• Tidak ada hasil yang ditemukan

RQAOA on the Ising Ring

Dalam dokumen Quantum Information at High and Low Energies (Halaman 149-155)

OBSTACLES TO STATE PREPARATION AND VARIATIONAL OPTIMIZATION FROM SYMMETRY PROTECTION

D.2 RQAOA on the Ising Ring

Combined with (D.2) and (D.2), we conclude that

argmax(𝑖, 𝑗):𝑖 < 𝑗 |hΨ𝐻(π›½βˆ—, π›Ύβˆ—) |𝑍𝑖𝑍𝑗|Ψ𝐻(π›½βˆ—, π›Ύβˆ—)i| = (π‘–βˆ—, π‘–βˆ—+1) (3.54) for some π‘–βˆ— ∈ Z𝑛. Without loss of generality, assume that π‘–βˆ— = 𝑛 βˆ’ 2. Then, according to (D.2), theRQAOAalgorithm eliminates the variableπ‘₯π‘›βˆ’

1(i.e.,𝑣=π‘›βˆ’1, 𝑓 ={π‘›βˆ’2, π‘›βˆ’1}). By (D.2), this is achieved by imposing the constraint

π‘₯π‘›βˆ’

1=π‘₯π‘›βˆ’

2π½π‘›βˆ’

2 (3.55)

i.e., 𝜎 = π½π‘›βˆ’

2. The resulting reduced graph 𝐺0 = (𝑉0, 𝐸0) has vertex set 𝑉0 = 𝑉\{π‘›βˆ’1}=Zπ‘›βˆ’1and edges

𝐸0={{𝑖, 𝑖+1} |𝑖 ∈Z𝑛\{π‘›βˆ’2}} βˆͺ {{π‘›βˆ’2,0}}

={{𝑖, 𝑖+1} |𝑖 ∈Zπ‘›βˆ’2} ,

and it is easy to check that the new cost function takes the form 𝐢0(π‘₯) =1+ βˆ‘οΈ

π‘˜βˆˆZπ‘›βˆ’1

𝐽0

π‘˜π‘₯π‘˜π‘₯π‘˜+

1 (3.56)

with

𝐽0

𝑖 =





ο£²



ο£³

𝐽𝑖 when𝑖 β‰ π‘›βˆ’2 π½π‘›βˆ’

2π½π‘›βˆ’

1 when𝑖 =π‘›βˆ’2

. (3.57)

We note that the transformation (D.2) preserves the parity of the couplings in the sense that

Γ–

π‘˜βˆˆZ𝑛

π½π‘˜ = Γ–

π‘˜βˆˆZπ‘›βˆ’1

𝐽0

π‘˜ . (3.58)

Inductively, theRQAOAthus eliminates variablesπ‘₯π‘›βˆ’

1, π‘₯π‘›βˆ’

2, . . . , π‘₯𝑛

𝑐while imposing the constraints (cf. (D.2))

π‘₯π‘›βˆ’

1=π‘₯π‘›βˆ’

2π½π‘›βˆ’

2

π‘₯π‘›βˆ’

2=π‘₯π‘›βˆ’

3𝐽0

π‘›βˆ’3

.. . arriving at the cost function𝐢𝑛

𝑐(π‘₯)associated with an Ising chain of length𝑛𝑐having couplings belonging to {1,βˆ’1}. Because of (D.2) and because (D.2) is frustrated

if and only if Î

π‘˜βˆˆZπ‘›π½π‘˜ = βˆ’1, we conclude that any maximum π‘₯βˆ— ∈ {1,βˆ’1}𝑛𝑐 of 𝐢𝑛

𝑐(π‘₯)satisfies

𝐢𝑛

𝑐(π‘₯βˆ—) =





ο£²



ο£³

𝑛𝑐+1 if Î

π‘˜βˆˆZπ‘›π½π‘˜ =1 π‘›π‘βˆ’2 otherwise.

Because the cost function acquires a constant energy shift in every variable elimi- nation step (cf. (D.2)), the outputπ‘₯ =πœ‰(π‘₯βˆ—) of theRQAOAalgorithm satisfies

𝐢(π‘₯) =π‘›βˆ’π‘›π‘+𝐢𝑛

𝑐(π‘₯βˆ—)=





ο£²



ο£³

𝑛+1 if Î

π‘˜βˆˆZπ‘›π½π‘˜ =1 π‘›βˆ’2 otherwise. This implies the claim.

BIBLIOGRAPHY

[1] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, β€œClassification of topological quantum matter with symmetries,” Reviews of Modern Physics, vol. 88, p. 035 005, 3 Aug. 2016. doi:10.1103/RevModPhys.88.035005. [2] X. Chen, Z.-C. Gu, and X.-G. Wen, β€œLocal unitary transformation, long-

range quantum entanglement, wave function renormalization, and topological order,”Physical Review B, vol. 82, p. 155 138, 15 Oct. 2010. doi:10.1103/

PhysRevB.82.155138.

[3] A. Y. Kitaev, β€œFault-tolerant quantum computation by anyons,” Annals of Physics, vol. 303, no. 1, pp. 2–30, 2003. doi:10.1016/S0003-4916(02) 00018-0.

[4] S. Bravyi, M. B. Hastings, and F. Verstraete, β€œLieb-Robinson bounds and the generation of correlations and topological quantum order,”Physical Review Letters, vol. 97, p. 050 401, 5 Jul. 2006. doi:10.1103/PhysRevLett.97.

050401.

[5] D. Aharonov and Y. Touati, β€œQuantum circuit depth lower bounds for homo- logical codes,” Oct. 2018. arXiv:1810.03912.

[6] M. H. Freedman and M. B. Hastings, β€œQuantum systems on non-k-hyperfinite complexes: A generalization of classical statistical mechanics on expander graphs,”Quantum Information and Computation, vol. 14, no. 144, 2014.

[7] M. B. Hastings, β€œTrivial low energy states for commuting Hamiltonians, and the quantum pcp conjecture,” Quantum Information and Computation, vol. 13, pp. 393–429, 2013.

[8] L. Eldar and A. W. Harrow, β€œLocal Hamiltonians whose ground states are hard to approximate,” in2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), Oct. 2017, pp. 427–438. doi:10.1109/FOCS.

2017.46.

[9] D. Aharonov, I. Arad, and T. Vidick, β€œThe Quantum PCP Conjecture,”

SIGACT News, vol. 44, no. 2, pp. 47–79, Jun. 2013, issn: 0163-5700. doi:

10.1145/2491533.2491549.

[10] C. Nirkhe, U. Vazirani, and H. Yuen, β€œApproximate Low-Weight Check Codes and Circuit Lower Bounds for Noisy Ground States,” in Proceed- ings of ICALP 2018, I. C. et al., Ed., ser. Leibniz International Proceedings in Informatics (LIPIcs), vol. 107, Dagstuhl, Germany: Dagstuhl–Leibniz- Zentrum fuer Informatik, 2018, 91:1–91:11, isbn: 978-3-95977-076-7. doi:

10.4230/LIPIcs.ICALP.2018.91.

[11] Z.-C. Gu and X.-G. Wen, β€œTensor-entanglement-filtering renormalization approach and symmetry-protected topological order,” Physical Review B, vol. 80, p. 155 131, 15 Oct. 2009. doi:10.1103/PhysRevB.80.155131. [12] F. D. M. Haldane, β€œNonlinear field theory of large-spin Heisenberg antiferro-

magnets: Semiclassically quantized solitons of the one-dimensional easy-axis nΓ©el state,” Physical Review Letters, vol. 50, pp. 1153–1156, 15 Apr. 1983.

doi:10.1103/PhysRevLett.50.1153.

[13] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, β€œRigorous results on valence-bond ground states in antiferromagnets,” Physical Review Letters, vol. 59, pp. 799–802, 7 Aug. 1987. doi:10.1103/PhysRevLett.59.799. [14] N. Schuch, D. PΓ©rez-GarcΓ­a, and I. Cirac, β€œClassifying quantum phases using

matrix product states and projected entangled pair states,” Physical Review B, vol. 84, p. 165 139, 16 Oct. 2011. doi:10.1103/PhysRevB.84.165139. [15] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, β€œEntanglement spec- trum of a topological phase in one dimension,” Physical Review B, vol. 81, p. 064 439, 6 Feb. 2010. doi:10.1103/PhysRevB.81.064439.

[16] T.-C. Wei, I. Affleck, and R. Raussendorf, β€œTwo-dimensional Affleck-Kennedy- Lieb-Tasaki state on the honeycomb lattice is a universal resource for quan- tum computation,”Physical Review A, vol. 86, p. 032 328, 3 Sep. 2012. doi:

10.1103/PhysRevA.86.032328.

[17] J. Miller and A. Miyake, β€œResource quality of a symmetry-protected topo- logically ordered phase for quantum computation,”Physical Review Letters, vol. 114, p. 120 506, 12 Mar. 2015. doi: 10 . 1103 / PhysRevLett . 114 . 120506.

[18] M. Morgenstern, β€œExistence and explicit constructions of q + 1 regular Ra- manujan graphs for every prime power q,”Journal of Combinatorial Theory, Series B, vol. 62, no. 1, pp. 44–62, 1994, issn: 0095-8956. doi:10.1006/

jctb.1994.1054.

[19] E. Farhi, J. Goldstone, and S. Gutmann, β€œA Quantum Approximate Optimiza- tion Algorithm,” Nov. 2014. arXiv:1411.4028.

[20] M. B. Hastings, β€œClassical and Quantum Bounded Depth Approximation Algorithms,” May 2019. arXiv:1905.07047.

[21] M. X. Goemans and D. P. Williamson, β€œImproved approximation algorithms for maximum cut and satisfiability problems using semidefinite program- ming,” J. ACM, vol. 42, no. 6, pp. 1115–1145, Nov. 1995, issn: 0004-5411.

doi:10.1145/227683.227684.

[22] G. Mbeng, R. Fazio, and G. Santoro, β€œQuantum Annealing: A journey through Digitalization, Control, and hybrid Quantum Variational schemes,” Jun. 2019.

arXiv:1906.08948.

[23] F. Barahona, β€œOn the computational complexity of Ising spin glass models,”

Journal of Physics A, vol. 15, no. 10, p. 3241, 1982. doi: 10.1088/0305- 4470/15/10/028.

[24] Z. Wang, S. Hadfield, Z. Jiang, and E. G. Rieffel, β€œQuantum approximate optimization algorithm for MaxCut: A fermionic view,” Physical Review A, vol. 97, p. 022 304, 2 Feb. 2018. doi:10.1103/PhysRevA.97.022304. [25] E. Farhi, D. Gamarnik, and S. Gutmann, β€œThe quantum approximate op-

timization algorithm needs to see the whole graph: A typical case,” 2020.

arXiv:2004.09002.

[26] β€”β€”, β€œThe quantum approximate optimization algorithm needs to see the whole graph: Worst case examples,” 2020. arXiv:2005.08747.

[27] V. G. Vizing, β€œOn an estimate of the chromatic class of a p-graph,” Diskret.

Analiz, vol. 3, pp. 25–30, 1964.

[28] A. W. Marcus, D. A. Spielman, and N. Srivastava, β€œInterlacing families IV: Bipartite Ramanujan graphs of all sizes,” in 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, Oct. 2015, pp. 1358–1377.

doi:10.1109/FOCS.2015.87.

[29] A. W. Marcus, D. A. Spielman, and N. Srivastava, β€œInterlacing families I:

Bipartite Ramanujan graphs of all degrees,”Annals of Mathematics, vol. 182, no. 1, pp. 307–325, 2015, issn: 0003486X.

[30] M. Van Den Nest, β€œSimulating quantum computers with probabilistic meth- ods,” Quantum Info. Comput., vol. 11, no. 9-10, pp. 784–812, Sep. 2011, issn: 1533-7146.

[31] S. Bravyi, D. Browne, P. Calpin, E. Campbell, D. Gosset, and M. Howard,

β€œSimulation of quantum circuits by low-rank stabilizer decompositions,”

Quantum, vol. 3, p. 181, Sep. 2019, issn: 2521-327X. doi:10.22331/q- 2019-09-02-181.

[32] E. Farhi and A. W. Harrow, β€œQuantum Supremacy through the Quantum Approximate Optimization Algorithm,” Feb. 2016. arXiv:1602.07674.

Part II

Dalam dokumen Quantum Information at High and Low Energies (Halaman 149-155)