• Tidak ada hasil yang ditemukan

Strategi Kombinasi Untuk Menyelesaikan Quadratic Assignment Problem

N/A
N/A
Protected

Academic year: 2017

Membagikan "Strategi Kombinasi Untuk Menyelesaikan Quadratic Assignment Problem"

Copied!
4
0
0

Teks penuh

(1)

DAFTAR PUSTAKA

Aarts, E. H. L. dan J. Korst, (1989), Simulated Annealing and Boltzmann Machines: a Stochastic Approach to Combinatorial Optimization and Neural Computing, Wiley, Chichester, UK.

Adams, W. P., M. Guignard, P. M. Hahn, dan W. L. Hightower, (2007), A Level-2 Reformulation Linearization Technique Bound for the Quadratic Assignment Problem, European Journal Operation Research, 180:983-996.

Ahmed ZH, (2014), A Data-guided Lexisearch Algorithm for the Quadratic Assign-ment Problem, Indian Journal of Science and Technology, Vol 7(4), 480-490.

Ahuja R.K., J.B.Orlin, dan A.Tiwari, (2000), A Descent Genetic Algorithm for the Quadratic Assignment Problem, Computers and Operations Research, vol.27; 917-934.

Ahyaningsih, F., (2006), Menyelesaikan Quadratic Assignment Problem Dengan Metode Heuristik Kelayakan, Thesis S2 Magister Mathematic University of North Sumatera Indonesia.

Ahyaningsih, F., O. S. Sitompul (2015), Developing A Combined Strategy For Solving Quadratic Assignment Problem, International Journal Of Scientific & Technology Research, Vol 4 Issue 11, November Edition, ISSN 2277-8616; 297-301.

Ahyaningsih, F., Raidani, A. H. Nasution, dan H. Mawengkang, (2005), The Quadratic Assignment Problem : Some New Results and Generalizations, Pro-ceeding of the 1st IMT-GT, RCMSA, Prapat Indonesia.

Ahyaningsih, F., S. Suwilo, dan H. Mawengkang, (2006), An Improved Strategy for Solving Quadratic Assignment Problem, Proceeding of The 2nd IMT-GT Regional Conference on Mathematics, Statistics and Application, Penang Malaysia.

Anstreicher K. M. dan N. W. Brixius, (2001),A New Bound for the Quadratic As-signment Problem Based on Convex Quadratic Programming, Math. Program, 89:341-357.

Anstreicher K. M., N. W. Brixius, J. Linderoth, dan J.P. Goux, (2000), Solving Large Quadratic Assignment Problems On Computational Grids, Mathemat-ical Programming, Series B 91, 563-588.

Armour, G. C. dan E. S. Buffa,(1963), Heuristic Algorithm and Simulation Ap-proach to Relative Location of Facilities, Management Science 9, 294-309.

Arora, S., A. M. Frieze, dan H. Kaplan, (2002), A New Rounding Procedure for the Assignment Problem With Applications to Dense Graph Arrangement Problems, Math. Program, 92:1-36.

Asghar, M. Bhatti, (2000), Practical Optimization Methods with Mathematic Ap-plications, New York: Springer-Verlag.

Bisaillon, S., Cordeau, J., F., Laporte, G., dan Pasin, F., (2011), A large neigh-bourhood search heuristic for the aircraft and passenger recovery problem, A Quarterly Journal of Operations Research Volume 9: 139-157.

(2)

49

Bronson, R., (1997), Operation Research, 2nd Edition, McGraw Hill Professional.

Burkard R. E, S. E. Karisch, dan F.Rendl, (1997), QAPLIB-A Quadratic Assign-ment Problem Library, Journal of Global Optimization.

Cela, E., (1998), The Quadratic Assignment Problem : Theory and Algorithms, Kluwer.

Christofides, N. (1976), Worst Case Analysis of a New Heuristic for the Travel-ing Salesman Problem, Technical Report 338, Graduate School of Industrial Administration, Garnegio-Mellon University, Pittsburgh, PA.

Darwin, C., (2004), Britannica concise encyclopedia from encyclopdia britannica., URL http://concise.britannica.com/ebc/article?eu=38758 9.

Drezner, Z., (2006), Finding a Cluster of Point and The Grey Pattern Quadratic Assignment Problem, OR Spectrum 28, 417-436.

Edwards, C. S., (1980), A Branch and Bound Algorithm for the Koopmann Beck-mann Quadratic Assignment Problem, Math. Program Study, 13:35-52.

Elshafei, A. N., (1977), Hospital lay-out as a quadratic assignment problem , Oper-ational Research Quaterly, 28, 167-179.

Eschermann, B. dan H. J. Wunderlich, (1990), Optimized Synthesis of Self-Testable Finite State Machines, in 20th International Symposium on Fault-Tolerant Computing (FFTCS 20), Newcastle upon Tyne, 26-28th June.

Garey, M. R. dan D. S. Johnson, (1979), Computers and Intractability : A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, New York.

Gilmore, P. C., (1962), Optimal and Suboptimal Algorithms for the Quadratic Assignment Problem,SIAM Journal on Applied Mathematics 10, 305-313.

Glover F.,(1989), Tabu Search Part-1, ORSA Journal on Computing 1 No 3, 190-206.

Hadley, S. W., F. Rend and H. Wolkowicz, (1990), Bounds for the Quadratic As-signment Problem Using Continous Optimization Techniques, Proceedings of 1st International Integer Programming and Combinatorial Optimization Con-ference (IPCO), 237-248.

Hahn P. M., (2000), Progress in Solving the Nugent Instance of the Quadrat-ic Assignment Problem, Working Paper, System Engineering, University of Pennsylvania.

Hahn P. M. dan T. Grant, (1998), Lower Bounds for the Quadratic Assignment Problem Based Upon a Dual Formulation, Operations Research 46, 912-922.

Hamdy A. T., (2003), Operations Research, Prentice Hall PTR.

Holland, J. H., (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI.

Johnson, D. S., C. H. Papadimitriou, and M. yannakakis, (1988), How Easy Is Local Search,Journal of Computer and System Sciences 37, 79-100.

(3)

50

Kernighan, B. dan S. Lin, (1972), An Efficient Heuristic Procedure for Partitioning Graphs,Bell System Journal 49, 291-307.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi, (1983), Optimization by Simulated Annealing, Sciene, 220:671-680.

Koopmann, T. C. dan M. Beckmann, (1957), Assignment Problem and the Location of Economic Activities, Econometric 25, 53-76

Lawler, E. L., (1963), The Quadratic Assignment Problem, Management Science 9:586-599

Li, Y., P. M. Pardalos, dan M. Resende, (1994), A Greedy Randomized Adaptive Search Procedure for the Quadratic Assignment Problem, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 16, 237-261.

Loiola, E., N. de Abreu, P. Boaventura-Netto, P. Hahn, dan T. Querido, (2007) A Survey for the Quadratic Assignment Problem, European Journal of Opera-tional Research, 176 (2):657-690.

Mawengkang, H. dan Murtagh, B. A., (1985), Solving Nonlinear Integer Programs With Larger Scale Optimization Software, Annalas of Operations Research Vol. 5, 425-437.

Misevicius, A. dan D.Rubliauskas, (2009), Testing of Hybrid Genetic Algorithms for Structured Quadratic Assignment Problems,Informatica 20, 255-272.

Murthy, K. A., P. M. Pardalos dan Y. Li, (1992), A Local Search Algorithm for the Quadratic Assignment Problem, Inf ormatics3, 524-538.

Nicholson, T., (1971), Optimization in Industry, Optimization Techniques Vol 1 (Longmann Press, London).

Nugent, C. E., T. E. Vollmann, dan J. Ruml, (1968), An Experimental Compar-ison of Techniques for the Assignment of Facilities to Locations, Journal of Operation Research 16, 150-173.

Nyberg A, dan Westerlund T. (2012), A new exact discrete linear reformulation of the quadratic assignment problem.Eur J Oper Res.; 220:31419.

Palubeckis, G. S. , (1988), Generation of Quadratic Assignment Test Prob-lems With Known Optimal Solutions, (in Russiaan), USSR Comput. Maths. Maths.Phys.28, 97-98.

Palubeckis, G. S., (2012), A branch-and-bound algorithm for the single-row equidis-tant facility layout problem, OR spectrum : quantitative approaches in man-agement Vol. 34, p. 1-21.

Papamanthou, C., K. Paparrizos, N. Samaras, dan K. Stergiou, (2008), Worst Case Examples of an Exterior Point Algorithm for the Assignment Problem,Discret Optimization, 5:605-614.

Pardalos, P. M., F. Rendl dan H. Wolkowicz,(1994), The Quadratic Assignment Problem : Survay and Recent Developments in Quadratic Assignment and Related Problems, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 16, 1-42.

(4)

51

Polak, G.G. (2003). From Organ Pipes to Pointers: Two Problems of Combinatorial Optimization in Printed Circuit Board Assembly. Seminar presentation notes, Department of Industrial and Systems Engineering, University of Michigan, Ann Arbor, MI, USA 48109.

Polya, G., (1947), How to Solve It : a New Aspect of Mathemathical Method, Princeton University Pers, Princeton, N. Y.

Quadratic Assignment Problem Library (QAPLIB) homepages, (2011), http://www.opt.math.tu-graz.ac.at/qaplib/ and http://www.seas.upenn. edu/qaplib/, diakses tanggal 19 September 2015.

Queyranne, M. (1986), Performance Ratio of Heuristics for Triangle Inequality Quadratic Assignment Problems,Operations Research Letters 4, 231-234.

Ramakrishnan, K. G., M. G. C. Resende, B. Ramachandran dan J. F. Pekny, (2002), Tight Quadratic Assignment Problem Bounds Via Linear Programming, Com-binatorial and Global Optimization, P. M. Pardalos, A. Migdalas and R. E. Burkard, eds, World Scientific Publishing Co., Singapore, pp. 297-303.

Rendl, F. dan H. Wolkowicz, (1992), Application s of Parametric Programming and Eigen Value Maximization to the Quadratic Assignment Problem, Mathemat-ical Program53,63-78.

Rendl, F. dan R. Sotirov, (2007), Bounds for the Quadratic Assignment Problem Using the Bundle Method, Math program (B), 109:505-524.

Sahni, S. dan T. Gonzales, (1976), P Complete Aproximation Problems, Journal of the Association of Computing Machinery 23, 555-565.

Steinberg, L., (1961), The Backboard Wiring Problem: A Placement Algorithm , SIAM Review3, 37-50.

Tate, D. M. dan A. E. Smith, (1995), A Genetic Approach to the Quadratic As-signment Problem,Computer & Operation Research, 22:73-83.

Referensi

Dokumen terkait

Sebagai siswa pada Rintisan Sekolah Menengah Atas Bertaraf Internasional (RSBI), tentu memiliki karakteristik yang berbeda dengan siswa pada sekolah-sekolah biasa. Oleh karena

Nilai minimum TPWD yang digunakan untuk menyelesaikan airport gate assignment problem Bandar Udara Soekarno Hatta yang didapatkan dengan menggunakan algoritma

Pc adalah nilai probabilitas crossover, Pm adalah nilai probabilitas mutasi , max_iterasi adalah iterasi maksimum yang akan digunakan untuk membatasi

Tujuan dari penulisan skripsi ini adalah u ntuk m enyelesaikan Quadratic Assignment Problem dengan menggunakan Hybrid Firefly Algorithm dan Simulated

Algoritma modified simulated annealing memberikan solusi yang kompetitif dibandingkan algoritma simulated annealing murni untuk menyelesaikan airport gate assignment problem

Miswanto, M.Si selaku Ketua Departemen Matematika Fakultas Sains dan Teknologi Universitas Airlangga sekaligus dosen pembimbing I yang senantiasa meluangkan waktu,

Hence, fixed assignment of QAP is introduced in this study which is called as Quadratic Assignment Problem with Fixed Assignment QAPFA QAP has been solved by researchers using various