• Tidak ada hasil yang ditemukan

Transfer Matrix Techniques

QUANTUM ERROR-DETECTION AT LOW ENERGIES

2.4 On Expectation Values of Local Operators in MPS

2.4.2 Transfer Matrix Techniques

Here we establish some essential statements for the analysis of transfer operators. In Section 2.4.2, we introduce generalized (non-standard) transfer operators: these can be used to express the matrix elements of the form hΞ¨|𝐹|Ξ¨0i of local operators 𝐹 with respect to pairs of MPS (Ξ¨,Ξ¨0). In Section 2.4.2, we establish bounds on the norm of such operators. Relevant quantities appearing in these bounds are the second largest eigenvalueπœ†

2of the transfer matrix, as well as the sizes of its Jordan blocks.

More General and Mixed Transfer Operators

Consider a single-site operator 𝑍 ∈ B (Cp). The generalized transfer matrix𝐸𝑍 ∈ B (C𝐷 βŠ—C𝐷)is defined as

𝐸𝑍 =βˆ‘οΈ

𝑛,π‘š

hπ‘š|𝑍|𝑛iπ΄π‘š βŠ— 𝐴𝑛 . (2.17) We further generalize this as follows: if 𝑍

1, . . . , 𝑍𝑑 ∈ B (Cp), then 𝐸𝑍

1βŠ—Β·Β·Β·βŠ—π‘π‘‘ ∈ B (C𝐷 βŠ—C𝐷)is the operator

𝐸𝑍

1βŠ—Β·Β·Β·βŠ—π‘π‘‘ =𝐸𝑍

1Β· Β· ·𝐸𝑍

𝑑 .

This definition extends by linearity to any operator 𝐹 ∈ B ( (Cp)βŠ—π‘‘), and gives a corresponding operator𝐸𝐹 ∈ B (C𝐷 βŠ—C𝐷). The tensor network diagrams for these definitions are given in Figure 2.2, and the composition of the corresponding maps is illustrated in Figure 2.3.

In the following, we are interested in inner productshΞ¨(𝐴, 𝑋 , 𝑛) |Ξ¨(𝐡, π‘Œ , 𝑛)i of two MPS, defined by local tensors 𝐴 and 𝐡, with boundary matrices 𝑋 andπ‘Œ, which may have different bond dimensions 𝐷

1and 𝐷

2, respectively. To analyze these, it is convenient to introduce an β€œoverlap” transfer operator 𝐸 = 𝐸(𝐴, 𝐡) which now depends on both MPS tensors 𝐴and𝐡. First, we define𝐸 ∈ B (C𝐷1 βŠ—C𝐷2) by

𝐸 =

p

βˆ‘οΈ

π‘š=1

π΄π‘š βŠ— π΅π‘š .

Figure 2.3: The product 𝐸𝑍

1βŠ—π‘

2 = 𝐸𝑍

1𝐸𝑍

2 of two transfer operators. Left- multiplication by an operator corresponds to attaching the corresponding diagram on the left.

The definition of 𝐸𝑍 for 𝑍 ∈ B (Cp) is analogous to Equation (2.4.2), but with appropriate substitutions. We set

𝐸𝑍 =βˆ‘οΈ

𝑛,π‘š

hπ‘š|𝑍|𝑛iπ΄π‘š βŠ— 𝐡𝑛 .

Starting from this definition, the expression𝐸𝐹 ∈ B (C𝐷1βŠ—C𝐷2)for𝐹 ∈ B ( (Cp)βŠ—π‘‘) is then defined analogously as before.

Norm Bounds on Generalized Transfer Operators

A first key observation is that the (operator) norm of powers of any transfer operator scales (at most) as a polynomial in the number of physical spins, with the degree of the polynomial determined by the size of the largest Jordan block. We need these bounds explicitly and start with the following simple bounds.

Below, we often consider families of parameters depending on the system size 𝑛, i.e., the total number of spins. We writeπ‘š β„Žas a shorthand for a parameterπ‘š

β€œbeing sufficiently large” compared to another parameter β„Ž. More precisely, this signifies that we assume that |β„Ž/π‘š| β†’ 0 for𝑛 β†’ ∞, and that by a corresponding choice of a sufficiently large𝑛, the term |β„Ž/π‘š|can be made sufficiently small for a given bound to hold. Oftentimesβ„Žwill in fact be constant, withπ‘š β†’ ∞as𝑛→ ∞. Lemma 2.4.1. For π‘š > β„Ž, the Frobenius norm of the π‘š-th power (πœ† 𝐼+𝑁)π‘š of a Jordan blockπœ† 𝐼 +𝑁 ∈ B (Cβ„Ž) with eigenvalueπœ†, such that |πœ†| ≀ 1, and size β„Ž is bounded by

k (πœ† 𝐼+𝑁)π‘šk𝐹 ≀ 3β„Ž3/2π‘šβ„Žβˆ’1|πœ†|π‘šβˆ’(β„Žβˆ’1) . (2.18) Furthermore,

k (πœ† 𝐼+𝑁)π‘š k ≀4π‘šβ„Žβˆ’1 forπ‘š β„Ž . (2.19)

Proof. Forβ„Ž =0 the claim is trivial. Assume thatβ„Ž >1. Because π‘β„Ž =0 andπ‘π‘Ÿ has exactlyβ„Žβˆ’π‘Ÿ non-zero entries forπ‘Ÿ < β„Ž, we have

k (πœ† πΌβ„Ž+𝑁)π‘šk𝐹 ≀

β„Žβˆ’1

βˆ‘οΈ

π‘Ÿ=0

π‘š π‘Ÿ

|πœ†|π‘šβˆ’π‘Ÿ kπ‘π‘Ÿk𝐹

≀ |πœ†|π‘šΒ· |πœ†|βˆ’(β„Žβˆ’1)

β„Žβˆ’1

βˆ‘οΈ

π‘Ÿ=0

π‘š π‘Ÿ

(β„Žβˆ’π‘Ÿ)1/2

≀ β„Ž1/2|πœ†|π‘š Β· |πœ†|βˆ’(β„Žβˆ’1)

β„Žβˆ’1

βˆ‘οΈ

π‘Ÿ=0

π‘š π‘Ÿ

.

Since the right hand side is maximal forπ‘Ÿ =β„Žβˆ’1, and the binomial coefficient can be bounded from above by π‘šπ‘Ÿ

≀ π‘’π‘š

π‘Ÿ

π‘Ÿ

≀ 3Β·π‘šπ‘Ÿ, we obtain

β„Žβˆ’1

βˆ‘οΈ

π‘Ÿ=0

π‘š π‘Ÿ

≀ 3β„ŽΒ·π‘šβ„Žβˆ’1, hence, the first claim follows.

For the second claim, recall that the entries of theπ‘š-th power of a Jordan block are ( (πœ† πΌβ„Ž+𝑁)π‘š)𝑝,π‘ž =





ο£²



ο£³

π‘š π‘žβˆ’π‘

πœ†π‘š+(π‘βˆ’π‘ž) ifπ‘ž β‰₯ 𝑝

0 otherwise

(2.20)

for𝑝, π‘ž ∈ [β„Ž]. This means that if|πœ†|=1, the maximum matrix element| ( (πœ† πΌβ„Ž+𝑁)π‘š)𝑝,π‘ž|=

π‘š β„Žβˆ’1

is attained for (𝑝, π‘ž) = (1, β„Ž). Using the Cauchy-Schwarz inequality, it is straightforward to check that

k (πœ† 𝐼+𝑁)π‘šk ≀ β„Žmax

𝑝,π‘ž

| (πœ† 𝐼+𝑁)π‘šπ‘,π‘ž| =β„ŽΒ· π‘š

β„Žβˆ’1

= β„Ž (β„Žβˆ’1)!

π‘š! (π‘šβˆ’ (β„Žβˆ’1))!

. Since (β„Žβˆ’β„Ž1)! ≀ 2 forβ„Ž ∈Nand

π‘š! (π‘šβˆ’ (β„Žβˆ’1))!

=π‘šβ„Žβˆ’1(1+𝑂(β„Ž/π‘š)) ≀2π‘šβ„Žβˆ’1 forπ‘š β„Ž , the claim follows.

Now, we apply Lemma 2.4.1 to (standard and mixed) transfer operators. It is convenient to state these bounds as follows. The first two statements are about the scaling of the norms of powers of 𝐸; the last statement is about the magnitude of matrix elements in powers of𝐸.

Lemma 2.4.2. Let𝜌(𝐸)denote the spectral radius of a matrix𝐸 ∈ B (C𝐷1βŠ—C𝐷2). (i) Suppose𝜌(𝐸) ≀ 1. Letβ„Žβˆ—be the size of the largest Jordan block(s) of𝐸. Then

kπΈπ‘šk ≀ 4π‘šβ„Žβˆ’1 forπ‘š β„Ž . (ii) If𝜌(𝐸) <1, then

kπΈπ‘šk𝐹 ≀ 𝜌(𝐸)π‘š/2 forπ‘š 𝐷

1𝐷

2. We will often usekπΈπ‘šk𝐹 ≀1as a coarse bound.

(iii) Suppose that 𝜌(𝐸) =1. Let β„Žβˆ— denote the size of the largest Jordan block(s) in 𝐸. For 𝑝, π‘ž ∈ [𝐷

1𝐷

2], let (πΈπ‘š)𝑝,π‘ž denote the matrix element of πΈπ‘š with respect to the standard computational basis {|𝑝i}𝐷𝑝=1𝐷2

1 . Then the following holds: for all 𝑝, π‘ž ∈ [𝐷

1𝐷

2], there is a constant 𝑐𝑝,π‘ž with 𝑐𝑝,π‘ž = 𝑂(1) as π‘šβ†’ ∞and someβ„“ ∈ {1, . . . , β„Žβˆ—}such that

| (πΈπ‘š)𝑝,π‘ž|=π‘π‘šβ„“βˆ’1(1+𝑂(π‘šβˆ’1)) .

Proof. Forπœ†βˆˆspec(𝐸), let us denote byπœ† πΌβ„Ž(πœ†)+π‘β„Ž(πœ†)the associated Jordan block, whereβ„Ž(πœ†)is its size. Then

kπΈπ‘šk = max

πœ†βˆˆspec(𝐸)

k (πœ† πΌβ„Ž(πœ†)+π‘β„Ž(πœ†))π‘šk ≀ max

πœ†βˆˆspec(𝐸)

k (πœ† πΌβ„Ž(πœ†) +π‘β„Ž(πœ†))π‘šk𝐹

where we assumed thatπ‘š β„Žβˆ— β‰₯ β„Ž(πœ†), |πœ†| ≀ 1 and (2.4.1). This shows claim (i).

Claim (ii) immediately follows from (2.4.1) and the observation thatπ‘šπ·1𝐷

2βˆ’1𝜌(𝐸)π‘š = 𝑂(𝜌(𝐸)π‘š/2).

For the proof of statement (iii), observe that matrix elements (2.4.2) of a Jordan block (matrix) with eigenvalueπœ†(with|πœ†|=1) of sizeβ„Žscale as

( (πœ† 𝐼+𝑁)π‘š)𝑝,π‘ž

= 1 (π‘žβˆ’ 𝑝)!

π‘š! (π‘šβˆ’ (π‘žβˆ’π‘))!

= 1 (π‘žβˆ’ 𝑝)!

π‘šπ‘žβˆ’π‘(1+𝑂(1/π‘š)) forπ‘ž > 𝑝and are constant otherwise. Becauseπ‘žβˆ’ 𝑝 ∈ {1, . . . , β„Žβˆ’1}whenπ‘ž > 𝑝, this is of the form π‘šβ„“(1+𝑂(1/π‘š)) for some β„“ ∈ [β„Žβˆ’ 1]. Since πΈπ‘š is similar (as a matrix) to a direct sum of such powers of Jordan blocks, and the form of this scaling does not change under linear combination of matrix coefficients, the claim follows.

Now let us consider the case where 𝐸 = |β„“iihhπ‘Ÿ| βŠ•πΈΛœ is the transfer operator of an injective MPS, normalized with maximum eigenvalue 1. Let πœ†

2 < 1 denote the second largest eigenvalue. Without loss of generality, we can take the MPS to be in canonical form, so that𝐸 has a unique right fixed-point given by the identity matrix 𝐼 and a unique left fixed-point given by some positive-definite diagonal matrixΞ› with unit trace. We can then write the Jordan decomposition of the transfer matrix as

𝐸 =|𝐼iihhΞ›| βŠ•πΈ ,˜ (2.21)

where |𝐼ii and |Ξ›ii denotes the vectorization of 𝐼 and Ξ›, respectively, and where

˜

𝐸 denotes the remaining Jordan blocks of 𝐸. Note that powers of 𝐸 can then be expressed as

πΈπ‘š =|𝐼iihhΞ›| βŠ•πΈΛœπ‘š .

We can bound the Frobenius norm of the transfer matrix as

kπΈπ‘šk2𝐹 =k |𝐼iihhΞ›| βŠ• πΈΛœπ‘šk2𝐹 =tr(𝐼)tr(Ξ›2) + kπΈΛœπ‘šk2𝐹 ≀ 𝐷+ kπΈΛœπ‘šk2𝐹, where tr(𝐼) =𝐷and tr(Ξ›2) ≀tr(Ξ›)2=1. In particular, since𝜌(𝐸˜) =πœ†

2, we obtain from Lemma 2.4.2(ii) that

kπΈΛœπ‘šk𝐹 β‰€πœ†π‘š/2

2 forπ‘š 𝐷 . (2.22)

This implies the following statement:

Lemma 2.4.3. The transfer operator𝐸 of an injective MPS satisfies kπΈπ‘šk𝐹 ≀

√

𝐷+1 forπ‘š 𝐷 . (2.23)

We also need a bound on the norm k𝐸†

𝐹(πœ“

1βŠ— πœ“

2) k, where 𝐸 is a mixed transfer operator,𝐹 ∈ B ( (Cp)βŠ—π‘‘) is an operator acting on𝑑 sites, and whereπœ“π‘— ∈C𝐷𝑗 for

𝑗 =1,2.

Lemma 2.4.4. Let𝐸

1= 𝐸(𝐴)and𝐸

2=𝐸(𝐡) be the transfer operators associated with the tensors 𝐴 and 𝐡, respectively, with bond dimensions 𝐷

1 and 𝐷

2. Let 𝐸 = 𝐸(𝐴, 𝐡) ∈ B (C𝐷1 βŠ— C𝐷2) be the combined transfer operator. Let πœ“

1 ∈ C𝐷1 andπœ“

2∈C𝐷2 be unit vectors. Then k (𝐸𝐹)†(πœ“

1βŠ—πœ“

2) k ≀ k𝐹k

βˆšοΈƒ

k𝐸𝑑

1k Β· k𝐸𝑑

2k , (2.24)

k𝐸𝐹(πœ“

1βŠ—πœ“

2) k ≀ k𝐹k

βˆšοΈƒ

k𝐸𝑑

1k Β· k𝐸𝑑

2k , (2.25)

k𝐸𝐹k𝐹 ≀ 𝐷

1𝐷

2k𝐹k

βˆšοΈƒ

k𝐸𝑑

1k Β· k𝐸𝑑

2k , (2.26)

for all𝐹 ∈ B ( (Cp)βŠ—π‘‘).

Proof. Writing matrix elements in the computational basis as 𝐹𝑗

1···𝑗𝑑,𝑖

1···𝑖𝑑 :=h𝑗

1Β· Β· ·𝑗𝑑|𝐹|𝑖

1Β· Β· ·𝑖𝑑i, we have

𝐸𝐹 = βˆ‘οΈ

(𝑖

1,...,𝑖𝑑),(𝑗

1,..., 𝑗𝑑)

𝐹𝑗

1···𝑗𝑑,𝑖

1···𝑖𝑑(𝐴𝑗

1 βŠ— 𝐡𝑗

1) (𝐴𝑗

2 βŠ—π΅π‘—

2) Β· Β· Β· (𝐴𝑗

𝑑 βŠ— 𝐡𝑗

𝑑). Therefore,

(𝐸𝐹)† = βˆ‘οΈ

(𝑖

1,...,𝑖𝑑),(𝑗

1,..., 𝑗𝑑)

𝐹𝑗

1···𝑗𝑑,𝑖

1···𝑖𝑑(𝐴†

𝑗𝑑

βŠ—π΅β€ 

𝑗𝑑

) Β· Β· Β· (𝐴†

𝑗2

βŠ— 𝐡†

𝑗2

) (𝐴†𝑗

1 βŠ—π΅β€ 

𝑗1

)

= βˆ‘οΈ

(𝑖

1,...,𝑖𝑑),(𝑗

1,..., 𝑗𝑑)

(πœ‹ 𝐹 πœ‹β€ )𝑗𝑑···𝑗

1,𝑖𝑑···𝑖1(𝐴†

𝑗𝑑

βŠ— 𝐡†

𝑗𝑑

) Β· Β· Β· (𝐴†

𝑗2

βŠ—π΅β€ 

𝑗2

) (𝐴†

𝑗1

βŠ— 𝐡†

𝑗1

) ,

whereπœ‹is the permutation which maps the 𝑗-th factor in the tensor product(Cp)βŠ—π‘› to the (π‘›βˆ’ 𝑗 +1)-th factor, and where 𝐹 is obtained by complex conjugating the matrix elements in the computational basis. This means that

(𝐸𝐹)†= 𝐸†

πœ‹ 𝐹 πœ‹β€ 

, (2.27)

with 𝐸† being the mixed transfer operator 𝐸† = 𝐸(𝐴†, 𝐡†) obtained by replacing each𝐴𝑗 (respectively𝐡𝑗) with its adjoint.

Now consider

k (𝐸𝐹)†(πœ“

1βŠ—πœ“

2) k2= (hπœ“

1| βŠ— hπœ“

2|)𝐸𝐹(𝐸𝐹)†(|πœ“

1i βŠ— |πœ“

2i)

= (hπœ“

1| βŠ— hπœ“

2|)𝐸𝐹𝐸†

πœ‹ 𝐹 πœ‹β€ 

(|πœ“

1i βŠ— |πœ“

2i) . This can be represented diagrammatically as

k (𝐸𝐹)†(πœ“

1βŠ—πœ“

2) k2= .

In particular, we have k (𝐸𝐹)†(πœ“

1βŠ—πœ“

2) k2 = hπœ’| (𝐹 βŠ—πΌβŠ—π‘‘) (πΌβŠ—π‘‘ βŠ—πœ‹ 𝐹 πœ‹β€ ) |πœ‘i, (2.28)

whereπœ‘, πœ’βˆˆ (Cp)βŠ—2𝑑 are defined as

|πœ™i= ,

|πœ’i= .

It is straightforward to check that kπœ’k2= (hπœ“

1| βŠ— hπœ“

1|)𝐸𝑑

1(𝐸†

1)𝑑(|πœ“

1i βŠ— |πœ“

1i) , kπœ‘k2= (hπœ“

2| βŠ— hπœ“

2|)𝐸𝑑

2(𝐸†

2)𝑑(|πœ“

2i βŠ— |πœ“

2i) . Since k (𝐸†

𝑗)𝑑k = k𝐸𝑑

𝑗k for 𝑗 = 1,2, it follows with the submultiplicativity of the operator norm that

kπœ’k2 ≀ k𝐸𝑑

1k2, kπœ‘k2 ≀ k𝐸𝑑

2k2. (2.29)

Applying the Cauchy-Schwarz inequality to (2.4.2) yields k (𝐸𝐹)†(πœ“

1βŠ—πœ“

2) k2≀ k (πΉβ€ βŠ— πΌβŠ—π‘‘)πœ’k Β· k (πΌβŠ—π‘‘ βŠ—πœ‹ 𝐹 πœ‹β€ )πœ‘k

≀ k𝐹k2Β· kπœ’k Β· kπœ‘k,

where we used the fact that the operator norm satisfies k𝐹†k = k𝐹k = k𝐹k and k𝐼 βŠ— 𝐴k =k𝐴k. The claim (2.4.4) follows from this and (2.4.2).

The claim (2.4.4) follows analogously by using Equation (2.4.2). Finally, the claim (2.4.4) follows from (2.4.4) and

k𝐸𝐹k2 = βˆ‘οΈ

𝛼1,𝛼

2∈[𝐷

1]

βˆ‘οΈ

𝛽1, 𝛽

2∈[𝐷

2]

| (h𝛼

1| βŠ— h𝛽

1|)𝐸𝐹(|𝛼

2i βŠ— |𝛽

2i) |2

≀ βˆ‘οΈ

𝛼1,𝛼

2∈[𝐷1]

βˆ‘οΈ

𝛽1, 𝛽

2∈[𝐷

2]

k𝐸𝐹(|𝛼

2i βŠ— |𝛽

2i) k2

≀ 𝐷2

1𝐷2

2max

𝛼, 𝛽

k𝐸𝐹(|𝛼

2i βŠ— |𝛽

2i) k2, where we employed the orthonormal basis{|𝛼i}π›Όβˆˆ[𝐷

1] and{|𝛽i}π›½βˆˆ[𝐷

2] forC𝐷1and C𝐷2, respectively, and applied the Cauchy-Schwarz inequality.

The main result of this section is the following upper bound on the matrix elements of geometrically𝑑-local operators with respect to two MPS.

Theorem 2.4.5. Let|Ψ1i= |Ψ(𝐴

1, 𝑋

1, 𝑛)i,|Ξ¨2i= |Ξ¨(𝐴

2, 𝑋

2, 𝑛)i ∈ (Cp)βŠ—π‘›be two MPS with bond dimensions𝐷

1and𝐷

2, where

𝑋𝑗 =|πœ‘π‘—ihπœ“π‘—|, with kπœ‘π‘—k = kπœ“π‘—k =1 for 𝑗 =1,2, are rank-one operators. Let𝐸 =𝐸(𝐴

1, 𝐴

2) ∈ B (C𝐷1 βŠ—C𝐷2) denote the combined transfer operator defined by the MPS tensors 𝐴

1 and 𝐴

2, β„Žβˆ—

𝑗 the size of the largest Jordan block of𝐸𝑗 =𝐸(𝐴𝑗) for 𝑗 =1,2, andβ„Žβˆ—the size of the largest Jordan block of 𝐸 = 𝐸(𝐴

1, 𝐴

2). Assume that the spectral radii 𝜌(𝐸), 𝜌(𝐸

1), and 𝜌(𝐸

2) are contained in [0,1]. Then, for any𝐹 ∈ B ( (Cp)βŠ—π‘‘), we have

|hΞ¨1| (πΉβŠ— 𝐼(

Cp)βŠ—π‘›βˆ’π‘‘) |Ξ¨2i| ≀ 16Β· k𝐹k ·𝑑(β„Ž

βˆ— 1+β„Žβˆ—

2βˆ’2)/2(π‘›βˆ’π‘‘)β„Žβˆ—βˆ’1 for𝑑 𝐷

1, 𝐷

2and (π‘›βˆ’π‘‘) 𝐷

1𝐷

2. Proof. The matrix elements𝛼= hΞ¨1| (𝐹 βŠ—πΌ(

Cp)βŠ—π‘›βˆ’π‘‘) |Ξ¨2iof interest can be written as

𝛼= (hπœ“

1| βŠ— hπœ“

2|)πΈπΉπΈπ‘›βˆ’π‘‘(|πœ‘

1i βŠ— |πœ‘

2i) . By the Cauchy-Schwarz inequality, we have

|𝛼| ≀ k𝐸†

𝐹(|πœ“

1i βŠ— |πœ“

2i) k Β· kπΈπ‘›βˆ’π‘‘(|πœ‘

1i βŠ— |πœ‘

2i k

≀ k𝐹k

βˆšοΈƒ

k𝐸𝑑

1k Β· k𝐸𝑑

2k Β· kπΈπ‘›βˆ’π‘‘k,

by the definition of the operator norm and Lemma 2.4.4. Then, the claim follows from Lemma 2.4.2 (i), which provides the bounds

k𝐸𝑑

𝑗k ≀ 4π‘‘β„Ž

βˆ— π‘—βˆ’1

for 𝑗 =1,2, kπΈπ‘›βˆ’π‘‘k ≀ 4(π‘›βˆ’π‘‘)β„Žβˆ—βˆ’1

by our assumptions : 𝜌(𝐸𝑗) ∈ [0,1],𝜌(𝐸) ∈ [0,1], and𝑑 𝐷𝑗 β‰₯ β„Žβˆ—

𝑗 for 𝑗 =1,2, as well asπ‘›βˆ’π‘‘ 𝐷

1𝐷

2 β‰₯ β„Žβˆ—.

2.5 No-Go Theorem: Degenerate Ground Spaces of Gapped Hamiltonians