• Tidak ada hasil yang ditemukan

Matrix Elements of Local Operators in the Excitation Ansatz Overview of the ProofOverview of the Proof

QUANTUM ERROR-DETECTION AT LOW ENERGIES

2.6 AQEDC at Low Energies: The Excitation Ansatz

2.6.4 Matrix Elements of Local Operators in the Excitation Ansatz Overview of the ProofOverview of the Proof

The norm of the vector (2.6.3) can be bounded as

kฮจ๐‘— , ๐‘(๐›ผ, ๐›ฝ) k2=

= tr

๐ธ๐‘—โˆ’1๐ธ

๐ต(๐‘)๐ต(๐‘)๐ธ๐ฟโˆ’๐‘—(|๐›ฝih๐›ผ| โŠ— |๐›ฝih๐›ผ|)

โ‰ค k๐ธ

๐ต(๐‘)๐ต(๐‘)k๐น ยท k๐ธ๐‘—โˆ’1k๐น ยท k๐ธ๐ฟโˆ’๐‘—k๐น

โ‰ค k๐ธ

๐ต(๐‘)๐ต(๐‘)k๐น .

In the first inequality, we have used (2.5), together with the fact that k |๐›ฝih๐›ผ| โŠ— |๐›ฝih๐›ผ| k๐น =1.

In the second inequality, we have used Lemma 2.4.2, along with the fact ๐œŒ(๐ธ) =1.

The claim (2.6.3) follows from this.

With a completely analogous proof, we also have k๐ธ๐น(๐‘— , ๐‘) k๐น โ‰ค ๐ท2k๐นkโˆš๏ธƒ

k๐ธ

๐ต(๐‘)๐ต(๐‘)k๐น, and k๐ธ๐นk๐น โ‰ค ๐ท2k๐นk, which are claims (2.6.3) and (2.6.3).

2.6.4 Matrix Elements of Local Operators in the Excitation Ansatz

for different momenta ๐‘ โ‰  ๐‘0. For this purpose, we need to identify the leading order term in the expressionh๐œ™๐‘|๐น|๐œ™๐‘i. Higher order terms are again small by the properties of the transfer operator.

To establish these bounds, first observe that an unnormalized excitation ansatz state

|ฮฆ๐‘(๐ต;๐ด)iis a superposition of the โ€œposition spaceโ€ states{|ฮฆ๐‘— , ๐‘i}๐‘›๐‘—=

1, where each state|ฮฆ๐‘— , ๐‘iis given by a simple tensor network with an โ€œinsertionโ€ of an operator at site ๐‘—0. Correspondingly, we first study matrix elements of the formhฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i. Bounds on these matrix elements are given in Lemma 2.6.5. The idea of the proof of this statement is simple: in the tensor network diagram for the matrix element, subdiagrams associated with powers ๐ธฮ” with sufficiently largeฮ”may be replaced by the diagram associated with the map |๐‘Ÿiihhโ„“|, with an error scaling term scaling as๐‘‚(๐œ†ฮ”/2

2 ). This is due to the Jordan decomposition of the transfer operator. Thanks to the gauge condition (2.6.1), the resulting diagrams then simplify, allowing us to identify the leading order term.

To realize this approach, a key step is to identify suitable subdiagrams corresponding to powers๐ธฮ” in the diagram associated withhฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i. These are associated with connected regions of sizeฮ”where the operator๐น acts trivially, and there is no insertion of ๐ต(๐‘) (respectively๐ต(๐‘0)), meaning that ๐‘— and ๐‘—0do not belong to the region. Lemma 2.6.5 provides a careful case-by-case analysis depending on, at the coarsest level of detail, whether or not ๐‘— and ๐‘—0belong to aฮ”-neighborhood of the support of๐น.

Some subleties that arise are the following: to obtain estimates on the leading-order terms for the diagonal matrix elements (see (2) above) as well as related expressions, a bound on the magnitude of the matrix elementhฮฆ๐‘— , ๐‘0|๐น|ฮฆ๐‘— , ๐‘ionly is not sufficient.

The lowest-order approximating expression to hฮฆ๐‘— , ๐‘0|๐น|ฮฆ๐‘— , ๐‘iobtained by making the above substitutions of the transfer operators a priori seems to depend on the exact site location ๐‘—. This is awkward because the termhฮฆ๐‘— , ๐‘0|๐น|ฮฆ๐‘— , ๐‘iappears as a summand (with sum taken over ๐‘—) when computing matrix elements of excitation ansatz states. We argue that in fact, the leading order term of hฮฆ๐‘— , ๐‘0|๐น|ฮฆ๐‘— , ๐‘i is identical for all values of ๐‘— not belonging to the support of ๐น. This statement is formalized in Lemma 2.6.6 and allows us to subsequently estimate sums of interest without worry about the explicit dependence on ๐‘—.

Finally, we require a strengthening of the estimates obtained in Lemma 2.6.5 because we are ultimately interested in excitation ansatz states: these are superpositions of

the states |ฮฆ๐‘— , ๐‘i, with phases of the form ๐‘’๐‘– ๐‘ ๐‘—. Estimating only the magnitude of matrix elements of the form hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i is not sufficient to establish our results. Instead, we need to treat the phases โ€œcoherently,โ€ which leads to certain cancellations. The corresponding statement is given in Lemma 2.6.7.

The Proof

We will envision the sites {1, . . . , ๐‘›}as points on a ring, i.e., using periodic boundary conditions, and measure the distance between sites ๐‘— , ๐‘—0by

dist(๐‘— , ๐‘—0) :=min

๐‘˜โˆˆZ

|๐‘—โˆ’ ๐‘—0+๐‘˜ ยท๐‘›|. Forฮ”โˆˆ {0, . . . , ๐‘›} and a subsetF โŠ‚ {1, . . . , ๐‘›}, let

Bฮ”(F )= {๐‘— โˆˆ {1, . . . , ๐‘›} | โˆƒ ๐‘—0 โˆˆ F such thatdist(๐‘— , ๐‘—0) โ‰คฮ”}

be theฮ”-thickeningofF.

We say that ๐‘—0โˆˆ {1, . . . , ๐‘›}is aleft neighbor of(or isleft-adjacent to) ๐‘— โˆˆ {1, . . . , ๐‘›} if ๐‘—0 = ๐‘— โˆ’1 for ๐‘— > 1, or ๐‘—0 = ๐‘›for ๐‘— = 1. A connected region R โŠ‚ {1, . . . , ๐‘›} is said to lie on the left of (or be left-adjacent to) ๐‘— โˆˆ {1, . . . , ๐‘›} if it is of the formR = {๐‘—

1, . . . , ๐‘—๐‘Ÿ}, with ๐‘—๐›ผ+

1left-adjacent to ๐‘—๐›ผ for๐›ผ โˆˆ {0, . . . , ๐‘Ÿ โˆ’1} with the convention that ๐‘—

0 = ๐‘—๐‘Ÿ. Analogous definitions hold for right-adjacency.

For an operator ๐น acting on (Cp)โŠ—๐‘›, let supp(๐น) โŠ‚ {1, . . . , ๐‘›} denote its support, i.e., the sites of the system that the operator acts on non-trivially. We say that๐น is ๐‘‘-local if |supp(๐น) | = ๐‘‘. Let us assume that supp(๐น) decomposes into ๐œ… disjoint connected components

supp(๐น) =

๐œ…โˆ’1

ร˜

๐›ผ=0

F๐›ผ . (2.56)

We may, without loss of generality, assume that this gives a partition of{1, . . . , ๐‘›} into disjoint connected sets

{1, . . . , ๐‘›}=A0โˆช F0โˆช A1โˆช F1โˆช ยท ยท ยท โˆช A๐œ…โˆ’1โˆช F๐œ…โˆ’1

whereA๐›ผis left-adjacent toF๐›ผfor๐›ผโˆˆ {0, . . . , ๐œ…โˆ’1},A๐›ผ+1is right-adjacent toF๐›ผ

for๐›ผ โˆˆ {0, . . . , ๐œ…โˆ’2}, andA0 is right-adjacent toF๐œ…โˆ’1. We may then decompose the operator๐น as

๐น =โˆ‘๏ธ

๐‘– ๐œ…โˆ’1

รŒ

๐›ผ=0

(๐ผA

๐›ผ โŠ—๐น๐‘–,๐›ผ),

๐น =

๐น(๐œ(๐‘—

1))=๐น(๐œ(๐‘—

4)) =๐น(0) = ,

๐น(๐œ(๐‘—

2)) =๐น(1) = ,

๐น(๐œ(๐‘—

3)) =๐น(๐œ…โˆ’1) = .

Figure 2.6: Example for๐นand sites๐‘—

1, ๐‘—

2, ๐‘—

3, ๐‘—

4 โˆˆ {1, . . . , ๐‘›}with๐œ„(๐‘—

1) =๐œ„(๐‘—

4) =7, ๐œ„(๐‘—

2) =19, and๐œ„(๐‘—

3) =35.

where we write๐น as a sum of decomposable tensor operators (indexed by๐‘–), with each๐น๐‘–,๐›ผ being an operator acting on the componentF๐›ผ.

Let us define a function๐œ :{1, . . . , ๐‘›}\supp(๐น) โ†’ {0, . . . , ๐œ…โˆ’1}which associates to every site ๐‘— โˆ‰ supp(F ) the unique index ๐œ(๐‘—) for the component A๐œ(๐‘—) of the complement ofsupp(๐น)such that ๐‘— โˆˆ A๐œ(๐‘—).

It is also convenient to introduce the following operators {๐น(๐œ)}๐œ…โˆ’1

๐œ=0. The operator ๐น(๐œ)is obtained by removing the identity factor on the sitesA๐œ of๐น, and cyclically permuting the remaining components in such a way that F๐œ ends up on the sites {1, . . . ,|F๐œ|}. More precisely, we define๐น(๐œ) โˆˆ B ( (Cp)โŠ—(๐‘›โˆ’|A๐œ|))by

๐น(๐œ) =โˆ‘๏ธ

๐‘–

๐น๐‘–,๐œ โŠ—

๐œ+๐œ…โˆ’1

รŒ

๐›ผ=๐œ+1

๐ผ

โŠ—|A๐›ผ(mod๐œ…)|

Cp โŠ— ๐น๐‘–,๐›ผ (

mod๐œ…)

!

, (2.57)

for๐œ โˆˆ {0, . . . , ๐œ…โˆ’1}. We note that ๐‘— โ†ฆโ†’ ๐น(๐œ(๐‘—)) associates a permuted operator to each site ๐‘— not belonging to the support of ๐น. Let us also define๐œ„(๐‘—) to be the index of the site which gets cyclically shifted to the first site when defining ๐น๐œ(๐‘—). An example is shown diagrammatically in Figure 2.6.

For two excitation ansatz states |ฮฆ๐‘iand |ฮฆ๐‘0i, and an operator ๐น on (Cp)โŠ—๐‘›, we

may write the corresponding matrix element as hฮฆ๐‘0|๐น|ฮฆ๐‘i =

๐‘›

โˆ‘๏ธ

๐‘— , ๐‘—0=1

๐‘’๐‘–(๐‘ ๐‘—โˆ’๐‘

0๐‘—0)hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i, (2.58)

where|ฮฆ๐‘— , ๐‘iare the โ€œposition spaceโ€ states introduced in Equation (2.6.1). We are interested in bounding the magnitude of this quantity.

We begin by bounding the individual terms in the sum (2.6.4).

Lemma 2.6.5. Let ๐‘— , ๐‘—0 โˆˆ {1, . . . , ๐‘›} and let ๐‘, ๐‘0be arbitrary non-zero momenta.

Consider the states|ฮฆ๐‘— , ๐‘iand|ฮฆ๐‘—0, ๐‘0idefined by(2.6.1). Letฮ” = ฮ”(๐‘›)and๐‘‘ =๐‘‘(๐‘›) be monotonically increasing functions of๐‘›. Suppose further that we have

10ฮ”๐‘‘ < ๐‘› .

Assume ๐น is a ๐‘‘-local operator of unit norm on (Cp)โŠ—๐‘› whose support has ๐œ… connected components as in(2.6.4). Then we have the following:

(i) There is some fixed๐‘ž โˆˆ [๐‘›]such that for all ๐‘— , ๐‘—0โˆˆ Bฮ”(supp(๐น)), we have hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i= hhโ„“|๐ธ

๐ผโŠ—ฮ”โŠ—๐น๐œ(๐‘ž)โŠ—๐ผโŠ—ฮ”(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0) |๐‘Ÿii +๐‘‚(๐œ†ฮ”

2), where ๐‘—ห†= ๐‘— โˆ’๐œ„(๐‘ž) +ฮ”+1(mod๐‘›)and ๐‘—ห†0= ๐‘—0โˆ’๐œ„(๐‘ž) +ฮ”+1 (mod๐‘›).

Furthermore,

hฮฆ๐‘—0, ๐‘0|ฮฆ๐‘— , ๐‘i = ฮ”๐‘— , ๐‘—0๐‘๐‘ ๐‘0+๐‘‚(๐œ†ฮ”

2). (2.59)

(ii) If ๐‘— , ๐‘—0โˆ‰Bฮ”(supp(๐น)), then (a) |hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i|=๐‘‚(๐œ†ฮ”/2

2 )if ๐‘— โ‰  ๐‘—0.

(b) hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i=hhโ„“|๐ธ๐น(๐œ(๐‘—))|๐‘Ÿii ยท๐‘๐‘ ๐‘0+๐‘‚(๐œ†ฮ”/2

2 ).

Here the operator๐น(๐œ(๐‘—))is defined by Equation(2.6.4). (iii) If ๐‘— โˆˆ Bฮ”(supp(๐น)) and ๐‘—0โˆ‰Bฮ”(supp(๐น)), then

(a) |hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i|=๐‘‚(๐œ†ฮ”/2

2 )if ๐‘—0โˆ‰B2ฮ”(supp(๐น)).

(b) There exists some fixed๐‘ž โˆˆ [๐‘›] such that, for all ๐‘— โˆˆ Bฮ”(supp(๐น)) and ๐‘—0 โˆˆ B2ฮ”(supp(๐น))\Bฮ”(supp(๐น)), we have

hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i= hhโ„“|๐ธ๐น(๐œ(๐‘ž))(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0,2ฮ”) |๐‘Ÿii +๐‘‚(๐œ†2ฮ”

2 ), where ๐‘—ห†= ๐‘—โˆ’๐œ„(๐‘ž) +2ฮ”+1(mod๐‘›) and ๐‘—ห†0= ๐‘—0โˆ’๐œ„(๐‘ž) +2ฮ”+1 (mod๐‘›).

(iv) If ๐‘—0โˆˆ Bฮ”(supp(๐น))and ๐‘— โˆ‰Bฮ”(supp(๐น)), then (a) |hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i|=๐‘‚(๐œ†ฮ”/2

2 )if ๐‘— โˆ‰B2ฮ”(supp(๐น)).

(b) There exists some fixed๐‘ž โˆˆ [๐‘›] such that, for all ๐‘—0โˆˆ Bฮ”(supp(๐น))) and ๐‘— โˆˆ B2ฮ”(supp(๐น))\Bฮ”(supp(๐น)), we have

hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i= hhโ„“|๐ธ๐น(๐œ(๐‘ž))(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0,2ฮ”) |๐‘Ÿii +๐‘‚(๐œ†2ฮ”

2 ), where ๐‘—ห†= ๐‘—โˆ’๐œ„(๐‘ž) +2ฮ”+1(mod๐‘›) and ๐‘—ห†0= ๐‘—0โˆ’๐œ„(๐‘ž) +2ฮ”+1 (mod๐‘›). Proof. For the proof of (i), suppose that ๐‘— , ๐‘—0 โˆˆ Bฮ”(supp(๐น)). Pick any site ๐‘ž โˆ‰B2ฮ”(supp(๐น)). We note that such a site always exists since

|B2ฮ”(supp(๐น)) | โ‰ค5ฮ”|supp(๐น) | =5ฮ”๐‘‘ <10ฮ”๐‘‘ < ๐‘› by assumption. Let us define the shifted indices

ห†

๐‘— = ๐‘— โˆ’๐œ„(๐‘ž) +ฮ”+1(mod๐‘›), and ๐‘—ห†0= ๐‘—0โˆ’๐œ„(๐‘ž) +ฮ”+1 (mod๐‘›). Then we may write

hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i=tr(๐ธ๐น(๐‘— , ๐‘, ๐‘—0, ๐‘0))

=tr

๐ธ๐‘ ๐ธ

๐ผโŠ—ฮ”โŠ—๐น๐œ(๐‘ž)โŠ—๐ผโŠ—ฮ”(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0)

(2.60) where ๐‘  โ‰ฅ 2ฮ”. This is because by the choice of ๐‘ž, there are at least 2ฮ”sites not belonging to supp(๐น) both on the left and the right of ๐‘ž. Each of these 4ฮ”sites contributes a factor๐ธ =๐ธ๐ผ (i.e., a single transfer operator) to the expression within the trace. The term ๐ธ

๐ผโŠ—ฮ”โŠ—๐น๐œ(๐‘ž)โŠ—๐ผโŠ—ฮ”(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0) incorporates ฮ” of the associated transfer operators๐ธ =๐ธ๐ผ on the left- and right of๐‘ž, respectively, such that at least 2ฮ”factors of๐ธ remain. By the cyclicity of the trace, these can be consolidated into a single term๐ธ๐‘  with ๐‘  โ‰ฅ 2ฮ”. The operator ๐ผโŠ—ฮ” โŠ— ๐น๐œ(๐‘ž) โŠ— ๐ผโŠ—ฮ” (i.e., the additional ๐ผโŠ—ฮ”factors) in the term๐ธ

๐ผโŠ—ฮ”โŠ—๐น๐œ(๐‘ž)โŠ—๐ผโŠ—ฮ”(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0)is used to ensure that ๐‘—and ๐‘—0are correctly โ€œretainedโ€ when going from the first to the second line in (2.6.4). Inserting the Jordan decomposition๐ธ =|๐‘Ÿiihhโ„“| โŠ•๐ธหœ, we obtain

hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i=hhโ„“|๐ธ

๐ผโŠ—ฮ”โŠ—๐น๐œ(๐‘ž)โŠ—๐ผโŠ—ฮ”(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0) |๐‘Ÿii +tr

หœ ๐ธ๐‘ ๐ธ

๐ผโŠ—ฮ”โŠ—๐น๐œ(๐‘ž)โŠ—๐ผโŠ—ฮ”(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0) . (2.61)

By Lemma 2.4.2(ii) and Lemma 2.6.3, we have the bound

tr

หœ ๐ธ๐‘ ๐ธ

๐ผโŠ—ฮ”โŠ—๐น๐œ(๐‘ž)โŠ—๐ผโŠ—ฮ”(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0)

โ‰ค k๐ธหœ๐‘ k๐น ยท k๐ธ

๐ผโŠ—ฮ”โŠ—๐น๐œ(๐‘ž)โŠ—๐ผโŠ—ฮ”(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0) k๐น

โ‰ค ๐œ†๐‘ /2

2 ยท๐ท2k๐นk ยทโˆš๏ธƒ

k๐ธ

๐ต(๐‘0)๐ต(๐‘0)k๐นk๐ธ

๐ต(๐‘0)๐ต(๐‘)k๐น

=๐‘‚(๐œ†ฮ”

2), where we have used the fact that๐œ†

๐‘ /2 2 โ‰ค ๐œ†ฮ”

2 in the last line. We have also absorbed the dependence on the constants ๐ท, k๐นk, and

โˆš๏ธƒk๐ธ

๐ต(๐‘0)๐ต(๐‘0)k๐นk๐ธ

๐ต(๐‘0)๐ต(๐‘)k๐น into the big-O notation. Inserting this into (2.6.4) gives the first claim of (i).

Now consider the inner product hฮฆ๐‘—0, ๐‘0|ฮฆ๐‘— , ๐‘i = tr(๐ธ(๐‘— , ๐‘, ๐‘—0, ๐‘0)), which corre- sponds to the case where ๐น is the identity. By the cyclicity of the trace, this can be written as hฮฆ๐‘—0, ๐‘0|ฮฆ๐‘— , ๐‘i = tr(๐ธ๐‘ ๐ธ(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0)) for some ๐‘  โ‰ฅ 2ฮ” and suitably defined ห†๐‘— ,๐‘—ห†0. Repeating the same argument as above and using the fact that

hhโ„“|๐ธ(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0) |๐‘Ÿii = ฮ”๐‘— ,ห†๐‘—ห†0๐‘๐‘ ๐‘0 = ฮ”๐‘— , ๐‘—0๐‘๐‘ ๐‘0

by definition of ๐ธ(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0), Equation (2.4.1) (i.e., the fact that |โ„“ii and |๐‘Ÿii are left, respectively right, eigenvectors of๐ธ), and the gauge identities (2.6.1) of๐ธ๐ต(๐‘) and๐ธ

๐ต(๐‘), we obtain the claim (i).

Now consider claim (ii). Suppose that ๐‘— , ๐‘—0 โˆ‰ Bฮ”(supp(๐น)). We consider the following two cases:

(iia) If ๐‘— โ‰  ๐‘—0, then there is a connected region of at least ฮ” sites not belonging tosupp(๐น)to either the left of ๐‘—0and not containing ๐‘—, or the left of ๐‘— and not containing ๐‘—0. Without loss of generality, we assume the former is the case.

By the cyclicity of the trace, we may also assume without loss of generality that ๐‘—0= ฮ”+1, ๐‘— > ๐‘—0, and that๐นis supported on the sites{2ฮ”+2, . . . , ๐‘›}. Let

ห†

๐นdenote the restriction of๐นto the sites{ฮ”+2, . . . , ๐‘›}, and let ห†๐‘— := ๐‘—โˆ’ (ฮ”+1). Then we may write

hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i=tr

๐ธฮ”๐ธ

๐ต(๐‘0)๐ธ

ห†

๐น(๐‘— , ๐‘ห† ) . Substituting the Jordan decomposition๐ธฮ” =|๐‘Ÿiihhโ„“| โŠ•๐ธหœฮ”, we have

hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i= hhโ„“|๐ธ

๐ต(๐‘0)๐ธ

ห†

๐น(๐‘— , ๐‘ห† ) |๐‘Ÿii +tr

หœ ๐ธฮ”๐ธ

๐ต(๐‘0)๐ธ

ห† ๐น(๐‘— , ๐‘ห† )

.

Since we assume that๐‘ โ‰  0, the gauge condition (2.6.1) states thathhโ„“|๐ธ

๐ต(๐‘) =0, hence the first term vanishes and it follows that

|hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i|= tr

หœ ๐ธฮ”๐ธ

๐ต(๐‘0)๐ธ

ห†

๐น(๐‘— , ๐‘ห† )

โ‰ค k๐ธหœฮ”k๐น ยท k๐ธ

๐ต(๐‘0)k๐น ยท k๐ธ

ห†

๐น(๐‘— , ๐‘ห† ) k๐น

โ‰ค๐œ†ฮ”/2

2 k๐ธ

๐ต(๐‘0)k๐น ยท๐ท2k๐นห†kโˆš๏ธƒ

k๐ธ

๐ต(๐‘)๐ต(๐‘)k๐น

=๐‘‚(๐œ†ฮ”/2

2 ) ,

as claimed in (iia). In the last line, we have again absorbed the constants into the big-๐‘‚-expression. This proves part (iia) of Claim (ii).

(iib) If ๐‘— = ๐‘—0, then there are at leastฮ”sites to the left and right of ๐‘— which do not belong tosupp(๐น). Therefore we may write

hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i=tr

๐ธ๐‘ ๐ธ

๐ต(๐‘0)๐ต(๐‘)๐ธ๐‘ก๐ธ๐น(๐œ(๐‘—))

,

where๐‘  and๐‘ก are integers greater thanฮ”, representing the sites surrounding ๐‘— which are not in the support of๐น.

Applying the Jordan decomposition ๐ธฮ” = |๐‘Ÿiihhโ„“| โŠ• ๐ธหœฮ” twice (for ๐ธ๐‘  and ๐ธ๐‘ก) then gives four terms

hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i= hhโ„“|๐ธ

๐ต(๐‘0)๐ต(๐‘)|๐‘Ÿiihhโ„“|๐ธ๐น(๐œ(๐‘—))|๐‘Ÿii +tr

|๐‘Ÿiihhโ„“|๐ธ

๐ต(๐‘0)๐ต(๐‘)๐ธหœ๐‘ ๐ธ๐น(๐œ(๐‘—))

+tr

หœ ๐ธ๐‘ก๐ธ

๐ต(๐‘0)๐ต(๐‘)|๐‘Ÿiihhโ„“|๐ธ๐น(๐œ(๐‘—))

+tr

หœ ๐ธ๐‘ก๐ธ

๐ต(๐‘0)๐ต(๐‘)๐ธหœ๐‘ ๐ธ๐น(๐œ(๐‘—))

.

Since ๐‘  and ๐‘ก are both larger than ฮ”, by the same arguments from before, it is clear that the last three terms can each be bounded by๐‘‚(๐œ†ฮ”/2

2 ). The claim follows sincehhโ„“|๐ธ

๐ต(๐‘0)๐ต(๐‘)|๐‘Ÿii=๐‘๐‘ ๐‘0.

Next, we give the proof of claim (iii). Let us consider the situation where ๐‘— โˆˆ Bฮ”(supp(๐น)) and ๐‘—0 โˆ‰Bฮ”(supp(๐น)). The proof of the other setting is analogous.

We consider two cases:

(iiia) Suppose ๐‘—0โˆ‰B2ฮ”(supp(๐น)). Let us define the shifted index ห†๐‘— = ๐‘—โˆ’๐œ„(๐‘—0) +ฮ”+ 1(mod๐‘›). Then we may write

hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i =tr

๐ธ๐‘ ๐ธ

๐ต(๐‘0)๐ธ๐‘ก๐ธ

๐ผโŠ—ฮ”โŠ—๐น(๐œ(๐‘—0))โŠ—๐ผโŠ—ฮ”(๐‘— , ๐‘ห† ) ,

where๐‘ and๐‘กare integers larger thanฮ”, representing the number of sites adjacent to ๐‘—0 on the left and right which are not in Bฮ”(supp(๐น)). We use the Jordan decomposition๐ธ =|๐‘Ÿiihhโ„“| โŠ•๐ธหœ on๐ธ๐‘  to get

tr

๐ธ๐‘ ๐ธ

๐ต(๐‘0)๐ธ๐‘ก๐ธ

๐ผโŠ—ฮ”โŠ—๐น(๐œ(๐‘—0))โŠ—๐ผโŠ—ฮ”(๐‘— , ๐‘ห† )

=hhโ„“|๐ธ

๐ต(๐‘0)๐ธ๐‘ก๐ธ

๐ผโŠ—ฮ”โŠ—๐น(๐œ(๐‘—0))โŠ—๐ผโŠ—ฮ”(๐‘— , ๐‘ห† ) |๐‘Ÿii +tr

หœ ๐ธ๐‘ ๐ธ

๐ต(๐‘0)๐ธ๐‘ก๐ธ

๐ผโŠ—ฮ”โŠ—๐น(๐œ(๐‘—0))โŠ—๐ผโŠ—ฮ”(๐‘— , ๐‘ห† )

=tr

หœ ๐ธ๐‘ ๐ธ

๐ต(๐‘0)๐ธ๐‘ก๐ธ

๐ผโŠ—ฮ”โŠ—๐น(๐œ(๐‘—0))โŠ—๐ผโŠ—ฮ”(๐‘— , ๐‘ห† ) ,

where the first term vanishes due to the gauge condition (2.6.1). From Lemma 2.4.2(ii) we have k๐ธ๐‘กk๐น โ‰ค 1, and repeating the same arguments as before, we get the bound

|hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i|= tr

หœ ๐ธ๐‘ ๐ธ

๐ต(๐‘0)๐ธ๐‘ก๐ธ

๐ผโŠ—ฮ”โŠ—๐น(๐œ(๐‘—0))โŠ—๐ผโŠ—ฮ”(๐‘— , ๐‘ห† )

โ‰ค k๐ธหœ๐‘ k๐น ยท k๐ธ

๐ต(๐‘0)k๐น ยท k๐ธ๐‘กk๐นยท ๐ท2k๐นk ยท k๐ธ

๐ต(๐‘)๐ต(๐‘)k๐น

โ‰ค๐œ†

๐‘ /2 2 k๐ธ

๐ต(๐‘0)k๐น ยท ๐ท2k๐นkโˆš๏ธƒ

k๐ธ

๐ต(๐‘)๐ต(๐‘)k๐น . Since๐‘  โ‰ฅ ฮ”, we conclude that

|hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i|=๐‘‚

๐œ†ฮ”/2

2

.

(iiib) Suppose now that ๐‘—0 โˆˆ B2ฮ”(supp(๐น)). Then by repeating the argument for case (i), withฮ”replaced by 2ฮ”, we obtain

hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i= hhโ„“|๐ธ

๐ผโŠ—2ฮ”โŠ—๐น(๐œ(๐‘ž))โŠ—๐ผโŠ—2ฮ”(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0) |๐‘Ÿii +๐‘‚(๐œ†2ฮ”

2 ),

where we now have๐‘ž โˆ‰B4ฮ”(F ). Again, the existence of such a๐‘žis guaranteed by the condition 10ฮ”๐‘‘ < ๐‘›.

We note that (iv) follows immediately from (iii) by interchanging the roles of (๐‘— , ๐‘)and (๐‘—0, ๐‘0). Note that we can write

hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i= hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i=hฮฆ๐‘— , ๐‘|๐นโ€ |ฮฆ๐‘—0, ๐‘0i.

The last expression within the parentheses is precisely what we had calculated in (iii), so this implies the following:

(iva) If ๐‘— โˆ‰B2ฮ”(supp(๐น)), then hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i

=

hฮฆ๐‘— , ๐‘|๐นโ€ |ฮฆ๐‘—0, ๐‘0i

=๐‘‚(๐œ†ฮ”/2

2 ),

where we note that the exact same bound holds for๐นand๐นโ€ sincek๐นk = k๐นโ€ k. (ivb) If ๐‘— โˆˆ B2ฮ”(supp(๐น)), then

hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i=hฮฆ๐‘— , ๐‘|๐นโ€ |ฮฆ๐‘—0, ๐‘0i

=hhโ„“|๐ธ

๐ผโŠ—2ฮ”โŠ—๐นโ€ (๐œ(๐‘ž))โŠ—๐ผโŠ—2ฮ”(๐‘—ห†0, ๐‘0, ๐‘— , ๐‘ห† ) |๐‘Ÿii +๐‘‚(๐œ†2ฮ”

2 )

=hhโ„“|๐ธ

๐ผโŠ—2ฮ”โŠ—๐นโ€ (๐œ(๐‘ž))โŠ—๐ผโŠ—2ฮ”(๐‘—ห†0, ๐‘0, ๐‘— , ๐‘ห† ) |๐‘Ÿii +๐‘‚(๐œ†2ฮ”

2 )

=hhโ„“|๐ธ

๐ผโŠ—2ฮ”โŠ—๐น(๐œ(๐‘ž))โŠ—๐ผโŠ—2ฮ”(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0) |๐‘Ÿii +๐‘‚(๐œ†2ฮ”

2 ). This proves the claim.8

Note that in the statement (iib), the dependence on๐‘—in the expressionhhโ„“|๐ธ๐น(๐œ(๐‘—))|๐‘Ÿii can be eliminated as follows:

Lemma 2.6.6. Suppose ๐‘—

1, ๐‘—

2โˆ‰Bฮ”(supp(๐น)). Then

|hhโ„“|๐ธ๐น(๐œ(๐‘—

1))|๐‘Ÿii โˆ’ hhโ„“|๐ธ๐น(๐œ(๐‘—

2))|๐‘Ÿii| =๐‘‚(๐œ†ฮ”

2). (2.62)

In particular, for any fixed ๐‘—

0โˆ‰Bฮ”(supp(๐น)) we have hฮฆ๐‘— , ๐‘0|๐น|ฮฆ๐‘— , ๐‘i =hhโ„“|๐ธ๐น(๐œ(๐‘—

0))|๐‘Ÿii ยท๐‘๐‘ ๐‘0 +๐‘‚(๐œ†ฮ”/2

2 ), (2.63)

for all ๐‘— โˆ‰Bฮ”(supp(๐น)).

8To clarify how the termhhโ„“|๐ธ๐ผโŠ—ฮ”โŠ—๐นโ€ (๐œ(๐‘ž)) โŠ—๐ผโŠ—ฮ”(๐‘—ห†0, ๐‘0,๐‘— , ๐‘ห† ) |๐‘Ÿiiis complex conjugated, first write

hhโ„“|๐ธ๐ผโŠ—ฮ”โŠ—๐นโ€ (๐œ(๐‘ž)) โŠ—๐ผโŠ—ฮ”(๐‘—ห†0, ๐‘0,๐‘— , ๐‘ห† ) |๐‘Ÿii=hฮฆ๐ฟ

ห†

๐‘—0, ๐‘0|๐ผโŠ—๐ผโŠ—2ฮ”โŠ—๐นโ€ 

๐œ(๐‘ž)โŠ—๐ผโŠ—2ฮ”โŠ—๐ผ|ฮฆ๐ฟ

ห† ๐‘— , ๐‘i, where|ฮฆ๐ฟ

ห†

๐‘— , ๐‘iare the states defined by (2.6.3), for some appropriate length๐ฟ. Then we can proceed to conjugate the matrix element, giving us

hฮฆ๐ฟ

ห†

๐‘—0, ๐‘0|๐ผโŠ—๐ผโŠ—2ฮ”โŠ—๐นโ€ 

๐œ(๐‘ž)โŠ—๐ผโŠ—2ฮ”โŠ—๐ผ|ฮฆ๐ฟ

ห†

๐‘— , ๐‘i=hฮฆ๐ฟ

ห†

๐‘— , ๐‘|๐ผโŠ—๐ผ2ฮ”โŠ—๐น๐œ(๐‘ž)โŠ—๐ผ2ฮ”โŠ—๐ผ|ฮฆ๐ฟ

ห† ๐‘—0, ๐‘0i

=hhโ„“|๐ธ๐ผโŠ—2ฮ”โŠ—๐น(๐œ(๐‘ž)) โŠ—๐ผโŠ—2ฮ”(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0) |๐‘Ÿii.

Proof. The claim (2.6.6) follows immediately from (2.6.6) and claim (iib) of Lemma 2.6.5 since |๐‘๐‘ ๐‘0|=๐‘‚(1).

If๐œ(๐‘—

1) =๐œ(๐‘—

2), there is nothing to prove. Suppose๐œ(๐‘—

1) โ‰ ๐œ(๐‘—

2). Without loss of generality, assume that๐œ(๐‘—

1) =0 and๐œ(๐‘—

2) =๐œ‰. Then we may write ๐น(๐œ(๐‘—

1))=โˆ‘๏ธ

๐‘–

๐น๐‘–,

0โŠ—๐ผโŠ—๐‘Ž1 โŠ—๐น๐‘–,

1โŠ—๐ผโŠ—๐‘Ž2ยท ยท ยท โŠ—๐ผโŠ—๐‘Ž๐œ…โˆ’1 โŠ—๐น๐‘–,๐œ…โˆ’

1, and ๐น(๐œ(๐‘—

2))=โˆ‘๏ธ

๐‘–

๐น๐‘–,๐œ‰ โŠ—๐ผโŠ—๐‘Ž๐œ‰+1 โŠ— ๐น๐‘–,๐œ‰+

1โŠ— ๐ผโŠ—๐‘Ž๐œ‰+2ยท ยท ยท โŠ— ๐ผโŠ—๐‘Ž๐œ… โŠ— ๐น๐‘–,๐œ…โˆ’

1โŠ— ๐ผโŠ—๐‘Ž0

โŠ—๐น๐‘–,

0โŠ—๐ผโŠ—๐‘Ž1 โŠ—๐น๐‘–,

1โŠ—๐ผโŠ—๐‘Ž2 โŠ— ยท ยท ยท โŠ—๐น๐‘–,๐œ‰โˆ’

1, where๐‘Ž๐›ผ =|A๐›ผ|for๐›ผ โˆˆ {0, . . . , ๐œ…}. Defining the operators

ห†

๐น๐‘– =๐น๐‘–,๐œ‰ โŠ— ๐ผโŠ—๐‘Ž๐œ‰+1 โŠ—๐น๐‘–,๐œ‰+

1โŠ— ๐ผโŠ—๐‘Ž๐œ‰+2ยท ยท ยท โŠ— ๐ผโŠ—๐‘Ž๐œ…โˆ’1 โŠ—๐น๐‘–,๐œ…โˆ’

1, ห†

๐บ๐‘– =๐น๐‘–,

0โŠ— ๐ผโŠ—๐‘Ž1 โŠ— ๐น๐‘–,

1โŠ— ๐ผโŠ—๐‘Ž2 โŠ— ยท ยท ยท โŠ— ๐น๐‘–,๐œ‰โˆ’

1, we have

๐น(๐œ(๐‘—

1)) =โˆ‘๏ธ

๐‘–

ห†

๐บ๐‘– โŠ—๐ผโŠ—๐‘Ž๐œ‰ โŠ—๐นห†๐‘–, and ๐น(๐œ(๐‘—

2))=โˆ‘๏ธ

๐‘–

ห†

๐น๐‘–โŠ— ๐ผโŠ—๐‘Ž0 โŠ—๐บห†๐‘–.

(We give an example for the operator ๐น, ๐น(๐œ(๐‘—

1)), and ๐น(๐œ(๐‘—

2)) in Figure 2.7.) Therefore we can write

hhโ„“|๐ธ๐น(๐œ(๐‘—

1))|๐‘Ÿii=โˆ‘๏ธ

๐‘–

hhโ„“|๐ธ

ห† ๐บ๐‘–๐ธ๐‘Ž๐œ‰๐ธ

ห† ๐น๐‘–|๐‘Ÿii, hhโ„“|๐ธ๐น(๐œ(๐‘—

2))|๐‘Ÿii=โˆ‘๏ธ

๐‘–

hhโ„“|๐ธ

ห† ๐น๐‘–

๐ธ๐‘Ž0๐ธ

ห† ๐บ๐‘–|๐‘Ÿii. Inserting the Jordan decomposition๐ธ = |๐‘Ÿiihhโ„“| โŠ•๐ธหœ gives

hhโ„“|๐ธ๐น(๐œ(๐‘—

1))|๐‘Ÿii=โˆ‘๏ธ

๐‘–

hhโ„“|๐ธ

ห†

๐บ๐‘–|๐‘Ÿiihhโ„“|๐ธ

ห†

๐น๐‘–|๐‘Ÿii + hhโ„“|๐ธ

ห† ๐บ๐‘–๐ธหœ๐‘Ž๐œ‰๐ธ

ห† ๐น๐‘–|๐‘Ÿii

, hhโ„“|๐ธ๐น(๐œ(๐‘—

2))|๐‘Ÿii=โˆ‘๏ธ

๐‘–

hhโ„“|๐ธ

ห†

๐น๐‘–|๐‘Ÿiihhโ„“|๐ธ

ห†

๐บ๐‘–|๐‘Ÿii + hhโ„“|๐ธ

ห† ๐น๐‘–๐ธหœ๐‘Ž0๐ธ

ห† ๐บ๐‘–|๐‘Ÿii

. Taking the difference, the first terms of the sums cancel, and we are left with hhโ„“|๐ธ๐น(๐œ(๐‘—

1))|๐‘Ÿii โˆ’ hhโ„“|๐ธ๐น(๐œ(๐‘—

2))|๐‘Ÿii =

โˆ‘๏ธ

๐‘–

hhโ„“|๐ธ

ห† ๐บ๐‘–๐ธหœ๐‘Ž๐œ‰๐ธ

ห†

๐น๐‘–|๐‘Ÿii โˆ’โˆ‘๏ธ

๐‘–

hhโ„“|๐ธ

ห† ๐น๐‘–๐ธหœ๐‘Ž0๐ธ

ห† ๐บ๐‘–|๐‘Ÿii

โ‰ค

โˆ‘๏ธ

๐‘–

hhโ„“|๐ธ

ห† ๐บ๐‘–๐ธหœ๐‘Ž๐œ‰๐ธ

ห† ๐น๐‘–|๐‘Ÿii

+

โˆ‘๏ธ

๐‘–

hhโ„“|๐ธ

ห† ๐น๐‘–๐ธหœ๐‘Ž0๐ธ

ห† ๐บ๐‘–|๐‘Ÿii

. (2.64)

๐น = ,

๐น(๐œ(๐‘—

1)) = ,

๐น(๐œ(๐‘—

2)) = .

Figure 2.7: Example for the operator ๐น and the corresponding ๐น(๐œ(๐‘—

1)) and ๐น(๐œ(๐‘—

2)).

We can bound the first term

ร

๐‘–hhโ„“|๐ธ

ห† ๐บ๐‘–๐ธหœ๐‘Ž๐œ‰๐ธ

ห† ๐น๐‘–|๐‘Ÿii

as follows. First, we write

โˆ‘๏ธ

๐‘–

hhโ„“|๐ธ

ห† ๐บ๐‘–

หœ ๐ธ๐‘Ž๐œ‰๐ธ

ห† ๐น๐‘–

|๐‘Ÿii

=tr ๐ธหœ๐‘Ž๐œ‰

โˆ‘๏ธ

๐‘–

๐ธ๐นห†๐‘–

|๐‘Ÿiihhโ„“|๐ธ

ห† ๐บ๐‘–

!

โ‰ค k๐ธหœ๐‘Ž๐œ‰k๐น

โˆ‘๏ธ

๐‘–

๐ธ๐นห†๐‘–|๐‘Ÿiihhโ„“|๐ธ

ห† ๐บ๐‘–

๐น

โ‰ค๐œ†ฮ”

2

โˆ‘๏ธ

๐‘–

๐ธ๐นห†๐‘–|๐‘Ÿiihhโ„“|๐ธ

ห† ๐บ๐‘–

๐น

, where the last inequality comes from the fact that ๐‘—

2 โˆ‰Bฮ”(supp(๐น)) and ๐‘—

2 โˆˆ A๐œ‰

implies that ๐‘Ž๐œ‰ โ‰ฅ 2ฮ”, so Lemma 2.4.2(ii) gives k๐ธหœ๐‘Ž๐œ‰k๐น โ‰ค ๐œ†ฮ”

2. Proceeding as we did in the proof of Lemma 2.6.3, we can write the latter Frobenius norm as

โˆ‘๏ธ

๐‘–

๐ธ๐นห†๐‘–|๐‘Ÿiihhโ„“|๐ธ

ห† ๐บ๐‘–

2

๐น

=

๐ท

โˆ‘๏ธ

๐›ผ1,๐›ผ

2, ๐›ฝ

1, ๐›ฝ

2=1

h๐›ผ

1|h๐›ผ

2| โˆ‘๏ธ

๐‘–

๐ธ๐นห†๐‘–|๐‘Ÿiihhโ„“|๐ธ

ห† ๐บ๐‘–

!

|๐›ฝ

1i|๐›ฝ

2i

2

.

The individual terms in the sum can be depicted diagrammatically as h๐›ผ

1|h๐›ผ

2| โˆ‘๏ธ

๐‘–

๐ธ๐นห†๐‘–|๐‘Ÿiihhโ„“|๐ธ

ห† ๐บ๐‘–

!

|๐›ฝ

1i|๐›ฝ

2i = .

Defining the vectors

|ฮจ(๐›ผ, ๐›ฝ)i = ,

we can then write h๐›ผ

1|h๐›ผ

2| โˆ‘๏ธ

๐‘–

๐ธ๐นห†๐‘–|๐‘Ÿiihhโ„“|๐ธ

ห† ๐บ๐‘–

!

|๐›ฝ

1i|๐›ฝ

2i =hฮจ(๐›ผ

1, ๐›ฝ

1) | โˆ‘๏ธ

๐‘–

ห†

๐น๐‘– โŠ— ๐ผ๐ท โŠ— ๐ผ๐ท โŠ—๐บห†๐‘–

!

|ฮจ(๐›ผ

2, ๐›ฝ

2)i.

Applying the Cauchy-Schwarz inequality, we get

h๐›ผ

1|h๐›ผ

2| โˆ‘๏ธ

๐‘–

๐ธ๐นห†๐‘–

|๐‘Ÿiihhโ„“|๐ธ

ห† ๐บ๐‘–

!

|๐›ฝ

1i|๐›ฝ

2i

2

โ‰ค kฮจ(๐›ผ

1, ๐›ฝ

1) k2ยท kฮจ(๐›ผ

2, ๐›ฝ

2) k2ยท

โˆ‘๏ธ

๐‘–

ห†

๐น๐‘– โŠ—๐ผ๐ท โŠ—๐ผ๐ท โŠ—๐บห†๐‘–

2

.

The norm of the vector|ฮจ(๐›ผ, ๐›ฝ)iis given by

kฮจ(๐›ผ, ๐›ฝ) k2= = = h๐›ผ|๐‘Ÿ|๐›ผih๐›ฝ|โ„“|๐›ฝi,

where in the second equality, we have used the fixed-point equations (2.4.1). There- fore we have

โˆ‘๏ธ

๐‘–

๐ธ๐นห†๐‘–|๐‘Ÿiihhโ„“|๐ธ

ห† ๐บ๐‘–

2

๐น

โ‰ค

โˆ‘๏ธ

๐‘–

ห†

๐น๐‘– โŠ—๐ผ๐ท โŠ—๐ผ๐ท โŠ—๐บห†๐‘–

2 ๐ท

โˆ‘๏ธ

๐›ผ1,๐›ผ

2, ๐›ฝ

1, ๐›ฝ

2=1

h๐›ผ

1|๐‘Ÿ|๐›ผ

1ih๐›ผ

2|๐‘Ÿ|๐›ผ

2ih๐›ฝ

1|โ„“|๐›ฝ

1ih๐›ฝ

2|โ„“|๐›ฝ

2i

=

โˆ‘๏ธ

๐‘–

ห†

๐น๐‘– โŠ—๐ผ๐ท โŠ—๐ผ๐ท โŠ—๐บห†๐‘–

2

ยท |tr(๐‘Ÿ)tr(โ„“) |2= ๐ท2

โˆ‘๏ธ

๐‘–

ห†

๐น๐‘–โŠ— ๐ผ๐ท โŠ— ๐ผ๐ท โŠ—๐บห†๐‘–

2

,

where the last equality follows from the fact that we gauge-fix the left and right fixed-points such that๐‘Ÿ =๐ผ

C๐ท and tr(โ„“) =1. Finally, we note that since the operator

norm is multiplicative over tensor products, i.e., k๐ดโŠ—๐ตk =k๐ดk ยท k๐ตk, we have

โˆ‘๏ธ

๐‘–

ห†

๐น๐‘–โŠ— ๐ผ๐ท โŠ— ๐ผ๐ท โŠ—๐บห†๐‘–

=

โˆ‘๏ธ

๐‘–

ห† ๐น๐‘– โŠ—๐บห†๐‘–

=k๐นk. Therefore, we have

โˆ‘๏ธ

๐‘–

hhโ„“|๐ธ

ห† ๐บ๐‘–

หœ ๐ธ๐‘Ž๐œ‰๐ธ

ห† ๐น๐‘–|๐‘Ÿii

โ‰ค ๐ทk๐นk๐œ†ฮ”

2. The term involving๐‘Ž

0in (2.6.4) can be bounded identically, and so hhโ„“|๐ธ

๐น(๐œ(๐‘—

1))|๐‘Ÿii โˆ’ hhโ„“|๐ธ

๐น(๐œ(๐‘—

2))|๐‘Ÿii

โ‰ค2๐ทk๐นk๐œ†ฮ”

2 , which proves (2.6.6).

We also need a different version of statement (i), as well as statements (iiib) and (ivb) derived from it.

Lemma 2.6.7. Forฮฉ โŠ‚ [๐‘›]2, let us define ๐œŽ๐‘ ๐‘0(ฮฉ) = โˆ‘๏ธ

(๐‘— , ๐‘—0)โˆˆฮฉ

๐‘’๐‘–(๐‘ ๐‘—โˆ’๐‘

0๐‘—0)hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i.

Let us write F :=supp(๐น) andA๐‘ = [๐‘›]\A for the complement of a subsetA โŠ‚ [๐‘›]. Then:

๐œŽ๐‘ ๐‘0(Bฮ”(F ) ร— Bฮ”(F ))

โ‰ค |Bฮ”(F ) | ยท k๐นkโˆš

๐‘๐‘๐‘๐‘0+๐‘‚ โˆš

๐‘› ๐œ†ฮ”/2

2

, (2.65)

๐œŽ๐‘ ๐‘0(Bฮ”(F ) ร— Bฮ”(F )๐‘)

โ‰ค |B2ฮ”(F ) | ยท k๐นkโˆš

๐‘๐‘๐‘๐‘0 +๐‘‚

๐‘›2๐œ†ฮ”/2

2

, (2.66)

๐œŽ๐‘ ๐‘0(Bฮ”(F )๐‘ร— Bฮ”(F ))

โ‰ค |B2ฮ”(F ) | ยท k๐นkโˆš

๐‘๐‘๐‘๐‘0 +๐‘‚

๐‘›2๐œ†ฮ”/2

2

. (2.67) Finally, we have the following: There exists some fixed ๐‘—

0 โˆˆ [๐‘›]such that for ๐‘= ๐‘0, we have

๐œŽ๐‘ ๐‘(Bฮ”(F )๐‘ร— Bฮ”(F )๐‘) =|Bฮ”(F )๐‘| ยท hhโ„“|๐ธ๐น

๐œ(๐‘—

0)|๐‘Ÿii๐‘๐‘+๐‘‚

๐‘›2๐œ†ฮ”/2

2

.(2.68) For ๐‘ โ‰  ๐‘0, we have

๐œŽ๐‘ ๐‘0(Bฮ”(F )๐‘ร— Bฮ”(F )๐‘)

โ‰ค |Bฮ”(F ) | ยท k๐นkโˆš

๐‘๐‘๐‘๐‘0+๐‘‚

๐‘›2๐œ†ฮ”/2

2

. (2.69) We observe that the first expression on the right-hand side of the above bound scales linearly with the support size of F instead of the support size of F๐‘, as may be naively expected. For (2.6.7), this is due to a cancellation of phases, see (2.6.4) below.

Proof. For the proof of (2.6.7), let us first define the vectors

|ฮจ(๐‘)i = โˆ‘๏ธ

๐‘—โˆˆBฮ”(F )

๐‘’๐‘– ๐‘ ๐‘—|ฮฆ๐‘— , ๐‘i. Then we can write

|๐œŽ๐‘ ๐‘0(Bฮ”(F ) ร— Bฮ”(F )) | = |hฮจ(๐‘0) |๐น|ฮจ(๐‘)i|

โ‰ค k๐นk ยท kฮจ(๐‘) k ยท kฮจ(๐‘0) k , (2.70) where the last inequality follows by Cauchy-Schwarz along with the definition of the operator normk๐นk. The vector norm is given by

kฮจ(๐‘) k2 = โˆ‘๏ธ

๐‘— , ๐‘—0โˆˆBฮ”(F )

๐‘’๐‘– ๐‘(๐‘—โˆ’๐‘—

0)hฮฆ๐‘—0, ๐‘|ฮฆ๐‘— , ๐‘i,

and together with Equation (i), we get

kฮจ(๐‘) k2= |Bฮ”(F ) | ยท๐‘๐‘+๐‘‚(๐œ†ฮ”/2

2 ) . Taking the square root and inserting into Equation (2.6.4), we get

|๐œŽ๐‘ ๐‘0(Bฮ”(F ) ร— Bฮ”(F )) | =k๐นk

โˆš๏ธƒ

|Bฮ”(F ) | ยท๐‘๐‘+๐‘‚(๐œ†ฮ”/2

2 ) โˆš๏ธƒ

|Bฮ”(F ) | ยท๐‘๐‘0 +๐‘‚(๐œ†ฮ”/2

2 )

=|Bฮ”(F ) | ยท k๐นkโˆš

๐‘๐‘๐‘๐‘0 +๐‘‚

โˆš๏ธ|Bฮ”(F ) | ยท๐œ†ฮ”/2

2

. Using the bound

Bฮ”(F )

โ‰ค 5๐‘‘ฮ”< ๐‘›gives (2.6.7).

Next, let us look at (2.6.7). We have ๐œŽ๐‘ ๐‘0(Bฮ”(F ) ร— Bฮ”(F )๐‘) = โˆ‘๏ธ

๐‘—โˆˆBฮ”(F )

โˆ‘๏ธ

๐‘—0โˆˆBฮ”(F )๐‘

๐‘’๐‘–(๐‘ ๐‘—โˆ’๐‘

0๐‘—0)hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i= ฮฃ1+ฮฃ2,

where we define

ฮฃ1 := โˆ‘๏ธ

๐‘—โˆˆBฮ”(F )

โˆ‘๏ธ

๐‘—0โˆˆB2ฮ”(F )\Bฮ”(F )

๐‘’๐‘–(๐‘ ๐‘—โˆ’๐‘

0๐‘—0)hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i,

and

ฮฃ2:= โˆ‘๏ธ

๐‘—โˆˆBฮ”(F )

โˆ‘๏ธ

๐‘—0โˆˆB2ฮ”(F )๐‘

๐‘’๐‘–(๐‘ ๐‘—โˆ’๐‘

0๐‘—0)hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i.

The norm of the second sum can be bounded using Lemma 2.6.5(iiia), giving us

|ฮฃ2| โ‰ค โˆ‘๏ธ

๐‘—โˆˆBฮ”(F )

โˆ‘๏ธ

๐‘—0โˆˆB2ฮ”(F )๐‘

|hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i|

โ‰ค |Bฮ”(F ) | ยท |B2ฮ”(F )๐‘| ยท๐‘‚(๐œ†ฮ”/2

2 )

=๐‘‚(๐‘›2๐œ†ฮ”/2

2 ) , (2.71)

where we again use the trivial bound

Bฮ”(F ) ,

B2ฮ”(F )๐‘

โ‰ค ๐‘›in the last line. Using Lemma 2.6.5 (iiib), we can express the first sum, with some fixed๐‘ž โˆˆ [๐‘›], as

ฮฃ1= โˆ‘๏ธ

๐‘—โˆˆBฮ”(F )

โˆ‘๏ธ

๐‘—0โˆˆB2ฮ”(F )\Bฮ”(F )

๐‘’๐‘–(๐‘ ๐‘—โˆ’๐‘

0๐‘—0)hhโ„“|๐ธ๐น(๐œ(๐‘ž))(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0) |๐‘Ÿii + |Bฮ”(F ) | ยท |B2ฮ”(F )\Bฮ”(F ) | ยท๐‘‚(๐œ†ฮ”/2

2 )

= โˆ‘๏ธ

๐‘—โˆˆBฮ”(F )

โˆ‘๏ธ

๐‘—0โˆˆB2ฮ”(F )\Bฮ”(F )

๐‘’๐‘–(๐‘ ๐‘—โˆ’๐‘

0๐‘—0)hhโ„“|๐ธ๐น(๐œ(๐‘ž))(๐‘— , ๐‘,ห† ๐‘—ห†0, ๐‘0) |๐‘Ÿii +๐‘‚

๐‘›2๐œ†ฮ”/2

2

, where the indices ห†๐‘— and ห†๐‘—0are defined as in Lemma 2.6.5. To bound the remaining sum, let us introduce the states

|ฮจ1(๐‘)i := โˆ‘๏ธ

๐‘—โˆˆBฮ”(F )

๐‘’๐‘– ๐‘ ๐‘—|ฮฆ๐ฟ

ห†

๐‘— , ๐‘i, and

|ฮจ2(๐‘0)i := โˆ‘๏ธ

๐‘—0โˆˆB2ฮ”(F )\Bฮ”(F )

๐‘’๐‘– ๐‘

0๐‘—0

|ฮฆ๐ฟ

ห† ๐‘—0, ๐‘0i,

where we set๐ฟ =|supp(๐น(๐œ(๐‘ž))) |. Here,|ฮฆ๐ฟ๐‘— , ๐‘iare as defined in (2.6.3). Then we can write

ฮฃ1=hฮจ2(๐‘0) |๐น(๐œ(๐‘ž)) |ฮจ1(๐‘)i +๐‘‚

๐‘›2๐œ†ฮ”/2

2

.

By the Cauchy-Schwarz inequality and the orthogonality relations (2.6.4), we have

|hฮจ2(๐‘0) |๐น(๐œ(๐‘ž)) |ฮจ1(๐‘)i| โ‰ค k๐นk ยท kฮจ1(๐‘) k ยท kฮจ2(๐‘0) k

= k๐นk

โˆš๏ธƒ

๐‘๐‘๐‘๐‘0|Bฮ”(F ) | ยท |B2ฮ”(F )\Bฮ”(F ) | , where we bound the states|ฮจ1,2(๐‘)iin exactly the same way as we did in the proof of (2.6.7). Using the fact that|Bฮ”(F ) |,|B2ฮ”(F )\Bฮ”(F ) | โ‰ค |B2ฮ”(F ) |, we conclude that

|ฮฃ1| โ‰ค |B2ฮ”(F ) | ยท k๐นkโˆš

๐‘๐‘๐‘๐‘0+๐‘‚

๐‘›2๐œ†ฮ”/2

2

.

Combining this with (2.6.4) gives the claim (2.6.7). The proof of (2.6.7) is analo- gous, using Lemma 2.6.5(iv).

Finally, consider (2.6.7) and (2.6.7). We have ๐œŽ๐‘ ๐‘0(Bฮ”(F )๐‘ร— Bฮ”(F )๐‘) = โˆ‘๏ธ

๐‘—โˆˆBฮ”(F )๐‘

๐‘’๐‘– ๐‘—(๐‘โˆ’๐‘

0)hฮฆ๐‘— , ๐‘0|๐น|ฮฆ๐‘— , ๐‘i

| {z }

=:ฮ˜1

+ โˆ‘๏ธ

๐‘— , ๐‘—0โˆˆBฮ”(F )๐‘ ๐‘—โ‰ ๐‘—0

๐‘’๐‘–(๐‘ ๐‘—โˆ’๐‘

0๐‘—0)hฮฆ๐‘—0, ๐‘0|๐น|ฮฆ๐‘— , ๐‘i

| {z }

=:ฮ˜2

.

Using Lemma 2.6.5(iia), we have

|ฮ˜2| โ‰ค k๐นk ยท๐‘‚(๐‘›2๐œ†ฮ”/2

2 ). (2.72)

On the other hand, by Lemma 2.6.5(iib), or more precisely its refinement in the form of Equation (2.6.6) from Lemma 2.6.6, we have

ฮ˜1=ยฉ

ยญ

ยซ

โˆ‘๏ธ

๐‘—โˆˆBฮ”(F )๐‘

๐‘’๐‘– ๐‘—(๐‘โˆ’๐‘

0)ยช

ยฎ

ยฌ

hhโ„“|๐ธ๐น(๐œ(๐‘—

0))|๐‘Ÿii๐‘๐‘ ๐‘0 +๐‘‚(๐‘›๐œ†ฮ”/2

2 ) for some fixed ๐‘—

0 โˆˆ Bฮ”(F )๐‘. For ๐‘0 = ๐‘, the sum above is given trivially by ร

๐‘—โˆˆBฮ”(F )๐‘1=

Bฮ”(F )๐‘

. For๐‘ โ‰  ๐‘0, we haveร

๐‘—โˆˆ[๐‘›]๐‘’๐‘– ๐‘—(๐‘โˆ’๐‘

0) =0, and hence

โˆ‘๏ธ

๐‘—โˆˆBฮ”(F )๐‘

๐‘’๐‘– ๐‘—(๐‘โˆ’๐‘

0)

=

โˆ‘๏ธ

๐‘—โˆˆBฮ”(F )

๐‘’๐‘– ๐‘—(๐‘โˆ’๐‘

0)

โ‰ค |Bฮ”(F ) |. (2.73)

Therefore, for ๐‘ =๐‘0, we have ฮ˜1=

Bฮ”(F )๐‘

hhโ„“|๐ธ๐น(๐œ(๐‘—

0))|๐‘Ÿii๐‘๐‘+๐‘‚(๐‘›๐œ†ฮ”/2

2 ) , and for๐‘ โ‰  ๐‘0, we have

|ฮ˜1| โ‰ค

Bฮ”(F )

hhโ„“|๐ธ๐น(๐œ(๐‘—

0))|๐‘Ÿii๐‘๐‘ ๐‘0+๐‘‚(๐‘›๐œ†ฮ”/2

2 )

โ‰ค

Bฮ”(F )

ยท k๐นk๐‘๐‘ ๐‘0+๐‘‚(๐‘›๐œ†ฮ”/2

2 ). Note that we also have๐‘๐‘ ๐‘0 โ‰ค โˆš

๐‘๐‘๐‘๐‘0by the Cauchy-Schwarz inequality. Combining these results with (2.6.4) proves claims (2.6.7) and (2.6.7).