• Tidak ada hasil yang ditemukan

Journal Bearing

N/A
N/A
Protected

Academic year: 2021

Membagikan "Journal Bearing"

Copied!
100
0
0

Teks penuh

(1)

 KELOMPOK 2

 KELOMPOK 2

Darma

Darma Adhi

Adhi W.

W.

(11210009)

(11210009)

Galuh

Galuh Intan

Intan P.

P.

(11210012)

(11210012)

Bhatara

Bhatara Putra

Putra M.

M.

(11210014)

(11210014)

Mulyani

(11210020)

Mulyani

(11210020)

Muliyani

(11210023)

Muliyani

(11210023)

Ali

Ali Akbar

Akbar

(11210024)

(11210024)

Tia

Tia Utari

Utari

(11210028)

(11210028)

Eko

(2)

Bhatara Putra Mediriyanto

Bhatara Putra Mediriyanto

Konsep Dasar

Konsep Dasar

Apa itu Bearing?

Apa itu Bearing?

(3)

Tipe beban pada bearing

Tipe beban pada bearing

1. Bantalan radial

1. Bantalan radial (Journal Bearing) (Journal Bearing)

 Arah beban yang di tumpu bantalan ini  Arah beban yang di tumpu bantalan ini adalah tegak lurus dengan sumbu poros adalah tegak lurus dengan sumbu poros

2. Bantalan aksial

2. Bantalan aksial (Thrust Bearing) (Thrust Bearing) 

 Arah beban bantalan ini adalah sejajar  Arah beban bantalan ini adalah sejajar

dengan sumbu poros dengan sumbu poros

3. Bantalan kombinasi

3. Bantalan kombinasi (combination bearing) (combination bearing) 

Bantalan ini menumpu beban yang Bantalan ini menumpu beban yang arahnya sejajar dan tegak lurus dengan arahnya sejajar dan tegak lurus dengan sumbu poros

(4)

Introduction

Introduction

•• Journal bearing termasuk salahsatu sliding Journal bearing termasuk salahsatu sliding bearing dan keterbalikkanbearing dan keterbalikkan

dari ball bearing dari ball bearing

•• Journal bearing secara umum digunakan pada mesin Journal bearing secara umum digunakan pada mesin piston kendaraanpiston kendaraan

bermotor berbahan bakar bensin atau diesel bermotor berbahan bakar bensin atau diesel

•• Kelebihan :Kelebihan :

•• Bearing type ini mampu menopang shaft yang berat.Bearing type ini mampu menopang shaft yang berat. ••  Awet dan tahan lama Awet dan tahan lama

•• Efek redaman dari film minyak membantu membuat mesinEfek redaman dari film minyak membantu membuat mesin

beroperasi dengan tenang dan halus. beroperasi dengan tenang dan halus.

•• Kekurangan :Kekurangan :

•• Membutuhkan suplai minyak pelumas yang besarMembutuhkan suplai minyak pelumas yang besar

•• Hanya cocok untuk temperatur dan kecepatan rendahHanya cocok untuk temperatur dan kecepatan rendah •• Pembentukan lapisan minyak pelumas lambatPembentukan lapisan minyak pelumas lambat

(5)

Bearing Diagram

Bearing Diagram

Journal bearing

Journal bearing – – Berfungsi sebagai bantalan poros engkol yang berputar Berfungsi sebagai bantalan poros engkol yang berputar

Oil inlet

Oil inlet – – T Tempat masuknya minyak empat masuknya minyak pelumaspelumas

Ketika oli pelumas masuk ke dalam bearing, oli akan memenuhi Ketika oli pelumas masuk ke dalam bearing, oli akan memenuhi clearance/ gap antara shaft dan bearing sehinggga mengakibatkan clearance/ gap antara shaft dan bearing sehinggga mengakibatkan tekanan fuida meningkat dan daya angkat hidrodinamis terhadap shaft tekanan fuida meningkat dan daya angkat hidrodinamis terhadap shaft

(6)
(7)

Type

Type Typical Typical Loading Loading ApplicationApplication

(

(aa)) PPaarrttiiaal al arrcc Unidirectional Unidirectional load load Shaft Shaft guides, guides, dampersdampers

(

(aa)) CCiirrccuum fm feerreennttiiaall

groove, Axial groove

groove, Axial groove

types

types

Variable

Variable load load direction direction Internal Internal combustion combustion enginesengines

(

(aa)) CCyylliinnddrriiccaall Medium to heavyMedium to heavy Unidirectional load Unidirectional load

General machinery General machinery

(

(aa)) PPrreessssuurre e ddaamm Light Light loads, loads, unidirectional unidirectional High High speed speed turbines, turbines, compressorcompressor

(

(aa)) OOvveerrsshhoott Light Light loads, loads, unidirectional unidirectional Steam Steam turbinesturbines

(

(aa)) MMuullttiilloobbee Light Light loads, loads, unidirectional unidirectional Gearing, Gearing, compressorcompressor

(

(aa)) PPrreellooaaddeedd Light Light loads, loads, unidirectional unidirectional Minimize Minimize vibrationvibration

(

(8)

Movement of the bearing

Movement of the bearing

(9)

Video

Video

(10)

Infinitely Long Approximation (ILA)

Infinitely Long Approximation (ILA)

Menentukan jari-jari shaft dan

(11)

ILA

ILA

Menentuk

(12)
(13)

Boun

(14)

8.3 BOUNDARY CONDITIONS

8.3 BOUNDARY CONDITIONS

Assumsi :

Assumsi :

ṔṔ

 = 0

 = 0

θ θ

 = 0

 = 0

Ṕ Ṕ  −

− 







Dimana :

Dimana :

Ps = tekanan suplai

Ps = tekanan suplai

C

C =

= radial

radial clearence

clearence

R

R =

= radius

radius bearing

bearing



=

= viskos

viskositas

itas pelumas

pelumas



= kecepatan

= kecepatan

putaran poros

putaran poros

(15)

8.4 FULL SOMMERFELD BOUNDARY

8.4 FULL SOMMERFELD BOUNDARY

CONDITIONS

CONDITIONS

Asumsi :

Asumsi :

ṔṔ

 = 0

 = 0

θθ

 = 2

 = 2

ππ

 (360)

 (360)

(16)

cos

cos +θ

11 ++ ɛ ɛ θθ

+θ

Substitusi Sommerfeld :

Substitusi Sommerfeld :

8.4 FULL SOMMERFELD BOUNDARY

8.4 FULL SOMMERFELD BOUNDARY

CONDITIONS

CONDITIONS

Tekanan puncak terjadi ketika

Tekanan puncak terjadi ketika

cos

cos

 −3

(2+

(2+

−3



))

Dimana :

Dimana :

cos

cos

=

= sudut

sudut angular

angular pada

pada

tekanan maksimum

tekanan maksimum



=

= rasio

rasio eksentrisita

eksentrisitass



 = =







= eksentrisitas

= eksentrisitas

C

(17)

Dari persamaan 8.9 asumsi P = 0 pada

Dari persamaan 8.9 asumsi P = 0 pada

Ɵ  π

Ɵ  π

,,

besarnya tekanan

besarnya tekanan

puncak tak berdimensi adalah :

puncak tak berdimensi adalah :

8.4 FULL SOMMERFELD BOUNDARY

8.4 FULL SOMMERFELD BOUNDARY

CONDITIONS

CONDITIONS

Ṕ Ṕ   3(4−

3(4−

2(1−

2(1−



)(4−5

)(4−5



))



(2+

(2+



++ 



))



))

.

.









−3

−3

22 ++ 



Yang terjadi pada :

Yang terjadi pada :

Besarnya tekanan puncak tak berdimensi pada distribusi tekanan

Besarnya tekanan puncak tak berdimensi pada distribusi tekanan

adalah :

adalah :

(18)

Load Carrying Based

Load Carrying Based

on Full

(19)

Load Carrying Based

Load Carrying Based

on Full

on Full

Sommerfe

Sommerfe

ld Condition

ld Condition

ѾѾ   

        







Arah Radial

Arah Radial

Ѿ

Ѿ     







   

Arah

Arah Tangensia

Tangensiall

(8.10)

(8.10)

(8.11)

(8.11)

Dari

Dari substitusi

substitusi tekanan

tekanan tak

tak berdimensi

berdimensi pada

pada persamaan

persamaan 8.9

8.9 dengan

dengan

persamaan 8.10 dan 8.11 maka

persamaan 8.10 dan 8.11 maka didapatkan :

didapatkan :

0

0

Ѿ

Ѿ

12

12

(1−

(20)

Load Carrying Based

Load Carrying Based

on Full

on Full

Sommerfe

Sommerfe

ld Condition

ld Condition

Dimana Beban tak berdimensi:

Dimana Beban tak berdimensi:

(8.13)

(8.13)

Resultan dari

Resultan dari

Ѿ

Ѿ

 dan

 dan

Ѿ

Ѿ

(8.14)

(8.14)

ѾѾ  













Dengan

Dengan

















 = beban yang diproyeksikan

 = beban yang diproyeksikan

Ns = kecepatan poros dalam rev/s

Ns = kecepatan poros dalam rev/s

Ѿ Ѿ

Ѿ Ѿ



++Ѿ

Ѿ









(

(21)

Load Carrying Based

Load Carrying Based

on Full

on Full

Sommerfe

Sommerfe

ld Condition

ld Condition

Attitude Angle

Attitude Angle

(8.15)

(8.15)

  ɸɸ  −Ѿ

−Ѿ

Ѿ

Ѿ   ∞∞

ɸɸ 





..

Dalam berbagai kasus, jika

Dalam berbagai kasus, jika

Ɛ

Ɛ

 = 0

 = 0

ѾѾ 

 0

 0

Ɛ

(22)

8.5

8.5

DEFINITION OF THE

DEFINITION OF THE

SOMMERFELD NUMBER 

SOMMERFELD NUMBER 

(23)

Bilangan Sommerfeld (S) merupakan bilangan tak berdimensi yang

Bilangan Sommerfeld (S) merupakan bilangan tak berdimensi yang

merupakan

merupakan

parameter

parameter karakterisasi

karakterisasi

performansi

performansi

sebuah

sebuah bearing.

bearing.

Bilangan ini menunjukkan karakteristik gesekan total dari bantalan.

Bilangan ini menunjukkan karakteristik gesekan total dari bantalan.

8.5

8.5

DEFINITION OF THE

DEFINITION OF THE

SOMMERFELD NUMBER 

SOMMERFELD NUMBER 

  













substitusikan ke dalam persamaan

substitusikan ke dalam persamaan

Sommerfeld Number (8.14) maka :

Sommerfeld Number (8.14) maka :

ѾѾ  11

Dan penyelesaian S menjadi

Dan penyelesaian S menjadi

  (1−

(1−



12

12

))



(2+

(2+



))

(8.16)

(8.16)

(8.17)

(8.17)

(24)

8.6 HALF SOMMERFELD BOUNDARY

8.6 HALF SOMMERFELD BOUNDARY

CONDITION

CONDITION

Ѿ

Ѿ

6

6

11 −− 



))



(2+

(2+



Ѿ

Ѿ

11 −− 

12

12



)(2+

)(2+





(8.18)

(8.18)

(8.19)

(8.19)

Total kapasitas beban dukung dan attitude angle adalah:

Total kapasitas beban dukung dan attitude angle adalah:

Ѿ

Ѿ

11 −− 



66

)(2+

)(2+







−− 



((



−− 44))

.

.

(8.20)

(8.20)

∅∅   



 



(25)

Eko Rusdiyanto

Eko Rusdiyanto

(26)

Contoh Soal 8.1

Contoh Soal 8.1

(27)
(28)
(29)
(30)
(31)
(32)

Fenomena Kavitasi

Fenomena Kavitasi

Kavitasi

Kavitasi

Gaseous Cavitation Gaseous Cavitation Vapor Cavitation Vapor Cavitation

(33)

Gaseous cavitation merupakan kavitasi yang

Gaseous cavitation merupakan kavitasi yang

disebabkan oleh adanya bagian dari minyak

disebabkan oleh adanya bagian dari minyak

pelumas yang terlarut dengan udara pada

pelumas yang terlarut dengan udara pada

kondisi jenuh (sekitar 10%), dan ketika tekanan

kondisi jenuh (sekitar 10%), dan ketika tekanan

sekitar menjadi turun bagian yang terlarut ini

sekitar menjadi turun bagian yang terlarut ini

akan membentuk suatu kavitasi tetapi dibagian

akan membentuk suatu kavitasi tetapi dibagian

yang berbeda dari fluid film, hal ini yang

yang berbeda dari fluid film, hal ini yang

menyebabkan kavitasi jenis gaseous tidak terlalu

menyebabkan kavitasi jenis gaseous tidak terlalu

berbahaya.

berbahaya.

Gaseous

(34)

Vapor cavitation disebabkan oleh tingginya

Vapor cavitation disebabkan oleh tingginya

fluktuasi tekanan yang ada diantara film dari

fluktuasi tekanan yang ada diantara film dari

pelumas dan bearingnya itu sendiri, kavitasi

pelumas dan bearingnya itu sendiri, kavitasi

 jenis

 jenis

ini

ini

cukup

cukup

berbahaya

berbahay

a

karena

karena bisa

bisa

menyebabkan kerusakan pada bearing (fatigue

menyebabkan kerusakan pada bearing (fatigue

damage)

damage)

V

(35)

SWIFT-STEIBER (REYNOLD)

SWIFT-STEIBER (REYNOLD) BOUNDAR

BOUNDARY

Y

CONDITION

CONDITION

Perhitung

Perhitungan beban

an beban bearing dengan

bearing dengan

memperhatikan kavit

memperhatikan kavitasi

asi didalam

didalam

perhitungannya

perhitungannya







  0 

0  

   





(36)
(37)
(38)

Ali Akbar

Ali Akbar

INFINI

INFINITEL

TELY SHORT JOURNAL BEARI

Y SHORT JOURNAL BEARING

NG

APPROXIMATION (ISA)

(39)

A. Infinitely Short Journal Bearing

A. Infinitely Short Journal Bearing

Approximation (ISA)

Approximation (ISA)

Integral 2 kali

Integral 2 kali Length-to-Diameter ratios up toLength-to-Diameter ratios up to

L/D = ½ dengan trends rata-rata L/D = ½ dengan trends rata-rata L/D = 1

(40)

Table Infinitely Long Journal Bearing Solutions with the Reynolds

Table Infinitely Long Journal Bearing Solutions with the Reynolds

Boundary Condition

(41)
(42)

B. Full and Half

(43)

Figure Short Bearing

(44)

Figure Short Bearing Attitude Angle vs Sommerfeld Number

Figure Short Bearing Attitude Angle vs Sommerfeld Number

(45)
(46)

Darma

(47)

FINITE BEARING DESIGN &

FINITE BEARING DESIGN &

ANALYSIS

ANALYSIS

This section focused on design and

This section focused on design and

performance analysis based on the full

performance analysis based on the full

solution of Reynold equation.

(48)

FINITE BEARING DESIGN & ANALYSIS

FINITE BEARING DESIGN & ANALYSIS

(49)

FINITE BEARING DESIGN & ANALYSIS

FINITE BEARING DESIGN & ANALYSIS

•• Minimum filmMinimum film

thickness thickness

h

hminmin = C ( 1 = C ( 1– – Ɛ )Ɛ )

•• Friction forceFriction force

F = f W F = f W

•• Power lossPower loss

 p p= F 2π R N= F 2π R Nss

•• Temperature riseTemperature rise

 ΔT  ΔT==

(50)

FINITE BEARING DESIGN & ANALYSIS

FINITE BEARING DESIGN & ANALYSIS

(51)

FINITE BEARING DESIGN & ANALYSIS

FINITE BEARING DESIGN & ANALYSIS

••

Example:

Example:

A large pump has a horizontal rotor weighing 3200 lb supported

A large pump has a horizontal rotor weighing 3200 lb supported

on two

on two

plain 360

plain 360

oo

 journal bearings

 journal bearings

, one on either side of the pump impeller. The

, one on either side of the pump impeller. The

specifications of the bearings are as

specifications of the bearings are as follo

follows:

ws:

R

R =

= 2

2 in

in

L

L =

= 4

4 in

in

C

C =

= 0.002

0.002 in

in

N

N =

= 1800

1800 rpm

rpm

the lubricant viscosity

the lubricant viscosity

 µ = 1.3 x 10

 µ = 1.3 x 10

-6-6

 reyns (SAE 10 at an inlet temperature

 reyns (SAE 10 at an inlet temperature

of 166

of 166

oo

 F)

 F)

Determine:

Determine:

a)

a)

Eq

Equil

uilibr

ibrium p

ium posi

ositio

tion of the s

n of the shaf

haft cen

t cente

ter and l

r and loca

ocatio

tion of fil

n of film rup

m ruptur

ture

e

b)

b)

M

Min

inim

imum

um fi

fillm

m th

thic

ickn

knes

esss

c)

c)

Lo

Loca

cati

tion

on an

and m

d mag

agni

nitu

tude

de of

of ma

maxi

ximu

mum p

m pre

ress

ssur

ure

e

d

d))

P

Po

ow

we

er

r llo

ossss

e

(52)

FINITE BEARING DESIGN & ANALYSIS

FINITE BEARING DESIGN & ANALYSIS

(53)

FINITE BEARING DESIGN & ANALYSIS

FINITE BEARING DESIGN & ANALYSIS

(54)

FINITE BEARING DESIGN & ANALYSIS

FINITE BEARING DESIGN & ANALYSIS

(55)

FINITE BEARING DESIGN & ANALYSIS

FINITE BEARING DESIGN & ANALYSIS

(56)

Muliyani

Muliyani

(57)

ATTITUDE ANGLE FOR OTHER BEARING

ATTITUDE ANGLE FOR OTHER BEARING

CONFIGURATION

CONFIGURATION

Where:

Where:

(58)

LUBRICANT SUPPLY ARRANGEMENT

LUBRICANT SUPPLY ARRANGEMENT

Supply Hole

Supply Hole

Axial Groove

Axial Groove

Circumferential Groove

Circumferential Groove

(59)

SUPPLY HOLE

SUPPLY HOLE

A common supply methode with small bearing and

A common supply methode with small bearing and bushing is to place bushing is to place an inlet portan inlet port

at the bearing midplane opposite to the load line

(60)

AXIAL GROOVE

AXIAL GROOVE

(61)

VARIOUS GROOVE POSITIONS AND

VARIOUS GROOVE POSITIONS AND

INLET ARRANGEMENT

INLET ARRANGEMENT

(62)

CIRCUMFERENTIALS

CIRCUMFERENTIALS GROO

GROOVE

VE

Alur yang melingkar

(63)

FLOW CONSIDERATION

FLOW CONSIDERATION

Where fL is a corretion factor for the film position as given below:

Where fL is a corretion factor for the film position as given below:

1.

1. Oil holOil hole or axiae or axial grol groove poove positiositioned in thned in the unloade unloaded sectied section of thon of the bearie bearing oppong opposite tsite too

the load line:

the load line:

2.

2. Oil hole or axial grOil hole or axial groove positionoove positioned at the maximum ed at the maximum film thicknessfilm thickness 

(64)

3. For double axial grooves runn

3. For double axial grooves running parallel at ±90º angles to the ing parallel at ±90º angles to the load line:load line:

4. For a full film starting from the maximum film thickness position

(65)

FLOW CONSIDERATION

FLOW CONSIDERATION

Pressure Induced

Pressur

e Induced Flow

Flow

Inlet hole of diameter DH:

Inlet hole of diameter DH:

••

Qp : Pressure induced

Qp : Pressure induced

flow

flow

••

Ps : Supply pressure

Ps : Supply pressure

(66)

FLOW CONSIDERATION

FLOW CONSIDERATION

1.

1.

The film thickness parameter for an oil hole ar an axial groove

The film thickness parameter for an oil hole ar an axial groove

positioned in the unloaded section of the bearing opposite the load

positioned in the unloaded section of the bearing opposite the load

line is

line is

2. Positioned at the maximum film thickness

2. Positioned at the maximum film thickness

3. For double axial groove

(67)

Total leakage flow rate

Total leakage flow rate

1.

1. For For an oil an oil hole hole or or an axan axial grial groovoove posie positiontioned in ed in the unthe unloadeloaded sectd section oion of the f the bearibearingng

opposite to the load line

opposite to the load line

2.

2. For aFor an axian axial grol groove oove of lengf length Lg (Lg/L= 0.th Lg (Lg/L= 0.3 to 0.83 to 0.8) posit) positioned ioned at the mat the maximaximum filum filmm

thickness or two

(68)

Mulyani

(69)

Example 8.4

Example 8.4

•• Consider a journal bearing with the Consider a journal bearing with the follofollowing specification that correspond towing specification that correspond to

an actual bearing tested by Dowson et al , (1966):

an actual bearing tested by Dowson et al , (1966): L/DL/D = 0.75;= 0.75; R/CR/C = 800; D == 800; D = 0.102 m;

0.102 m; W W  = 11000  = 11000 N, and operating speed isN, and operating speed is NNss= 25 rev/s.= 25 rev/s.

•• An axial groove was cut into the bearing surface in the unload portion of theAn axial groove was cut into the bearing surface in the unload portion of the

bearing, opposite the load line. the groove width is

bearing, opposite the load line. the groove width is ωωgg = 4.76 x 10- = 4.76 x 10-33m, and it ism, and it is LLgg =  = 0.067 m long. 0.067 m long. LubricanLubricant is t is supplied to the bearing at supplied to the bearing at tempertemperature Tature Tii = 36.8 = 36.8 o

oC at a supply pressure of PC at a supply pressure of P

ss = 0.276x10 = 0.276x1066 Pa (40 Psi) . The lubricant viscosity is a Pa (40 Psi) . The lubricant viscosity is a function of temperature and varies according to µ =

function of temperature and varies according to µ = µie µie--ββ(T-Ti)(T-Ti) with with µi µi = 0.03 Pa.s,= 0.03 Pa.s,

and the temperature viscosity coefficient is estimated to be

and the temperature viscosity coefficient is estimated to be

β

β

 = 0.0414. = 0.0414.

lubricant thermal cond

lubricant thermal conductivity k = uctivity k = 0.13 W/mK, and 0.13 W/mK, and thermal diffusivitythermal diffusivity ɑɑtt = 0.756 = 0.756 x 10-7 m

x 10-7 m22/s. Determine the flow rates, power loss, attitude angle, and maximum/s. Determine the flow rates, power loss, attitude angle, and maximum pressure.

pressure.

Paramete

Parameter r Nilai Nilai ParametParameter er NilaiNilai

L/D L/D 0.75 0.75 TTii   36.836.8ooCC R/C R/C 800 800 PPss   0.276x100.276x1066 Pa (40 Pa (40 Psi) Psi) D

D 0.102 0.102 m m µi µi 0.03 Pa.s0.03 Pa.s

W W 11000 N11000 N ββ   0.04140.0414 N Nss 25 25 rev/s rev/s k k 0.13 0.13 W/mKW/mK ω ωgg 4.76 x 10-4.76 x 10-33mm ɑɑ tt 0.756 0.756 x x 10-710-7 m m22/s/s L L 0.067 m0.067 m

(70)

••

Menggunakan rumus Sommerfeld number :

Menggunakan rumus Sommerfeld number :

  







 <<

  







 << 

0.03  25.0 

0.03  25.0  0.0762  0.102

11000

11000

0.0762  0.102

800

800



0.338

0.338

Dari table 8.6 Dari table 8.6 dengan L/D = 0.75 dengan L/D = 0.75 didapat didapatɛ =͠ɛ =͠ 0.450.45

(71)

••

Maka didapat

Maka didapat

Ǭ

Ǭ

LL

= 0.7821 ; (R/C) f = 7.4017; ɸ =

= 0.7821 ; (R/C) f = 7.4017; ɸ =

59.19

59.19

oo

••

Sehingga

Sehingga

Leakage flow rate : Ǫ

Leakage flow rate : Ǫ

LL

=

=

Ǭ

Ǭ

LL





 N

 N

ss

DLC 

DLC 

Ǫ

Ǫ

LL

=

=

0.7821

0.7821





 25 x 0.102 x 0.0762 x 6.35.10

 25 x 0.102 x 0.0762 x 6.35.10

-5-5

= 1,51.10 

= 1,51.10 

-3-3

 m

 m

33

 /s = 15.1 c

 /s = 15.1 cm

m

33

 /s

 /s

Cara 2 dengan curve fit equation, table 8.8

Cara 2 dengan curve fit equation, table 8.8

 

= [ 1- 0.22 (0.75)

= [ 1- 0.22 (0.75)

1.91.9

(0.45)

(0.45)

0.020.02

 = 0.875

 = 0.875

 

 ƒ 

 ƒ 

LL

= ɛ. ƒ 

= ɛ. ƒ 

11

=

= 0.45

0.45 (0.875)

(0.875) =

= 0.394

0.394

 

=

=

π (0.762) (0.102)(25)(

π (0.762) (0.102)(25)(

6,35.10

6,35.10

-5-5

)(0.394)

)(0.394)

= 1,52.10

= 1,52.10

-5-5

m

m

33

/s

/s

 ƒ 

 ƒ 

11

= 1- 0.22

= 1- 0.22

1.91.9

ɛ

ɛ

0.020.02 Ǫ ǪLL= π= π N  N ssDLC DLC  ƒ  ƒ LL

(72)

••

Attitude angle

Attitude angle

Asumsi h

Asumsi h

max

max

, δ = 0.18,

, δ = 0.18,

dengan menggunakan

dengan menggunakan

persamaan 8.45 dan 8.46 maka didapat :

persamaan 8.45 dan 8.46 maka didapat :

ɀ = 4

ɀ = 4

11 ++





((11 −− 11..225 5 εεᵟᵟ))

 

 

(8.46)

(8.46)

= 4

= 4

11 ++ 00..7755 ((11 −−11..225 5   00..4455

00..18

18

))

= 3.75

= 3.75

ɸ = tan

ɸ = tan

-1

-1





1−<

1−<

(8.45

(8.45 ))

= tan

= tan

-1

-1





1−0.45<

1−0.45<

= 59

= 59

o

o

(73)

••

Next, the pressure include flow must be

Next, the pressure include flow must be determined. Fro

determined. From table 8.8 determine the

m table 8.8 determine the

groov

groove function and

e function and the related film thickness :

the related film thickness :





 =(1+ɸ)=

=(1+ɸ)=

 ((11 ++ 00..4455ccoos s 5599))==  11..8877

 ƒ

 ƒ  1.1.2255 −− 00..2255 0.0.0067

33 ((00..00776622/ / 00..006677))



67/0/0..007762

−− 11 ++

62

33 0.0.0076

762/2/00..110022 ((11 −− 0.0.0067

4.76 x 10ˉ=/0.102

4.76 x 10ˉ=/0.102

67/0/0.0.077662)2)

= 0.838

= 0.838

 ƒ

 ƒ  11..2255 −− 00..2255 //

33 ((/ / ))



−− 11 ++

33 // ((11 −− //))

ωω

gg//DD

Ǫ

Ǫ

pp

=

=

 ƒ 

 ƒ 

gg

ℎ

ℎ

=

=

 P

 P

ss

=

=

ᵢ

ᵢ

=

=

..

 .

 . ((..





)(.ˉ?)=

)(.ˉ?)=

.

.

=

=

3.69 x 10

3.69 x 10

-6-6

 m

 m

33

/s = 3.69 cm

/s = 3.69 cm

33

/s

/s

(74)

S’ = 0.75 S’ = 0.75







0.70.7 + 0.4 + 0.4 = 0.75 = 0.75

.

.

.

.

0.70.7 + 0.4 + 0.4 = 1.085 = 1.085

Total leakage is determinated as follows. First, the datum flow rate

Total leakage is determinated as follows. First, the datum flow rate

Ǫ

Ǫ

mm

is

is

estabili

estabilished

shed ::

Ǫ

Ǫ

mm

=

=

Ǫ

Ǫ

LL

+

+

Ǫ

Ǫ

pp

 –

 –

 0.3

 0.3

ǪǪ

LL . .ǪpǪp

= 15.1 + 3.69

= 15.1 + 3.69

 –

 –

 0.3

 0.3

(15.1)(3.69)

(15.1)(3.69)

=

= 16.6

16.6 cm³

cm³/s

/s (16.

(16.6x10

6x10

-6-6

m

m

33

/s)

/s)

From table 8.8 for an axial groove

From table 8.8 for an axial groove

positioned in the unloaded section of

positioned in the unloaded section of

the bearing opposite to the load line,

the bearing opposite to the load line,

we have :

we have :

Therefore , the total leakage

Therefore , the total leakage

flow rate becomes :

flow rate becomes :

Ǫ

Ǫ

L totalL total

=

=

Ǫ

Ǫ

mmSS’’

Ǫ

Ǫ

p p 1-S1-S’’

= (16.6)

= (16.6)

1.0851.085

(3.69)

(3.69)

-0.085-0.085

= 18.81 cm

= 18.81 cm

33

/s

/s

(18.81 x 10

(18.81 x 10

-6-6

m

m

33

/s)

/s)

(75)

Power loss :

Power loss :

Ep = FU =

Ep = FU =

 ƒW 

 ƒW 

(2π R Ns)

(2π R Ns)

= 7.4017 (1/800) (11000) (π x 0.102 x 25)

= 7.4017 (1/800) (11000) (π x 0.102 x 25)

= 812 W (1.09 hp)

= 812 W (1.09 hp)

Dari therma

Dari thermal diffusivity,

l diffusivity,

 ρCp

 ρCp

= k/α

= k/α

tt

= 1.72 x 10 

= 1.72 x 10 

66

 W.s/ (m

 W.s/ (m

33

K)

K)

∆

∆ 

(Ǫ

(Ǫ





(76)

••

Effectiive temperature for evaluating next iteration is

Effectiive temperature for evaluating next iteration is

(section 8.17)

(section 8.17)

T

T

cc

 = T

 = T

ii

+ ΔT = 36.8 + 25.1 = 61.9

+ ΔT = 36.8 + 25.1 = 61.9

oo

C

C

••

The corresponding viscocity is :

The corresponding viscocity is :

µ =

(77)

••

Dengan diketahui viskositasnya, rasio eksentrisitas

Dengan diketahui viskositasnya, rasio eksentrisitas

dapat dihitung dengan

dapat dihitung dengan menggunak

menggunakan data dari tabel

an data dari tabel

8.9 dengan

8.9 dengan prediksi effective temperaturn

prediksi effective temperaturnya 50

ya 50

oo

••

Dengan interpolasi didapat

Dengan interpolasi didapat

..

..

.

(78)

••

θmax−;

θmax−;





 <

 <

=

=

cos

cos

-1-1

  .

  .

(.)<

(.)<

= 138.13

= 138.13

oo

••

Prediksi

Prediksi

θ

θ

maxmax

 =

 =

138.13

138.13

oo

C, which if measured from the load

C, which if measured from the load line

line

would be =

would be =

138.13

138.13

+

+

ɸ

ɸ

=

(79)

Dengan menggunakan

Dengan menggunakan tabel 8.6

tabel 8.6 maka

maka maximum pressurenya

maximum pressurenya

:

:

••

..

..

..

..



..

..

Ṕ.

Ṕ.

.

.

.

.



Ṕ.

Ṕ.

.

.

••

Ṕmax13.24≅13

Ṕmax13.24≅13

••









<<

ṔṔmax max  + P + Pss = (0.016) (25) (800) = (0.016) (25) (800)22 (13) + 2.67.105 (13) + 2.67.105 = 3.60 Mpa (520 Psi) = 3.60 Mpa (520 Psi)

(80)
(81)

Circumferential Groove

Circumferential Groove

Ǫ

Ǫ

cc













′

′

((11 ++ 11..5 5 



))

 

 

(8.61)

(8.61)

Ǫ

Ǫ

L totalL total

= Ǫ

= Ǫ

LL

+ 2

+ 2

Ǫ

Ǫ

cc

(8.62)

(8.62)

(82)

Example 8.5

Example 8.5

Consider a plain

Consider a plain journal bearing with

journal bearing with the following specificati

the following specifications:

ons:

D

D

= 8 in; L = 4.00;

= 8 in; L = 4.00;

  = 6x10

  = 6x10

-3-3

 in; operating speed

 in; operating speed

N

N

  = 3600rpm. The

  = 3600rpm. The

load imposed on the bearing is W= 4800lbf. A narrow

load imposed on the bearing is W= 4800lbf. A narrow

circumferential oil feed groove is cut into the bearing at is

circumferential oil feed groove is cut into the bearing at is

midlength, abd lubricant (

midlength, abd lubricant (

 μ

 μ

  = 10 cp at

  = 10 cp at

= 120

= 120

oo

F) is supplied at 10

F) is supplied at 10

psi. determine the temperature rise.

psi. determine the temperature rise.

With the full length

With the full length

LL

= 4 divided in half,

= 4 divided in half,

l’/D

l’/D

= 0.25.

= 0.25.

Load of each two bearing segments is

Load of each two bearing segments is W W ’ ’  = =





24

24

00

00





Projected pressure on each bearing

Projected pressure on each bearing PPl’ l’ ==





(  )

(  )

 15

150 

0 

Operati

Operating viscocity ng viscocity isis

 μ

 μ

 = 10cp (  = 10cp ( 1.45x10-7) reyns/cp1.45x10-7) reyns/cp

= 1.45 x 10-6 reyns

(83)

Sommerfe

Sommerfeld n

ld numbers :

umbers :

 

 (/)<

 (/)<

′

′

0.258

0.258

Operating eccentricity Ɛ= 0.8

Operating eccentricity Ɛ= 0.8

Dimensionaless

Dimensionaless

leakage

leakage flow

flow rate

rate Ǭ

Ǭ

LL

= 1.5753

= 1.5753

Friction coefficient

(84)

••

In dimensional form, the leakage flow rate due to

In dimensional form, the leakage flow rate due to

shaft rotation is :

shaft rotation is :

Ǫ

Ǫ

LL

= Ɛ

= Ɛ





NsDl’C

NsDl’C

= 0.8

= 0.8





 60. 8. 2.

 60. 8. 2.

610⁻

610⁻



= 14.25 in

= 14.25 in

33

/s (14.25x60/231 = 3.70 gpm)

/s (14.25x60/231 = 3.70 gpm)

••

Pressur

Pressure-induce fl

e-induce flow is :

ow is :

Ǫ

Ǫ

cc













′

′

((11 ++ 11..5 5 



))

=

=

  (⁻

  (⁻



)

)

  ..⁻@  

  ..⁻@  

((11 ++11..5 5 ((00..88))



))

= 3.06 in

= 3.06 in

33

/s

/s (0.79

(0.79 gpm)

gpm)

(85)

••

Total leakage flow becomes

Total leakage flow becomes

Ǫ

Ǫ

L totalL total

= Ǫ

= Ǫ

LL

+ 2

+ 2

Ǫ

Ǫ

cc

= 14.25 in

= 14.25 in

33

/s + (2 x 3.06 in

/s + (2 x 3.06 in

33

/s)

/s) =

= 20.37

20.37 in

in

33

/s (5.29

/s

(5.29 gpm)

gpm)

••

Po

Power loss is for each half

wer loss is for each half-length bearing segment is :

-length bearing segment is :

Ep =

Ep = ƒW 

 ƒW 

l l 

’ ’ 

π

π

D Ns

D Ns

= 0.01329 x 2400 x

= 0.01329 x 2400 x

π x 8 x 60

π x 8 x 60

= 4.81 x 10

= 4.81 x 10

44

in.lbf/s (0.83hp)

in.lbf/s (0.83hp)

••

Prediction

Prediction temperatur

temperature

e rise

rise is :

is :

∆

∆  2  

(Ǫ

(Ǫ

2  

,,

))



77778 8 1122 00..4488 00..00331155 ((2200..3377)) 33.4:

2  4.81.10>

2  4.81.10>

33.4:

Mean outlet temperature is

Mean outlet temperature is

T

(86)

BEARING STIFFNESS, ROTOR VIBRATION,

BEARING STIFFNESS, ROTOR VIBRATION,

AND O

(87)

••

Spring mass syst

Spring ma

ss system

em

(88)

Tia Utari

(89)

Determine whirl stability for a horizontal

Determine whirl stability for a horizontal

rotor and its bearings with

rotor and its bearings with the following

the following

characteris

characteristics

tics ::

D = 2R = 5 in D = 2R = 5 in L = 2.5 in L = 2.5 in C = 0.005 in C = 0.005 in N = 90 N = 90 rad/rad/s (5400 s (5400 rpm)rpm) Ks = 5 x

Ks = 5 x 10^6 lb/in rotor stiffness10^6 lb/in rotor stiffness W = 5000 lb rotor weight (m = W/

W = 5000 lb rotor weight (m = W/g = 5000/386 = g = 5000/386 = 13 lb13 lb





/in rotor mass/in rotor mass

μ

μ = 2 x 1 = 2 x 1

00





 lbs/ lbs/





 (reyns) viscosity (reyns) viscosity

Example Example

8.6 8.6

(90)

Example Example 8.6 8.6Con’tCon’t

Analysis Using the

Analysis Using the graphgraph

Unit bearing load Unit bearing load P = P = (DL)(DL)



= =

 /

 /

  ∗. 

  ∗. 

= 200 psi = 200 psi Sommerfeld number Sommerfeld number S = S = μμNN

(/)

(/)





= 2*1 = 2*1

00





/

/



∗90/

∗90/

(. ∶. )

(. ∶. )



 

 

= 0.225 = 0.225

Characteristic bearing number Characteristic bearing number = S(L/D = S(L/D

))



= 0.225 (2.5 in/ 5 in = 0.225 (2.5 in/ 5 in

))



= 0.05625 = 0.05625

Stability on rotor stiffness Stability on rotor stiffness (C/W)

(C/W)





= = (0.005 (0.005 in/ in/ 5000 5000 lb)*(5*1lb)*(5*1

00



 lb/in) lb/in) = 10

= 10

next next

(91)

Example Example 8.6 8.6Con’tCon’t Stability on case Stability on case (C/W)m

(C/W)m

ωω

= (0.005 in/ 5000 lb)*(13 lb

= (0.005 in/ 5000 lb)*(13 lb





/in*(2/in*(2ππ*90*90

/)

/)

))

= 8.28

= 8.28

Rotor will be free of Rotor will be free of

oil whip

(92)

General

General

Design

Design

Guides

Guides

Effective Effective Temperature Temperature Maximum Maximum Bearing Bearing Temperature Temperature Turbulent Turbulent and Parasitic and Parasitic Loss Effect Loss Effect Flooded Flooded versus versus Starved Starved Condition Condition Bearing Load Bearing Load Dimensions Dimensions Eccentricity Eccentricity and and Minimum Minimum Film Film Thickness Thickness Operating Operating Clearance Clearance Misalignment Misalignment and Shaft and Shaft Deflection Deflection

(93)

Eff

Eff

ective

ective

T

T

emperature

emperature

Temperature rata-rata pada viskositas tertentu

Temperature rata-rata pada viskositas tertentu

Global effective temperature Global effective temperature

Dimana : Dimana :

JJ  panas mekanik panas mekanik

ρ

ρ densitas oildensitas oil





 leakage  leakage flowrateflowrate





 temperatur awal temperatur awal





 kapasitas panas kapasitas panas

ΦΦ



 conduction & radiation conduction & radiation





 power loss power loss For small bearing

(94)

Maximum Bea

Maximum Bea

ring T

ring T

emperature

emperature

Temperature Temperature Minimum Minimum film thickness film thickness

(95)

Turbulent and Parasitic Loss Effect

Turbulent and Parasitic Loss Effect

Turbulent : Turbulent :

•• Bearing diameterBearing diameter

•• Large film thicknesses Large film thicknesses (clearance)(clearance) •• High surface speedHigh surface speed

•• Low fluid viscositiesLow fluid viscosities •• High Reynolds numbersHigh Reynolds numbers

Par

Parasitic loss asitic loss ::

•• PutarPutaran dan an dan turbulensi pada oil turbulensi pada oil grooves dan clearencegrooves dan clearence

•• Losses pada percepatan feed oil terhadap surface speed yang tinggiLosses pada percepatan feed oil terhadap surface speed yang tinggi •• Vortex pada feed dan oil groovesVortex pada feed dan oil grooves

(96)

Flooded versus Starved Condotion Flooded versus Starved Condotion

Flooded Flooded Condition Condition











 < 1

 < 1

Starved

Starved

Condition

Condition

Leakage flow rate

Leakage flow rate

Kerja bearing jelek

Kerja bearing jelek

Good Cooling

(97)

Bearing Load and Dimensions

Bearing Load and Dimensions

Projected Loading Projected Loading

PL= W/(L*D) PL= W/(L*D)

Rentan

Rentan vibrasivibrasi Power loss tinggi Power loss tinggi

High oil flow High oil flow

overheating overheating

(98)

Eccentriciry and Minimum Film Thickness

Eccentriciry and Minimum Film Thickness







 = C

 = C

 –

 –

 e

 e

= C(1

= C(1

 –

 – Ɛ)

Ɛ)

Excessive bearing

Excessive bearing

temperature

temperature

Susceptibility to

Susceptibility to

wear

wear

too small

too small

Poorer vibration

Poorer vibration

Higher power

Higher power

loss

loss

too large

(99)

Operating Clearance

Operating Clearance

Clearance is 0.002 per inch of diameter

Clearance is 0.002 per inch of diameter

(100)

Gambar

Table Infinitely Long Journal Bearing Solutions with the ReynoldsTable Infinitely Long Journal Bearing Solutions with the Reynolds Boundary Condition
Figure Short Bearing
Figure Short Bearing Attitude Angle vs Sommerfeld NumberFigure Short Bearing Attitude Angle vs Sommerfeld Number

Referensi

Dokumen terkait

Edith Sarasvianti, D0212038, PERSONAL BRANDING AHOK DI KALANGAN MAHASISWA (Studi Deskriptif Kualitatif Personal Branding Ahok di Mata Mahasiswa yang memiliki Kartu

Data dihantarkan boleh didengar oleh sesiapa sahaja, kecuali untuk data yang dienkripkan Penghantaran satelit boleh diganggu oleh orang lain Kos yang tinggi untuk pemasangan

Mengetahui besarnya angka kejadian DRPs kategori dosis berlebih dan subdosis pada peresepan obat antihipertensi pasien geriatrik di Instalasi Rawat Jalan RSUD

Berdasarkan hasil penelitian, performansi layanan DVB-T pada sistem HAPS dipengaruhi oleh jenis modulasi dan mode kerja yang digunakan, penggunaan modulasi QPSK dengan mode kerja

• Disparitas harga antar wilayah pada bulan Mei 2017 cukup tinggi dengan KK harga bulanan antar wilayah untuk cabai merah mencapai 29,08 % dan cabai rawit mencapai 21,10 % • Harga

THE MEANING OF TRUE HAPPINESS OF JOHN TYREE REFLECTED IN NICHOLAS SPARKS “DEAR JOHN” (2006): AN INDIVIDUAL PSYCHOLOGICAL APPROACH SKRIPSI. FAKULTAS KEGURUN DAN ILMU

Landak Kalimantan Barat Bidang Usaha Perkebunan 085752572584 DINAS KAB.. Landak Kalimantan Barat Bidang Usaha Pertanian 081348690729

Dengan pengertian bahwa teknologi mencakup bioteknologi, dan bahwa akses dan pengalihan teknologi di antara para Pihak merupakan unsur- unsur penting bagi pencapaian tujuan