• Tidak ada hasil yang ditemukan

Metode Numerik

N/A
N/A
Protected

Academic year: 2021

Membagikan "Metode Numerik"

Copied!
9
0
0

Teks penuh

(1)

10. Metode Numerik Aproksimasi 10. Metode Numerik Aproksimasi

10.1 Aproksimasi Taylor Terhadap Fungsi 10.1 Aproksimasi Taylor Terhadap Fungsi 10.2 Penaksiran Kesalahan

10.2 Penaksiran Kesalahan 10.3 Pengintegralan Numerik  10.3 Pengintegralan Numerik 

10.4 Meselesaikan Persamaan Secara Numerik  10.4 Meselesaikan Persamaan Secara Numerik  10.5

10.5 Metode Titik TMetode Titik Tetapetap

10.1 Aproksimasi Taylor Terhadap Fungsi 10.1 Aproksimasi Taylor Terhadap Fungsi

Jauh kita telah menekankan apa yang mungkin disebut metode-metode eksak. Tetapi, Jauh kita telah menekankan apa yang mungkin disebut metode-metode eksak. Tetapi, terdapat juga beberapa perkecualian. Contoh paling sederhana diilustrasikan oleh terdapat juga beberapa perkecualian. Contoh paling sederhana diilustrasikan oleh  pemb

 pembulatan desimal, seperti halnya ulatan desimal, seperti halnya pada waktu pada waktu kita menuliskankita menuliskan1/3 ≈ 0,3331/3 ≈ 0,333 atau ≈ 3,atau ≈ 3,

1416. 1416.

Sumbangan terhadap pentingnya metode aproksimasi diberikan dua faktor. Pertama, Sumbangan terhadap pentingnya metode aproksimasi diberikan dua faktor. Pertama, kenyataan banyak perhitungan matematika yang terdapat dalam penerapan tidak dapat kenyataan banyak perhitungan matematika yang terdapat dalam penerapan tidak dapat dihitung matematika yang terdapat dalam penerapan tidak dapat dihitung dengan dihitung matematika yang terdapat dalam penerapan tidak dapat dihitung dengan memakai metode eksak. Misalanya sebutkan integral. Kedua, penemuan komputer  memakai metode eksak. Misalanya sebutkan integral. Kedua, penemuan komputer  dan kalkulator elektronik berkecepatan tinggi telah

dan kalkulator elektronik berkecepatan tinggi telah membuat metode numerik menjadimembuat metode numerik menjadi  praktis.

 praktis.

Aproksimasi linier pemikiran dibalik aproksimasi diferensial yang diperkenalkan Aproksimasi linier pemikiran dibalik aproksimasi diferensial yang diperkenalkan adalah mengaproksimasi suatu kurva didekat sebuah titik tersebut. Persamaan garis adalah mengaproksimasi suatu kurva didekat sebuah titik tersebut. Persamaan garis singgung pada kurva y =

singgung pada kurva y =  f  f (( X  X ) di () di (a, (a, (a)) a)) adadalalah ah y = ≈y = ≈ f  f (a) +(a) + f  f ”(a)(x – a) Secara”(a)(x – a) Secara

langsung menunjukkan ke aproksimasi linier  langsung menunjukkan ke aproksimasi linier 

 f 

 f ≈≈ f  f (a) +(a) + f  f ”(a)(x – a)”(a)(x – a)

Polinom linier 

Polinom linier P P 1 (X)1 (X)=F(a) + f”(a)(x-a)=F(a) + f”(a)(x-a) disebudisebut t polinpolinom Taylor Orde om Taylor Orde 1 pada1 pada aa untukuntuk

 f(x)

 f(x), menurut matematikawan inggris, , menurut matematikawan inggris, brook taylor (1685-1731).brook taylor (1685-1731). Contoh :

Contoh : Carilah

Carilah P1(x) pada a = 1 P1(x) pada a = 1 untukuntuk f(x) f(x) 1n1n x x dan gunakan untuk mengaproksimasi (0,9)dan gunakan untuk mengaproksimasi (0,9) dan 1n(1,5).

(2)

Karena f(x) = 1n x, f”(x) = 1/x; maka f s = , dan f”(1)=1.karenanya P1( x) = 0 + 1(x-1) =

x – 1

Polinom Taylor Orde n Diantara semua fungsi, polinom merupakan yang paling

mudah untuk dievaluasi, karena hanya menyangkut tiga operasi hitungan:  penambahan, pengurangan pengalian.

Suatu pengamatan penting mengenai kasus linier adalah bahwa f dan aproksimasinya

 P 1, seperti halnya turunan-turunannya  f” dan P 1’, bersesuaian pada x = a, Untuk

 perumusan umum bagi polinom kuadrat P 2,kita tekankan tiga kondisi, yaitu:  f (a) = P 2(a) f’(a) = P’(a),  f’(a)P”2(a)

Polinom kuadrat unik yang memenuhi kondisi-kondisi ini (polinom Taylor orde 2)

 P2(x)= f(a) + f’(a)(x – a) + f”(a)/2 (x – a)2

Metode horner Untuk Mengevaluasi Polinom untuk mengevaluasi polinom

 p(x) = an x n + an-1 x n-1+ ..+ a1 x + a0

 pada x =c, tentu saja dievaluasi

(3)

10.2 Penarikan Kesalahan

Untuk masalah pengaproksimasian suatu fungsi oleh polinom Taylor, secara aktual kita dapat memberikan suatu rumus untuk kesalahan.

Teorema A:

Andaikan f adalah suatu fungsi dengan turunan ke (n + 1), f (n=1)( x) , ada untuk setiap x

 pada suatu selang buka I yang mengandung a.Maka untuk setiap x di I.  F(x)= f(a) + f’(a)+ f’(a)(x-a), + (x – a)2+...

+ ( x – a)n+ R n( x)

Dimana sisa (atau kesalahan) Rn(x) diberikan oleh rumus

R n( x) = ( x – a)n+1

Bukti Dari Rumus Taylor Ingat bahwa Rn(x) didefinisikan pada I oleh

 g(t) = f(x) –  f(t) – f’(t)(x-t)- 2 ...- (x – a)n

Contoh:

Gunakan polinom Taylor derajat 4 pada a = 1 untuk mengaproksimasi ln (0,9) dan  berikan taksiran untuk kesalahan maksimum yang dibuat.

(4)

Kita akan memerlukan lima turunan pertama dari f(x) =ln x  f(x) =ln  f (1) = 0  f(x) = x-1  f’ (1) = 1 f”(x) = -x-2  f”(1) = - 1  f’”(x) =2 x-3  f’”(1) = 2  f(4)(x) =-6x-4  f (4)(1) = -6  f (5)(x) =24 x-5  f (5)(1) = 24/c5

 jadi menurutbrumus taylor 

ln ( x) = ( x – 1) – 1/2 ( x – 1)2+ 1/3( x – 1)3–1/4( x-1)4+ R 4( x)

10.3 Pengintegralan Numerik 

Kita tahu bahwa jika f kontinu pada suatu selang tertutup [a,b], maka integral tentu

 f(x)dxharus ada.

Terdapat banyak integral tentu yang tidak dapat dievaluasi memakai metode-metode yang telah kita pelajari, yakni menggunakan teorema Dasar Kalkulus. Ini disebabkan integral-integral tak tentudari integral-integral.

Tidak dapat diekspresikan dalam bentuk fungsi-fungsi elementer, yakni dalam bentuk fingsi yang dibahas dalam kuliah kalkulus pertama. Walaupun intgral tak tentu elementer dapat dicari, seringkali menguntungkan menggunakan metode aproksimasi.

(5)

[ f (xo) + 2 f (x1) + 2 f (x2)+...+ 2f (xn-1) + f (xn)]

10.4 Menyelesaikan Persamaan Secara Numerik 

Dalam matematika dan sains, kerapkali kita perlu untuk mencari akar-akar   penyelesaian suatu persamaan f(x) = 0. Supaya pasti, jika f(x) suatu polinom linuer 

atau kuadrat, rumus-rumus untuk penulisan penyelesaian yang eksak Contoh:

Gunakan Metode Newton Untuk mencari akar riil r dari f(x) = x3 – 3x – 5=0 sampai

tujuh posisi desimal.

Penelesaian ini merupakan persamaan yang sama yang telah ditinjau, marilah kita gunakan x1 = 2,5 sebagai aproksimasi pertama kita terhadap yang kita lakukan

disana. Karena f(x) =x3– 3x – 5 dan f’(x)= 3x2 – 3, algoritmanya adalah

10.5 Metode Titik Tetap

Lebih lanjut metode ini mendapat suatu tempat penerapan dalam matematika. Andaikan suatu persamaan yang menarik perhatian kita dapat dituliskan dalam bentuk

 x = g(x). Memecahkan persamaan ini adalah mencari suatu bilangan r yang tidak diubah oleh fungsi g . Bilangan yang demikian disebut dengan titik tetap dari g. Untuk mencari bilangan ini, kita usulkan algoritma berikut.

Buat suatu tekanan pertama pertama x1.Kemudian tetapkan x2= g(x1 ), x3 = g(x2 ), dan

secara umum

(6)

Jika kita beruntung, xnakan konvergen ke akar r selama n→∞.

Metode Terilustrasi kita mulai dengan suatu contoh Contoh:

Selesaikan x =2 cos x

Penyelesaian:

Kita gunakan algoritma x1+2= 2 cos xn.

Mari kita ambil taktik lain. Ulang tulis persamaan x = 2 cos x sebagai x = ( x + 2 cos

 x) / 2 dan gunakan algoritma.

 X n+1= xn+ 2 cos xn 2

Apa yang menentukan berhasil atau gagal, konvergen atau divergen? Kelihatannya tergantung kepada kemiringan dari kurva y = g(x), yaknig’(x), dekat akar r. Jika g’ (x) terlalu besar, metode gagal, jika  g’(x)cukup kecil, metode berhasil umum.

Teorema A

(Teorema Titik-TetapL). Misalkan g suatu fungsi kontinu yang memetakan [a,b] ke dalam dia sendiri-yakni, yang memenuhi a ≤ x ≥b. Maka g  paling sedikit mempunyai suatu titik tetap r  pada[a,b]. Sebagai tambahan, jika  g  dapat didiferentasikan dan memenuhi │ g’(x) │≤ M < 1 untuk semua x pada [a,b] , M suatu konstanta, maka titik tetap tersebut adalah tunggal dan algoritma.

 X n + 1 = g(xn ) x1in [a,b]

(7)

Soal-soal 10.1 1

Pada soal 1-4, Hitung f (1,23) pertama dengan menggunakan tombol y x dan kemudian

dengan menggunakan metode horner.

1.  f(x) = 2x3– 3x2– 2x + 5 2.  f(x) = 4x3+ 1,2x2– 3x – 6 3.  f(x) = 2x4 – 3x3+ 2x2 + 5x - 2 4.  f(x) = 3x4– 11x2+ 2x – 3

5. Hitunglah p( 3,456 ) jika p(x) = x5 – 3x4+ 2x3 – 4x2+ 5x + 1 dengan menggunakan

metode Horner.

6. Hitunglah p( 6,321) jika p(x) = x5– 3,12x4+ 2,53x26,32.

Hitunglah 7-10 tentukan polinom maclaurin orde 4 untuk f(x) dan gunakan untuk mengaproksimasi f (0,23).

(8)

8. f(x) = e-3x 9. f(x) = sin 2x 10. f(x) = tan x

Soal-soal 10.2

Dalam soal 1-4, cari rumus untuk R6 (x), sisa untuk polinom taylor derajat 6 pada a.

Kemudian taksir │ R6  (0,5)│berikan suatu batas atas yang baik untuknya. Lihat contoh 1 dan contoh 2.

1. In (1 + x); a = 0 2. e–x; a = 0

3. sin x; a = 1 4. 1/ x – 2 ; a = 1

Soal-soal 10.3

Pada soal 1-4, gunakan aturan trapezium dan aturan parabola, keduanya dengan n = 8, untuk mengaproksimasi tiap-tiap integral. Kemudian hitung integral itu menggunakan Teorema Dasar Kalkulus.

1. ∫211/x2dx 2. ∫211/x dx 3. ∫40√ x dx

4. ∫20 x √x2+ 4 dx

Soal-soal 10.4

Pada soal 1-4, gunakan Metode bagidua untuk mencari akar riil untuk persamaan yang diberikan pada selang yang diberikan.

(9)

Jawaban anda seharusnya cermat sampai dua posisi decimal.

1.  X 3 + 3x - 6 = 0; [1,2] 2.  X 4 + 4x3+ 1 = 0;[-1,0] 3. Cos x – e-x = 0; [1,2] 4.  X – 2 + ln x = 0; [1,2]

Pada soal 5-10, gunakan Metode Newton, untuk mengaproksimasi akar yang di minta dari persamaan yang diberikan cermat sampai lima posisi decimal. Mulai dengan membuat sketsa suatu grafik.

5. Akar terbesar dari x3+ 6x2+ 9x + 2 = 0 6. Akar riil dari 7x3 + x – 6 = 0

7. Akar dari x – 2 + ln x = 0 (lihat Soal 4) 8. Akar positif terkecil dari x – e-x= 0 9. Akar dari cos x= x

10.Akar dari xln x= 1

Soal-soal 10.5

Pada soal 1-5, gunakan algoritma titik-tetap dengan x1seperti yang ditunjukkan untuk

menyelesaikan persamaan sampai lima posisi decimal.

1.  x = 1/10 e -2x; x1= 1 2.  x = 3tan-1 x; x1= 2 3.  x = √2,5 + x; x1 = 1 4.  x = √3 + x; x1= 50

Referensi

Dokumen terkait

Kesimpulan yang dapat ditarik dalam tulisan ini adalah tanggung jawab negara peluncur mengenai ganti rugi dalam penyelesaian ganti rugi akibat pengoperasian

Tujuan dari penelitian ini adalah mengetahui pengaruh pemberian kompos pada tanah bekas tambang emas dan mengetahui jenis kompos mana yang terbaik terhadap pertumbuhan awal

1. Fokus penelitian adalah untuk menjawab pertanyaan “bagaimana” dan “mengapa”. Peneliti tidak dapat memanipulasi perilaku mereka yang terlibat dalam

kandungan kalori lebih rendah dari lemak lain, (%) yang minimal disimpan sebagai lemak, dan (3) memberikan kontribusi untuk meningkatkan metabolisme untuk membakar lebih

Kebijakan puritanisme oleh sultan Aurangzeb dan pengislaman orang-orang Hindu secara paksa demi menjadikan tanah India sebagai negara Islam, dengan menyerang berbagai praktek

Untuk dapat menjadi apoteker pengelola apotek, maka seorang apoteker harus memenuhi persyaratan yang tercantum di dalam peraturan Menteri Kesehatan RI Nomor

Islam dan iman, yang ini dianugerahkan-Nya kepada setiap muslim. 2) Hidayah yang bersifat tafshili (rinci dan detail), yaitu hidayah untuk mengetahui perincian cabang-cabang iman

Proses perlakuan panas secara teknis untuk melakukan metode temper dalam proses pembentukan fasa baru sesuai dengan percepatan pemanasan sampai mencapai suhu austenit tidak stabil,