benar dan menentukan himpunan penyelesaian pada bidang kartesius. Salah

satu alternatif jawaban untuk soal tersebut adalah:

Misalkan x = apel

Untuk menentukan daerah penyelesaian system pertidaksamaan di atas dilakukan sebagai berikut:

Daerah penyelesaian pertidaksamaan dapat di lihat pada Gambar 1.2 berikut :

Gambar 1.2 Daerah penyelesaian pertidaksamaan pada bidang kartesius Untuk melihat keuntungan maksimal dapat dilihat pada table berikut ini:

Titik pojok Fungsi objektif (2.500x + 1.200y) Nilai (Rp)

(0,40) 0 + 1.200 (40) 48.000

(10,30) 2.500 (10) + 1.200 (30) 61.000

(0,50) 0 +1.200 (50) 60.000

Banyaknya masing-masing buah yang harus dibeli agar keuntungan maksimum yaitu 10 kg apel dan 30 kg jeruk dengan keuntungan maksimum Rp 61.000

(28)

9

Penyelesaian soal di atas dapat diselesaikan dengan baik jika siswa mampu

menuliskan informasi yang ada dalam soal dengan benar, mengubah soal cerita ke dalam bentuk variabel atau simbol matematika agar mempermudah perhitungan,

dan mampu menggambarkan himpunan penyelesaian pada diagram kartesius. Sehingga tampak jelas kemampuan representasi matematika siswa masih rendah

Gambaran di lapangan ini sesuai dengan laporan hasil TIMSS (dalam

Mullis, et.al, 2001) yang menunjukkan kemampuan siswa dalam merepresentasikan ide atau konsep matematik dalam materi pembagian dan

bilangan; aljabar; geometri; serta representasi data, analisis, dan peluang termasuk rendah. Hal ini dapat diasumsikan bahwa siswa SMP di Indonesia memiliki representasi matematika siswa yang rendah. Sebagai contohnya, ketika siswa

diminta membuat persamaan dari tabel yang merepresentasikan hubungan antara dua variabel, kemampuan representasi siswa Indonesia adalah 27%. Sedangkan

kemampuan representasi rata-rata internasional 45%. Dengan demikian terdapat perbedaan kemampuan representasi sebesar 18%.

Manfaat lain dari representasi dalam pembelajaran adalah sebagai alat

konseptual bagi siswa. Contoh berikut merupakan kasus yang ditemukan oleh Mudzakkir (2006) berkaitan dengan kebiasaan siswa yang berinteraksi dengan

representasi grafik atau tabel nilai-nilai fungsi secara aljabar (process-oriented) dan memandang grafik atau tabel nilai-nilai fungsi tersebut hanya sebagai rangkaian pasangan titik atau nilai-nilai yang berlainan (discrete). Misalnya,

diberikan persamaam y = 4 - 2x dan y = 3x – 1. Siswa diminta untuk :

(29)

10

b. Menggambar grafik kedua persamaan tersebut. Apakah titik potongnya

sama dengan jawaban (a)?

c. Membuat sebuah representasi yang sesuai dengan

persamaan-persamaan itu.

Dalam proses penyelesaiannya, sebagian siswa hanya mampu menjawab sampai a. untuk soal b, siswa kebingungan untuk menggambarkannya dalam

bentuk grafik, sedangkan untuk soal c, siswa sama sekali tidak mengetahui dan mengerti bagaimana menjadikannya kedalam bentuk representasi. Dalam kata lain

siswa tidak mengetahui makna yang terkandung dalam soal tersebut. Dari sini diperoleh bahwa siswa memiliki kemampuan representasi yang masih rendah.

Even dan Tirosh (dalam Hasanah, 2004) mengemukakan hasil kajian yang

berkaitan dengan representasi siswa bahwa seringkali siswa-siswa memberikan respon yang berbeda terhadap masalah matematika yang sesungguhnya sama,

tetapi melibatkan representasi-representasi yang berbeda-beda. Sehingga dapat dikatakan bahwa representasi-representasi akan muncul dengan jelas dalam kuantitas yang memadai dan relevan dengan kemampuan siswa apabila

pembelajaran dilakukan dengan pendekatan-pendekatan yang memungkinkan representasi-representasi dapat terjadi. Pengetahuan yang dipandang sebagai satu

di antara pendekatan yang dapat membuat siswa aktif dalam mengkonstruksi pengetahuan mereka adalah pendekatan pembelajaran berbasis masalah.

Dari pengamatan yang terjadi pada proses pembelajaran di dalam kelas,

pembelajaran matematika yang dilakukan oleh guru kurang bermakna, hal ini dapat dilihat dari pembelajaran matematika cenderung ditujukan pada pencapaian

(30)

11

berorientasi pada soal-soal Ujian Nasional (UN). Guru dalam pembelajarannya di

kelas tidak mengaitkan dengan skema yang telah dimiliki oleh siswa dan siswa kurang diberikan kesempatan untuk menemukan kembali dan mengkonstruksi

sendiri ide-ide matematika. Anak yang belajar matematika terpisah dari pengalaman mereka sehari-hari maka anak akan cepat lupa dan tidak dapat mengaplikasikan matematika. Berdasarkan pendapat tersebut, pembelajaran

matematika di kelas ditekankan pada keterkaitan antara konsep-konsep matematika dengan pengalaman anak sehari-hari. Selain itu, perlu menerapkan

kembali konsep matematika yang telah dimiliki anak pada kehidupan sehari-hari atau pada bidang lain sangat penting dilakukan.

Sudarman (2005) menjelaskan bahwa salah satu masalah yang dihadapi

dunia pendidikan kita adalah masalah lemahnya proses pembelajaran. Dalam proses pembelajaran, siswa kurang didorong untuk mengembangkan kemampuan

berpikir. Proses pembelajaran di kelas diarahkan kepada kemampuan anak untuk menghafal informasi. Otak anak dipaksa untuk mengingat dan menimbun berbagai informasi tanpa dituntut memahami informasi yang diingatnya itu untuk

menghubungkan dengan kehidupan sehari-hari. Akibatnya, ketika anak didik lulus dari sekolah, mereka pintar teoretis tetapi mereka miskin aplikasi. Pendidikan di

sekolah terlalu menjejali otak anak dengan berbagai bahan ajar yang harus dihafal. Pendidikan tidak diarahkan untuk mengembangkan dan membangun karakter serta potensi yang dimiliki. Dengan kata lain, proses pendidikan kita tidak

diarahkan membentuk manusia cerdas, memiliki kemampuan memecahkan masalah hidup, serta tidak diarahkan untuk membentuk manusia kreatif dan

(31)

12

Berkaitan dengan hal tersebut di atas, salah satu cara untuk dapat

menciptakan sumber daya manusia berkualitas, guru dalam mengajar dapat menggunakan beberapa metode dan pendekatan. Dalam hal ini, pendekatan yang

dianggap sesuai dengan perkembangan Ilmu Matematika adalah pendekatan pembelajaran berbasis masalah atau problem based learning (PBL), karena dalam belajar berdasarkan masalah, pembelajaran didesain dalam bentuk pembelajaran

yang diawali dengan struktur masalah real yang berkaitan dengan konsep-konsep matematika yang akan dibelajarkan. Pembelajaran dimulai setelah siswa

disuguhkan dengan struktur masalah real, dengan cara ini siswa mengetahui mengapa mereka belajar. Semua informasi akan mereka kumpulkan melalui penelaahan materi ajar, kerja praktik lab ataupun melalui diskusi dengan teman

sebayanya, untuk dapat digunakan memecahkan masalah yang dihadapinya. Tujuan dari pembelajaran berbasis masalah (problem-based learning)

menurut Sugandi (2009) adalah terlibat dalam suatu tantangan (masalah, tugas rumit, situasi) dengan inisiatif dan antusias, bernalar dengan efektif akurat dan

kreatif dengan basis yang terintegrasi, fleksibel, dengan pengetahuan yang sudah ada. Dengan menggunakan pendekatan PBL dalam pembelajaran matematika,

siswa tidak hanya sekadar menerima informasi dari guru saja, karena dalam hal ini guru sebagai motivator dan fasilitator yang mengarahkan siswa agar dapat

terlibat secara aktif dalam seluruh proses pembelajaran dengan diawali pada masalah yang berkaitan dengan konsep yang dibelajarkan.

Dengan demikian karakteristik PBL lebih mengacu kepada aliran

(32)

13

bersifat secara mental tetapi juga keaktifan secara fisik. Artinya, melalui aktivitas

secara fisik pengetahuan siswa secara aktif dibangun berdasarkan proses asimilasi pengalaman atau bahan yang dipelajari dengan pengetahuan (skemata) yang telah

dimiliki siswa dan ini berlangsung secara mental, Matthews (dalam Suparno, 1997). Namun, fakta di lapangan menunjukkan bahwa pembelajaran matematika masih dianggap sebagai pelajaran yang membosankan bagi siswa.

Ketidaktahuan siswa mengenai kegunaan matematika dalam praktek sehari-hari menjadi penyebab mereka lekas bosan dan tidak tertarik pada pelajaran

matematika, di samping pengajar matematika yang mengajar secara monoton, metode pembelajaran yang kurang variasi dan hanya berpegang teguh pada diktat-diktat atau buku-buku paket saja. Akibatnya banyak yang kelihatan tidak

bergairah, tidak memperhatikan pelajaran dengan serius, ada pula yang kelihatan mengantuk disaat jam pelajaran dimulai. Hal ini berdampak pada prestasi belajar

siswa yang rendah.

Selain model pembelajaran yang digunakan dalam proses belajar mengajar, terdapat faktor lain yang mempengaruhi prestasi belajar matematika

siswa. Salah satu faktor lain tersebut adalah minat belajar siswa. Karakteristik matematika yang abstrak dan sistematis menjadi salah satu alasan sulitnya siswa

mempelajari matematika serta menjadi kurang berminat dalam mempelajarinya. Firngadi seperti dikutip Astuti dkk (2010) menambahkan bahwa matematika merupakan salah satu pelajaran yang menurunkan semangat siswa. Matematika

telah diberi label negatif dikalangan siswa, yaitu dengan pelajaran yang sulit, menakutkan, dan membosankan, sehingga menimbulkan minat yang rendah untuk

(33)

14

Ketertarikan dan rasa senang siswa dalam mempelajari matematika, yang

sering disebut dengan minat belajar siswa dibutuhkan untuk mengurangi pandangan negatif siswa pada pelajaran matematika. Minat belajar matematika

merupakan faktor penting untuk memperoleh prestasi belajar matematika siswa yang maksimal. Anastasia dan Urbina seperti dikutip Astuti dkk (2010) menyatakan bahwa minat mempengaruhi perilaku manusia di antaranya dalam

hubungan interpersonal, prestasi pendidikan dan pekerjaan, serta pemilihan aktivitas di waktu senggang. Dalyono seperti dikutip Astuti (2010)

mengemukakan bahwa minat belajar yang besar cenderung menghasilkan prestasi yang tinggi, sebaliknya minat belajar yang kurang akan menghasilkan prestasi yang rendah.

Hasil penelitian Carmichael (dalam Astuti, 2010) menyatakan bahwa minat siswa dalam belajar matematika dipengaruhi oleh pengetahuan siswa tentang

matematika, perasaan nyaman siswa terhadap matematika, dan persepsi siswa terhadap metode yang digunakan guru dalam mengajar matematika. Laporan hasil seminar dan lokakarya pembelajaran matematika yang dilakukan pada tahun 2007

menyatakan bahwa rendahnya minat siswa dalam mempelajari matematika karena materi yang diajarkan kurang kontekstual, sedikit atau sama sekali tidak ada

penekanan matematika dalam konteks kehidupan sehari-hari, guru mengajarkan matematika dengan materi dan metode yang tidak menarik, dimana guru menerangkan atau sementara siswa mencatat.

Survei awal yang dilakukan pada siswa SMK N.11 Medan yaitu pada tanggal 11 Juli 2011 di kelas X ketika mereka pertama kali masuk sekolah di sini.

(34)

15

hanya belajar musik saja. Banyak dari mereka yang tidak tertarik dengan pelajaran

matematika dan menganggap matematika itu pelajaran yang menyeramkan. Dari hasil pengamatan yang dilakukan pada siswa, rata-rata 20 dari 30 siswa tidak

mengerjakan PR matematika. Pada saat proses belajar mengajar berlangsung, kebanyakan siswa tidak mengerjakan soal latihan yang diberikan oleh guru. Dari sini terlihat bahwa murid kurang berminat pada pelajaran matematika sehingga

berakibat menurunnya prestasi belajar matematika siswa.

Oleh sebab itu, guru perlu menumbuhkan minat belajar siswa untuk

memperoleh peningkatan prestasi belajar yang optimal. Ketepatan pemilihan model pembelajaran dalam proses pembelajaran matematika dan minat belajar siswa sangat perlu diperhatikan agar diperoleh peningkatan prestasi belajar

matematika.

Berdasarkan latar belakang yang dikemukakan di atas, maka penulis tertarik untuk melakukan penelitian mengenai “Pengaruh Pembelajaran Berbasis

Masalah Terhadap Kemampuan Representasi dan Minat Belajar Matematika Siswa SMK Negeri 11 Medan”.

1.2 Identifikasi Masalah

Adapun identifikasi masalah dari penelitian ini sebagai berikut:

1. Rendahnya hasil belajar matematika siswa.

2. Kemampuan representasi matematika siswa sangat rendah.

(35)

16

matematika dan berakibat kemampuan representasi matematika siswa

rendah.

4. Pembelajaran matematka kurang bermakna

5. Model belajar yang kurang bervariasi dan tidak sesuai mengakibatkan siswa merasa bosan.

6. Guru belum terbiasa menggunakan model pembelajaran berbasis masalah.

7. Penerapan pembelajaran konvensional atau biasa diduga kurang sesuai untuk meningkatkan kemampuan representasi matematika siswa.

8. Siswa yang memiliki minat belajar yang rendah cenderung memiliki kemampuan representasi matematika siswa yang rendah pula

1.3 Batasan Masalah

Dalam kajian penelitian ini, dibatasi pada penggunaan model

Pembelajaran Berbasis Masalah dan model pembelajaran biasa. Untuk minat siswa dibatasi pada minat tinggi dan minat rendah. Hasil belajar yang dilihat adalah representasi matematika siswa kelas XI SMK Negeri 11 Medan. Penelitian

ini juga membandingkan pada ruang lingkup penelitian dan waktu penelitian. Berkaitan dengan itu penelitian ini dilakukan pada semester genap Tahun

(36)

17

1.4 Rumusan Masalah

Berdasarkan latar belakang masalah yang telah diuraikan, rumusan masalah dalam penelitian ini adalah apakah terdapat pengaruh pembelajaran

berbasis masalah terhadap kemampuan representasi dan minat belajar matematika siswa SMK. Dari rumusan masalah di atas, maka dibagi atas pertanyaan penelitian:

1. Apakah kemampuan representasi matematik siswa yang memperoleh model pembelajaran berbasis masalah lebih baik daripada kemampuan

representasi matematik siswa yang memperoleh pembelajaran biasa?

2. Apakah minat belajar siswa terhadap matematika yang memperoleh pembelajaran berbasis masalah lebih baik daripada minat belajar siswa

yang memperoleh pembelajaran biasa?

3. Apakah terdapat interaksi antara pembelajaran dengan minat terhadap

kemampuan representasi matematika siswa?

4. Bagaimana proses penyelesaian masalah representasi matematika siswa dalam menyelesaikan masalah?

1.5 Tujuan Penelitian

Penelitian ini bertujuan untuk:

1. Untuk mengetahui kemampuan representasi matematik siswa yang memperoleh pendekatan pembelajaran berbasis masalah lebih baik

(37)

18

2. Untuk mengetahui minat belajar siswa terhadap matematika yang

memperoleh pembelajaran berbasis masalah lebih baik daripada minat belajar siswa yang memperoleh pembelajaran biasa.

3. Untuk mengetahui interaksi antara pembelajaran dengan minat terhadap kemampuan representasi matematika siswa.

4. Untuk mengetahui proses penyelesaian masalah representasi matematika

siswa dalam menyelesaikan masalah.

1.6 Manfaat Penelitian

Hasil yang diperoleh dalam penelitian ini diharapkan dapat bermanfaat secara teoretis maupun praktis. Secara teoritis penelitian ini bermanfaat

memperkaya dan menambah khazanah ilmu pengetahuan guna meningkatkan kualitas pembelajaran guna meningkatkan kualitas pembelajaran khususnya yang

berkaitan dengan pembelajaran berbasis masalah serta hubungannya dengan representasi dan minat belajar matematika siswa, sebagai sumbangan pemikiran dan bahan acuan bagi guru, pengelola, pengembang, lembaga pendidikan dan

peneliti selanjutnya yang ingin mengkaji secara lebih mendalam.

Sedangkan manfaat praktis dari penelitian ini antara lain: 1) memberi

masukan pada guru atau calon guru matematika dalam menentukan model pembelajaran yang sesuai dengan materi ajar, sebagai alternatif untuk member variasi dalam pembelajaran. 2) memberi gambaran bagi guru khususnya guru

(38)

19

1.7 Definisi Operasional

a. Kemampuan Representasi Matematik

Kemampuan Representasi Matematik adalah kemampuan menuangkan,

menyatakan, menterjemahkan, mengungkapkan, atau membuat model dari ide-ide, konsep-konsep matematik, dan hubungan di antaranya ke dalam bentuk matematik baru yang beragam yaitu dalam bentuk kata-kata (teks tertulis),

grafik, tabel, diagram, gambar, persamaan (ekspresi matematik), atau wujud konkrit (alat peraga) dan menggunakannya dalam penyelesaian soal dengan

mengurutkan hal-hal yang diketahui, ditanyakan, kemudian dijawab.

b. Pendekatan Berbasis Masalah

Pendekatan Berbasis Masalah adalah suatu bentuk pembelajaran yang

menuntut aktivitas mental siswa secara optimal dalam memahami suatu konsep berdasar situasi atau masalah yang disajikan pada awal pembelajaran. Terdiri

dari lima tahapan utama, yaitu : (1) orientasi siswa pada masalah, (2) mengorganisir siswa untuk belajar, (3) membimbing individu maupun kelompok, (4) mengembangkan dan menyajikan hasil karya, dan (5)

menganalisis dan mengevaluasi proses penyelesaian masalah.

c. Pendekatan Pembelajaran Biasa

Pembelajaran biasa adalah pembelajaran yang biasa dilakukan oleh guru di dalam kelas dimana guru menjelaskan materi pelajaran dan memberi contoh, siswa mencatat penjelasan guru, mengerjakan soal-soal latihan sesuai dengan

(39)

20

d. Minat Belajar Matematika

Minat belajar matematika merupakan perhatian dan kesukaan pada matematika sehingga menimbulkan keingintahuan, ketertarikan, serta keinginan untuk ikut

serta dalam belajar matematika. Minat belajar matematika akan diungkap menggunakan Skala Minat Belajar matematika berdasar aspek minat menurut Silvia (dalam Astuti, 2010) yaitu keingintahuan (curiosity), keterbukaan

terhadap pengalaman (openess to experience), dorongan mencari sensasi (sensation seeking), kecenderungan bosan (boredom propeness), keluasan

(40)

120

BAB V

SIMPULAN DAN SARAN

5.1. Simpulan

Berdasarkan hasil analisis dan analisis data ditemukan bahwa ada pengaruh pembelajaran berbasis masalah terhadap kemampuan representasi

matematis siswa tetapi tidak ada pengaruh yang signifikan terhadap minat matematika siswa. Untuk mendukung temuan tersebut, diperoleh beberapa kesimpulan yang merupakan jawaban atas pertanyaan penelitian pada rumusan

masalah seperti berikut ini:

1. Dari hasil perhitungan menggunakan Anava dua jalur ditemukan bahwa

nilai signifikansi representasi matematis siswa yang diberi model pembelajaran berbasis masalah secara signifikan lebih baik daripada siswa yang diberi model pembelajaran biasa.

2. Minat matematis siswa yang diberi model pembelajaran berbasis masalah secara signifikan tidak lebih baik daripada siswa yang diberi model

pembelajaran biasa. Hal ini bias saja diakibatkan oleh beberapa hal sesuai dengan pengamatan yang dilakukan peneliti selama ini pada seluruh siswa yang ada di sekolah tersebut antara lain: siswa merasa matematika itu tidak

terlalu penting karena sekolah tersebut adalah sekolah menengah musik, sebagian besar siswa beranggapan bahwa di sekolah itu tidak ada pelajaran

matematika, jam pelajaran masih sering diganggu dengan adanya kegiatan-kegiatan musik, siswa yang mampu bermain musik lebih dihargai daripada

(41)

121

3. Tidak terdapat interaksi antara pembelajaran dengan minat terhadap kemampuan representasi matematika siswa. Pengaruh model pembelajaran

berbasis masalah itu lebih besar pada minat matematis siswa yang tinggi daripada minat matematis siswa yang rendah. Implikasinya adalah siswa

yang memperoleh pembelajaran berbasis masalah dan memiliki minat matematis yang tinggi akan meningkatkan kemampuan representasi matematika siswa yang paling besar.

4. Proses penyelesaian jawaban siswa pada model pembelajaran berbasis masalah lebih baik dibandingkan dengan siswa pada model pembelajaran

biasa. Siswa dengan model pembelajaran berbasis masalah menjawab dengan lebih sistematis dan mampu memberikan alasan dan perhitungan

yang tepat, sedangkan siswa dengan model pembelajaran biasa menjawab dengan kurang sistematis dan tidak memberi alasan serta perhitungan yang baik.

5.2 Implikasi

Penemuan dalam penelitian menunjukkan kemampuan representasi

matematis siswa yang diajarkan dengan model pembelajaran berbasis masalah lebih baik dibandingkan dengan siswa yang diajarkan melalui pembelajaran biasa. Hal ini berimplikasi pada pemilihan model pembelajaran oleh guru matematika.

Guru matematika di sekolah menengah atas harus mempunyai cukup pengetahuan teoretis maupun keterampilan dalam memilih model pembelajaran yang mampu

(42)

122

mengkonstruksi pengetahuannya sendiri dan bekerja sama dengan efektif Salah satu model pembelajaran yang dapat mengubah siswa ke arah yang lebih positif

tersebut adalah model pembelajaran berbasis masalah. Perubahan itu sendiri akan mampu melatih kemampuan representasi matematis siswa sejak dini.

Implikasi lainnya yang perlu mendapat perhatian guru adalah dengan model pembelajaran berbasis masalah akan membuat siswa lebih kritis, berani mengeluarkan ide dan menghargai pendapat orang lain. Diskusi kelompok yang

merupakan bagian dari proses pembelajaran berbasis masalah akan membuat siswa dapat berkomunikasi matematika secara lisan pada saat mengawali

penyelesaian masalah dan tulisan disaat mereka menemukan kesepahaman. Selain dari itu dengan diskusi kelompok siswa akan saling berkompetisi untuk

memberikan yang terbaik bagi kelompoknya, sehingga suasana kelas akan terlihat lebih dinamis dan siswa merasa senang dalam belajar.

Pengaruh model pembelajaran berbasis masalah itu lebih besar pada minat

matematis siswa yang tinggi daripada minat matematis siswa yang rendah. Implikasinya adalah siswa yang memperoleh pembelajaran berbasis masalah dan

memiliki minat matematis yang tinggi akan meningkatkan kemampuan representasi matematika siswa yang paling besar.

5.3 Saran

Berdasarkan hasil penelitian, pembelajaran berbasis masalah yang diterapkan pada kegiatan pembelajaran memberikan hal-hal penting untuk

(43)

123

1. Bagi guru matematika

a. Model pembelajaran berbasis masalah pada pembelajaran matematika

yang menekankan kemampuan representasi dan minat matematis siswa dapat dijadikan sebagai salah satu alternatif untuk menerapkan

pembelajaran matematika yang inovatif khususnya dalam mengajarkan materi program linear.

b. Perangkat pembelajaran yang dihasilkan dapat dijadikan sebagai

bandingan bagi guru dalam mengembangkan perangkat pembelajaran matematika dengan pembelajaran berbasis masalah pada pokok bahasan

program linear.

c. Diharapkan guru perlu menambah wawasan tentang teori-teori

pembelajaran dan model pembelajaran yang inovatif agar dapat melaksanakannya dalam pembelajaran matematika sehingga pembelajaran biasa secara sadar dapat ditinggalkan sebagai upaya peningkatan hasil

belajar siswa.

2. Kepada lembaga terkait

a. Pembelajaran berbasis masalah dengan menekankan kemampuan representasi dan minat matematis masih sangat asing bagi guru maupun siswa, oleh karenanya perlu disosialisasikan oleh sekolah atau lembaga

terkait dengan harapan dapat meningkatkan hasil belajar matematika siswa, khususnya meningkatkan kemampuan representasi dan minat

(44)

124

b. Pembelajaran berbasis masalah dapat dijadikan sebagai salah satu alternatif dalam meningkatkan kemampuan representasi dan minat

matematis siswa pada pokok bahasan program linear sehingga dapat dijadikan masukan bagi sekolah untuk dikembangkan sebagai strategi

pembelajaran yang efektif untuk pokok bahasan matematika yang lain. 3. Kepada peneliti lanjutan

a. Melakukan penelitian lanjutan yang bisa mengkaji aspek lain secara

terperinci dan benar-benar diperhatikan kelengkapan pembelajaran agar aspek yang belum terjangkau dalam penelitian ini diperoleh secara

maksimal

b. Dapat dilakukan penelitian lanjutan dengan model pembelajaran berbasis

(45)

125

DAFTAR PUSTAKA

Arends. 2008. Learning To Teach. Yogjakarta: Pustaka Pelajar

Arikunto, S. 2005. Dasar-Dasar Evaluasi Pendidikan (Edisi Revisi). Jakarta : Bumi Aksara.

---1997. Prosedur Penelitian Suatu Pendekatan Praktek, Jakarta: Bumi Aksara

Astuti,dkk. 2010. Hubungan Antara Persepsi Terhadap Pembelajaran Kontekstual dengan Minat Belajar Matematika Pada Siswa Kelas VII SMP Negeri 18 Semarang. Jurnal: Fakultas Psikologi Universitas Diponegoro

Boud, D. Dan Felleti, G.I. 1997. The challenge of problem based learning. London: Kogapage

Fauzi Ahmad, 2004. Psikologi Umum Untuk, Bandung: CV Pustaka Setia, Cet.ke2

Goldin, G.A. 2002. Representation in Mathematical Learning and Problem Solving. Dalam L.D English (Ed). Handbook of International Research in Mathematics Education (IRME). New Jersey: Lawrence Erlbaum Associates.

Gie, 2004. Cara Belajar Yang Baik Bagi Mahasiswa, Yogyakarta: Gajah Mada Press

Hasanah, A. 2004. Mengembangkan Kemampuan Pemahaman dan Penalaran Matematika Siswa Sekolah Menengah Pertama melalui Pembelajaran Berbasis Masalah yang Menekankan pada Representasi Matematik. Tesis tidak diterbitkan. Bandung: Program Pascasarjana UPI.

Kuntarti, dkk. 2008. Matematika Program Keahlian Seni, Pariwisata, Administrasi Perkantoran, dan Teknologi Kerumahtanggaan untuk SMK dan MAK Kelas XI. Jakarta: Erlangga

Mudzakkir. 2006. Strategi Pembelajaran Think-Talk-Write Untuk Meningkatkan Kemampuan Representasi Matematik Beragam Siswa Sekolah Menengah Pertama. Tesis tidak diterbitkan. Bandung: Program Pascasarjana UPI.

Mullis, I.V.S., et.al. 2001. TIMSS Trends in Mathematics and Science study; Assessment Frameworks and Spesifications 2003. Boston: ISC.

(46)

126

Nuthpaturahman. 2008. Minat Belajar Siswa dalam Mata Pelajaran Matematika pada Madrasah Tsanawiah Ismaili Kambat Selatan Kecamatan Pandawa. [Online] (http://idb4.wikispaces.com/file/view/jj4006.2.pdf diakses 5 Januari 2012)

Permana, Y. 2007. Mengembangkan Kemampuan Penalaran dan Koneksi Matematis Siswa SMA melalui Pembelajaran Berbasis Masalah. Jurnal UPI. Bandung.

Putri, R. 2001. Improving Mathematics Comunication Ability Of Students In Grade 2 Through PMRI Approach. Proceeding. Departemen of Mathematics Education. Sriwijaya University: Palembang

Putu, Y. 2002. Belajar Berdasarkan Masalah (Problem Based Learning) Dengan Pendekatan Kelompok Kooperatif Sebagai Upaya Peningkatan Kualitas Pembelajaran Fisika Siswa Kelas III SLTP Negeri 2 Singaraja. Tesis: Program Studi Pendidikan Fisika Jurusan Pendidikan Matematika dan Ilmu Pengetahuan Alam, IKIP Negeri Singaraja Desember 2002.

Purnomo, Edi. 2009. Implementasi problem based learning (PBL) berbantuan modul dalam upaya meningkatkan kualitas perkuliahan metrology. Penelitian: Fakultas Tehnik Universitas negeri Yogyakarta

Ruseffendi, E.T. 1991. Pengantar kepada Membantu Guru Mengembangkan Kompetensinya dalam Pengajaran Matematika untuk Meningkatkan CBSA. Bandung: Tarsito

Rusman. 2010. Model-Model Pembelajaran. Jakarta: PT. Raja Grafindo Perkasa Sa’dijah, C. 2002. Pelaksanaan Pembelajaran Matematika Beracuan

Konstruktivis Topik Persamaan dan Pertidaksamaan Satu Peubah untuk Siswa Kelas I SLTP. Prosiding Konferensi Nasional Matematika XI, Edisi Khusus.

Safari. 2004. Teknik Analisis Butir Tes. Yogyakarta

Sudarman, 2005. Problem Based Learning Suatu Model Pembelajaran Untuk Mengembangkan dan Meningkatkan Kemampuan Memecahkan Masalah. Artikel Ilmiah FKIP Universitas Mulawarman Samarinda.

Sudjana, N. 1987. Dasar-dasar Proses Belajar Mengajar, Bandung: Balai Pustaka

(47)

127

Sugandi, dkk. 2010. Pengaruh Pembelajaran Berbasis Masalah dengan Setting Kooperatif Jigsaw Terhadap Kemampuan Komunikasi Matematika Serta Kemandirian Belajar Siswa SMA Makalah pada Seminar Nasional Pendidikan Matematika Yogyakarta.

Suhenra. 2005. Problem Based Learning Suatu Model Pembelajaran Untuk Mengembangkan dan Meningkatkan kemampuan Memecahkan Masalah. Artikel Ilmiah FKIP Universitas Mulawarman

Suherman, H dkk.2001.Strategi Pembelajaran Matematika Kontenporer. Bandung: JICA Universitas Pendidikan Indonesia

Slameto, 1991. Belajar dan Faktor-faktor Yang Mempengaruhinya, Cetakan Keempat, PT. Rineka Cipta, Jakarta.

Suparno, P. 1996. Filsafat Konstruktivisme dalam Pendidikan. Yogyakarta: Kanisius.

Suparlan, A. 2005. Pembelajaran Berbasis Masalah Untuk Mengembangkan Kemampuan Pemahaman dan Representasi Matematik Siswa Sekolah Menengah Pertama. Tesis PPS UPI Bandung: tidak diterbitkan

Suryabrata, 1989. Psikologi Pendidikan, Jakarta: CV. Rajawali,

Sanjoyo, B.A. 2008. Matematika SMK Bisnis dan Manajemen. Jilid 2. Jakarta: Departemen Pendidikan Nasional

Slameto. 2010. Motivasi dan Minat Belajar Siswa. [Online] (http://wijayalabs.wordpress.com diakses 18 Nopember 2011)

Trianto. 2007. Model-model pembelajaran inovatif Berorientasi Konstruktivistik. Jakarta: Prestasi Pustaka.

______ 2010. Mendesain Model Pembelajaran Inovatif-Progresif. Jakarta: Kencana Prenada Media Group

Ulina, S. 2011. Pengaruh Strategi Pembelajaran dan Gaya Belajar Terhadap Hasil Belajar Bahasa Inggris Siswa SMP Negeri 1 Kuta Cane Kabupaten Aceh Tenggara. Tesis PPS UNIMED: tidak diterbitkan.

(48)

128

Wahid, A. 1998.Menumbuhkan Minat dan Bakat Anak dalam Chabib Toha (eds), PBMPAI di Sekolah Eksistensi dan Proses Belajar Mengajar Pendidikan Agama Islam, Yogyakarta: Pustaka Pelajar

Gambar

Tabel Weiner tentang keterkaitan antara variabel bebas dan
Gambar
Gambar 1.1 Salah satu pola jawaban siswa SMK Negeri 11 Medan
Gambar 1.2 Daerah penyelesaian pertidaksamaan pada bidang kartesius
+2

Referensi

Dokumen terkait

Puji dan syukur penulis sampaikan kehadirat Tuhan Yang Maha Esa atas limpahan rahmat dan karunia-Nya sehingga tesis yang berjudul “PENERAPAN PEMBELAJARAN GUIDED

Puji Syukur penulis panjatkan kehadirat Tuhan yang Maha Esa atas limpahan rahmat dan karuniaNya kepada penulis, sehingga penulis dapat menyusun proposal skripsi

Puji syukur peneliti panjatkan kehadirat Tuhan Yang Maha Esa, atas limpahan berkat kasih karuniaNya, sehingga penulis dapat menyelesaikan tugas penyusunan tesis dengan

Puji syukur penulis panjatkan kehadirat Tuhan Yang Maha Esa atas limpahan Rahmat dan KaruniaNya sehingga penulis dapat menyelesaikan laporan skripsi yang berjudul “Penerapan

Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa atas limpahan rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan skripsi yang berjudul “

Puji syukur penulis panjatkan kehadirat Tuhan Yang Maha Esa atas limpahan rahmat dan karuniaNya kepada penulis, sehingga penulis dapat menyusun proposal skripsi

Puji syukur penulis panjatkan kehadirat Tuhan Yang Maha Esa yang melimpahkan rahmat dan karuniaNya, sehingga penulis dapat menyelesaikan skripsi berjudul “ Upaya

Puji syukur penulis panjatkan kehadirat Tuhan Yang Maha Esa yang telah melimpahkan rahmat dan karunianya, sehingga penulis dapat menyelesaikan skripsi yang berjudul “Upaya