• Tidak ada hasil yang ditemukan

The Parameters of the Magnon code Our main result is the following:Our main result is the following

Dalam dokumen Quantum Information at High and Low Energies (Halaman 111-123)

QUANTUM ERROR-DETECTION AT LOW ENERGIES

2.7 AQEDC at Low Energies: An Integrable Model

2.7.8 The Parameters of the Magnon code Our main result is the following:Our main result is the following

Theorem 2.7.9 (Parameters of the magnon-code). Let๐œˆ โˆˆ (0,1) and ๐œ†, ๐œ… > 0 be such that

6๐œ…+๐œ† < ๐œˆ .

Then there is a subspaceC spanned by descendant states {๐‘†๐‘Ÿโˆ’|ฮจi}๐‘Ÿ with magneti- zation๐‘Ÿ pairwise differing by at least2such thatCis an (๐œ– , ๐›ฟ) [ [๐‘›, ๐‘˜ , ๐‘‘]]-AQEDC with parameters

๐‘˜ =๐œ…log2๐‘› , ๐‘‘ =๐‘›1โˆ’๐œˆ ,

๐œ– = ฮ˜(๐‘›โˆ’(๐œˆโˆ’(6๐œ…+๐œ†))), ๐›ฟ=๐‘›โˆ’๐œ† .

Proof. We claim that the subspace

C=span{๐œ“๐‘  |๐‘ even and๐‘  โ‰ค 2๐‘›๐œ…}

spanned by a subset of magnon-states has the claimed property. Clearly, dimC = ๐‘›๐œ… =2๐‘˜.

Let ๐น be an arbitrary ๐‘‘-local operator on (C2)โŠ—๐‘› of unit norm. According to Lemma 2.7.4, the following considerations concerning matrix elements h๐œ“๐‘ž|๐น|๐œ“๐‘i of magnon states do not depend on the location of the support of ๐น as we are interested in the supremum over๐‘‘-local operators ๐น and unitary conjugation does not change the locality or the norm. Thus, we can assume that๐น =๐นหœโŠ—๐ผโŠ—๐‘›โˆ’๐‘‘. That is, we have

sup

๐น ๐‘‘-local k๐นkโ‰ค1

|h๐œ“๐‘Ÿ|๐น|๐œ“๐‘ i|= sup

๐นโˆˆB ( (หœ C2)โŠ—๐‘‘) k๐นหœkโ‰ค1

|h๐œ“๐‘Ÿ| (๐นหœ โŠ— ๐ผโŠ—๐‘›โˆ’๐‘‘) |๐œ“๐‘ i|=๐‘‚( ๐‘‘

๐‘›|๐‘Ÿโˆ’๐‘ |/2) for๐‘Ÿ , ๐‘  โ‰ค 2๐‘›๐œ… .

by Theorem 2.7.6. In particular, if |๐‘Ÿ โˆ’ ๐‘ | โ‰ฅ 2, then this is bounded by๐‘‚(๐‘‘/๐‘›). Similarly,

sup

๐น ๐‘‘-local k๐นkโ‰ค1

h๐œ“๐‘ |๐น|๐œ“๐‘ i โˆ’ h๐œ“๐‘Ÿ|๐น|๐œ“๐‘Ÿi

= sup

หœ

๐นโˆˆB ( (C2)โŠ—๐‘‘) k๐นหœkโ‰ค1

h๐œ“๐‘ | (๐นหœ โŠ— ๐ผโŠ—(๐‘›โˆ’๐‘‘)) |๐œ“๐‘ i โˆ’ h๐œ“๐‘Ÿ| (๐นหœ โŠ— ๐ผโŠ—(๐‘›โˆ’๐‘‘)) |๐œ“๐‘Ÿi

=๐‘‚(

โˆš๏ธ‚

๐‘‘๐‘›๐œ… ๐‘›

) =๐‘‚(โˆš๏ธ

๐‘‘๐‘›๐œ…โˆ’1) for๐‘Ÿ , ๐‘  โ‰ค 2๐‘›๐œ… by Theorem 2.7.8. Since ๐‘‘/๐‘› = ๐‘‚(

โˆš

๐‘‘๐‘›๐œ…โˆ’1), we conclude that for all ๐‘‘-local operators๐นof unit norm, we have

h๐œ“๐‘Ÿ|๐น|๐œ“๐‘ i โˆ’๐›ฟ๐‘Ÿ ,๐‘ h๐œ“

0|๐น|๐œ“

0i|=๐‘‚(๐‘‘1/2๐‘›(๐œ…โˆ’1)/2) for all๐‘Ÿ , ๐‘  even with๐‘Ÿ , ๐‘  โ‰ค 2๐‘›๐œ… . The sufficient conditions of Corollary 2.3.4 for approximate error-detection, applied with ๐›พ = ฮ˜(๐‘‘1/2๐‘›(๐œ…โˆ’1)/2), thus imply that C is an (ฮ˜(25๐‘˜๐‘‘๐‘›๐œ…โˆ’1)/๐›ฟ, ๐›ฟ) [ [๐‘›, ๐‘˜ , ๐‘‘]]- AQEDC for any๐›ฟ satisfying

๐›ฟ >ฮ˜(25๐‘˜๐‘‘๐‘›๐œ…โˆ’1) = ฮ˜(๐‘›6๐œ…โˆ’๐œˆ) for the choice๐‘‘=๐‘›1โˆ’๐œˆ

. With๐›ฟ =๐‘›โˆ’๐œ†, the claim follows.

Acknowledgements

We thank Ahmed Almheiri, Fernando Brandรฃo, Elizabeth Crosson, Spiros Micha- lakis, and John Preskill for discussions. We thank the Kavli Institute for Theoretical

Physics for their hospitality as part of a follow-on program, as well as the coordinators of the QINFO17 program, where this work was initiated; this research was supported in part by the National Science Foundation under Grant No. PHY-1748958.

RK acknowledges support by the Technical University of Munich โ€“ Institute of Advanced Study, funded by the German Excellence Initiative and the European Union Seventh Framework Programme under grant agreement no. 291763 and by the German Federal Ministry of Education through the funding program Photonics Research Germany, contract no. 13N14776 (QCDA-QuantERA). BS acknowledges support from the Simons Foundation through It from Qubit collaboration; this work was supported by a grant from the Simons Foundation/SFARI (385612, JPP). ET acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), PGSD3-502528-2017. BS and ET also acknowledge funding provided by the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (NSF Grant No. PHY-1733907).

2.A Canonical Form of Excitation Ansatz States

For the readerโ€™s convenience, we include here a proof of the Lemma 2.6.1 follow- ing [77].

Lemma 2.6.1. Let |ฮฆ๐‘(๐ต;๐ด)i be an injective excitation ansatz state and assume that๐ดis normalized such that the transfer operator has spectral radius1. Letโ„“and ๐‘Ÿ be the corresponding left- and right- eigenvectors corresponding to eigenvalue1. Assume ๐‘ โ‰  0. Then there exists a tensor ๐ตหœ such that |ฮฆ๐‘(๐ต;๐ด)i = |ฮฆ๐‘(๐ตหœ;๐ด)i, and such that

hhโ„“|๐ธ

๐ต(หœ ๐‘) =0 and hhโ„“|๐ธ

หœ

๐ต(๐‘) =0. ((2.6.1)) Proof. We note that the equations (2.6.1) can be written as

โˆ‘๏ธ

๐‘–โˆˆ[p]

๐ดโ€ 

๐‘–โ„“๐ตหœ๐‘– =0, and

โˆ‘๏ธ

๐‘–โˆˆ[p]

หœ ๐ตโ€ 

๐‘–โ„“ ๐ด๐‘– =0. (2.105) Diagrammatically, they take the form

, ,

where square and round boxes correspond to หœ๐ตand ๐ด, respectively.

Let the original MPS tensors be ๐ด = {๐ด๐‘—}p

๐‘—=1 and ๐ต = {๐ต๐‘—}p

๐‘—=1 โŠ‚ B (C๐ท โŠ—C๐ท). Suppose ๐‘‹ โˆˆ B (C๐ท) is invertible. Define the MPS tensor๐ถ = {๐ตหœ๐‘—}p๐‘—=

1 โŠ‚ B (C๐ท) by

๐ถ๐‘— = ๐ด๐‘—๐‘‹โˆ’๐‘’โˆ’๐‘– ๐‘๐‘‹ ๐ด๐‘— for ๐‘— =1, . . . ,p. that is,

. (2.106)

It is then easy to check that

|ฮฆ๐‘(๐ต;๐ด)i =|ฮฆ๐‘(๐ต+๐ถ;๐ด)i,

where ๐ต+๐ถ is the MPS tensor obtained by setting (๐ต+๐ถ)๐‘— = ๐ต๐‘— +๐ถ๐‘— for each ๐‘— =1, . . . ,p. Indeed, the difference of these two vectors is

|ฮฆ๐‘(๐ต+๐ถ;๐ด)i โˆ’ |ฮฆ๐‘(๐ต;๐ด)i

= โˆ‘๏ธ

๐‘–1,...,๐‘–๐‘›โˆˆ[p] ๐‘›

โˆ‘๏ธ

๐‘˜=1

๐‘’๐‘– ๐‘ ๐‘˜tr(๐ด๐‘–

1ยท ยท ยท๐ด๐‘–

๐‘˜โˆ’1๐ถ๐‘–

๐‘˜

๐ด๐‘–

๐‘˜+1ยท ยท ยท๐ด๐‘–

๐‘›) |๐‘–

1ยท ยท ยท๐‘–๐‘›i

= โˆ‘๏ธ

๐‘–1,...,๐‘–๐‘›โˆˆ[p] ๐‘›

โˆ‘๏ธ

๐‘˜=1

๐‘’๐‘– ๐‘ ๐‘˜tr ๐ด๐‘–

1ยท ยท ยท๐ด๐‘–

๐‘˜โˆ’1(๐ด๐‘–

๐‘˜๐‘‹ โˆ’๐‘’โˆ’๐‘– ๐‘๐‘‹ ๐ด๐‘–

๐‘˜)๐ด๐‘–

๐‘˜+1ยท ยท ยท๐ด๐‘–

๐‘›

!

|๐‘–

1ยท ยท ยท๐‘–๐‘›i

=0,

since the terms in the square brackets vanish because of the cyclicity of the trace (alternatively, this can be seen by substituting each square box (corresponding to๐ต) in Figure 2.5 by a formal linear combination of a square box (๐ต) and diagram (2.A)).

Observe that the second equation in (2.A) can be obtained from the first by taking the adjoint sinceโ„“ is a self-adjoint operator. It thus suffices to show that there is an MPS tensor หœ๐ตwith the desired property |ฮฆ๐‘(๐ตหœ;๐ด)i =|ฮฆ๐‘(๐ต;๐ด)isuch that

โˆ‘๏ธ

๐‘–โˆˆ[p]

๐ดโ€ 

๐‘–โ„“๐ตหœ๐‘– =0. (2.107)

It turns out that setting หœ๐ต = ๐ต +๐ถ for an appropriate choice of ๐‘‹ (and thus ๐ถ) suffices. Equation (2.A) then amounts to the identity

โˆ‘๏ธ

๐‘—โˆˆ[p]

๐ดโ€ 

๐‘—โ„“(๐ต๐‘— +๐ด๐‘—๐‘‹โˆ’๐‘’โˆ’๐‘– ๐‘๐‘‹ ๐ด๐‘—)=0, (2.108)

or diagrammatically,

.

Because โ„“ is the unique eigenvector of Eโ€ (๐œŒ) = ร

๐‘—โˆˆ[p] ๐ดโ€ 

๐‘—๐œŒ ๐ด๐‘— to eigenvalue 1, Equation (2.A) simplifies to

โˆ‘๏ธ

๐‘—โˆˆ[p]

๐ดโ€ 

๐‘—โ„“ ๐ต๐‘— +โ„“ ๐‘‹โˆ’๐‘’โˆ’๐‘– ๐‘

โˆ‘๏ธ

๐‘—โˆˆ[p]

๐ดโ€ 

๐‘—โ„“ ๐‘‹ ๐ด๐‘— =0, or

.

Sinceโ„“ is full rank, we may substitute๐‘‹ =โ„“โˆ’1๐‘Œ. Then (2.A) is satisfied if

, or

โˆ‘๏ธ

๐‘—โˆˆ[p]

๐ดโ€ 

๐‘—โ„“ ๐ต๐‘—+ (๐ผโˆ’๐‘’โˆ’๐‘– ๐‘E) (๐‘Œ) =0.

Because 1 is the unique eigenvalue of magnitude 1 of E, the map (๐œ† ๐ผโˆ’ ๐‘’โˆ’๐‘– ๐‘E) is invertible under the assumption that ๐‘ โ‰ 0, and we obtain the solution

๐‘‹ =โ„“โˆ’1๐‘Œ

=โˆ’โ„“โˆ’1 ๐ผโˆ’๐‘’โˆ’๐‘– ๐‘Eโˆ’1ยฉ

ยญ

ยซ

โˆ‘๏ธ

๐‘—โˆˆ[p]

๐ดโ€ 

๐‘—โ„“ ๐ต๐‘—ยช

ยฎ

ยฌ to Equation (2.A), proving the claim for ๐‘ โ‰ 0.

BIBLIOGRAPHY

[1] P. W. Shor, โ€œScheme for reducing decoherence in quantum computer mem- ory,โ€ Physical Review A, vol. 52, no. 4, R2493, 1995. doi: 10 . 1103 / PhysRevA.52.R2493.

[2] A. R. Calderbank and P. W. Shor, โ€œGood quantum error-correcting codes exist,โ€ Physical Review A, vol. 54, no. 2, p. 1098, 1996. doi: 10 . 1103 / PhysRevA.54.1098.

[3] A. Y. Kitaev, โ€œQuantum computations: Algorithms and error correction,โ€

Russian Mathematical Surveys, vol. 52, no. 6, pp. 1191โ€“1249, 1997. doi:

10.1070/RM1997v052n06ABEH002155.

[4] E. Knill and R. Laflamme, โ€œTheory of quantum error-correcting codes,โ€

Physical Review A, vol. 55, no. 2, p. 900, 1997. doi:10.1103/PhysRevLett.

84.2525.

[5] E. Knill, R. Laflamme, and W. H. Zurek, โ€œResilient quantum computation,โ€

Science, vol. 279, no. 5349, pp. 342โ€“345, 1998. doi:10.1126/science.

279.5349.342.

[6] A. Y. Kitaev, โ€œFault-tolerant quantum computation by anyons,โ€ Annals of Physics, vol. 303, no. 1, pp. 2โ€“30, 2003. doi:10.1016/S0003-4916(02) 00018-0.

[7] M. Freedman, A. Kitaev, M. Larsen, and Z. Wang, โ€œTopological quantum computation,โ€Bulletin of the American Mathematical Society, vol. 40, no. 1, pp. 31โ€“38, 2003. arXiv:quant-ph/0101025.

[8] R. W. Ogburn and J. Preskill, โ€œTopological quantum computation,โ€ inQuan- tum computing and quantum communications, Springer, 1999, pp. 341โ€“356.

doi:10.1007/3-540-49208-9_31.

[9] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, โ€œTopological quantum memory,โ€Journal of Mathematical Physics, vol. 43, no. 9, pp. 4452โ€“4505, 2002. doi:10.1063/1.1499754.

[10] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, โ€œNon- abelian anyons and topological quantum computation,โ€ Reviews of Modern Physics, vol. 80, no. 3, p. 1083, 2008. doi:10.1103/RevModPhys.80.1083. [11] R. Raussendorf, J. Harrington, and K. Goyal, โ€œA fault-tolerant one-way quan- tum computer,โ€Annals of physics, vol. 321, no. 9, pp. 2242โ€“2270, 2006. doi:

10.1016/j.aop.2006.01.012.

[12] A. Stern and N. H. Lindner, โ€œTopological quantum computation - from basic concepts to first experiments,โ€ Science, vol. 339, no. 6124, pp. 1179โ€“1184, 2013. doi:10.1126/science.1231473.

[13] B. M. Terhal, โ€œQuantum error correction for quantum memories,โ€Reviews of Modern Physics, vol. 87, no. 2, p. 307, 2015. doi:10.1103/RevModPhys.

87.307.

[14] A. Kitaev, โ€œAnyons in an exactly solved model and beyond,โ€Annals of Physics, vol. 321, no. 1, pp. 2โ€“111, 2006. doi:10.1016/j.aop.2005.10.005. [15] M. A. Levin and X.-G. Wen, โ€œString-net condensation: A physical mechanism

for topological phases,โ€Physical Review B, vol. 71, no. 4, p. 045 110, 2005.

doi:10.1103/PhysRevB.71.045110.

[16] A. Kitaev, โ€œPeriodic table for topological insulators and superconductors,โ€

in AIP Conference Proceedings, AIP, vol. 1134, 2009, pp. 22โ€“30. doi:10.

1063/1.3149495.

[17] L. Fidkowski and A. Kitaev, โ€œTopological phases of fermions in one dimen- sion,โ€ Physical Review B, vol. 83, no. 7, p. 075 103, 2011. doi: 10.1103/

PhysRevB.83.075103.

[18] X. Chen, Z.-C. Gu, and X.-G. Wen, โ€œClassification of gapped symmetric phases in one-dimensional spin systems,โ€Physical Review B, vol. 83, no. 3, p. 035 107, 2011. doi:10.1103/PhysRevB.83.035107.

[19] โ€”โ€”, โ€œComplete classification of one-dimensional gapped quantum phases in interacting spin systems,โ€ Physical Review B, vol. 84, no. 23, p. 235 128, 2011. doi:10.1103/PhysRevB.84.235128.

[20] X. Chen, Z.-X. Liu, and X.-G. Wen, โ€œTwo-dimensional symmetry-protected topological orders and their protected gapless edge excitations,โ€ Physical Review B, vol. 84, no. 23, p. 235 141, 2011. doi:10.1103/PhysRevB.84.

235141.

[21] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, โ€œSymmetry protected topo- logical orders and the group cohomology of their symmetry group,โ€Physical Review B, vol. 87, no. 15, p. 155 114, 2013. doi:10.1103/PhysRevB.87.

155114.

[22] D. Harlow, โ€œThe Ryuโ€“Takayanagi formula from quantum error correction,โ€

Communications in Mathematical Physics, vol. 354, no. 3, pp. 865โ€“912, 2017. doi:10.1007/s00220-017-2904-z.

[23] M. Fannes, B. Nachtergaele, and R. F. Werner, โ€œFinitely correlated states on quantum spin chains,โ€ Communications in Mathematical Physics, vol. 144, no. 3, pp. 443โ€“490, 1992. doi:10.1007/BF02099178.

[24] S. R. White, โ€œDensity matrix formulation for quantum renormalization groups,โ€

Physical Review Letters, vol. 69, no. 19, p. 2863, 1992. doi: 10 . 1103 / PhysRevLett.69.2863.

[25] โ€”โ€”, โ€œDensity-matrix algorithms for quantum renormalization groups,โ€Phys- ical Review B, vol. 48, no. 14, p. 10 345, 1993. doi:10.1103/PhysRevB.

48.10345.

[26] G. Vidal, โ€œEfficient classical simulation of slightly entangled quantum com- putations,โ€ Physical Review Letters, vol. 91, no. 14, p. 147 902, 2003. doi:

10.1103/PhysRevLett.91.147902.

[27] โ€”โ€”, โ€œEfficient simulation of one-dimensional quantum many-body sys- tems,โ€ Physical Review Letters, vol. 93, no. 4, p. 040 502, 2004. doi: 10.

1103/PhysRevLett.93.040502.

[28] D. Pรฉrez-Garcรญa, F. Verstraete, M. M. Wolf, and J. I. Cirac, โ€œMatrix prod- uct state representations,โ€ Quantum Information and Computation, vol. 7, no. 401, 2007. doi:10.26421/QIC7.5-6-1.

[29] F. Verstraete and J. I. Cirac, โ€œRenormalization algorithms for quantum-many body systems in two and higher dimensions,โ€ 2004. arXiv: cond - mat / 0407066.

[30] F. Verstraete, V. Murg, and J. I. Cirac, โ€œMatrix product states, projected entan- gled pair states, and variational renormalization group methods for quantum spin systems,โ€Advances in Physics, vol. 57, no. 2, pp. 143โ€“224, 2008. doi:

10.1080/14789940801912366.

[31] G. Vidal, โ€œClass of quantum many-body states that can be efficiently sim- ulated,โ€ Physical Review Letters, vol. 101, no. 11, p. 110 501, 2008. doi:

10.1103/PhysRevLett.101.110501.

[32] F. Verstraete, M. Wolf, D. Pรฉrez-Garcรญa, and J. I. Cirac, โ€œProjected entan- gled states: Properties and applications,โ€ International Journal of Mod- ern Physics B, vol. 20, no. 30n31, pp. 5142โ€“5153, 2006. doi: 10 . 1142 / S021797920603620X.

[33] D. Pรฉrez-Garcรญa, F. Verstraete, J. I. Cirac, and M. M. Wolf, โ€œPEPS as unique ground states of local hamiltonians,โ€ 2007. arXiv:0707.2260.

[34] C. V. Kraus, N. Schuch, F. Verstraete, and J. I. Cirac, โ€œFermionic projected entangled pair states,โ€ Physical Review A, vol. 81, no. 5, p. 052 338, 2010.

doi:10.1103/PhysRevA.81.052338.

[35] M. Schwarz, K. Temme, and F. Verstraete, โ€œPreparing projected entangled pair states on a quantum computer,โ€Physical Review Letters, vol. 108, no. 11, p. 110 502, 2012. doi:10.1103/PhysRevLett.108.110502.

[36] M. Fishman, L. Vanderstraeten, V. Zauner-Stauber, J. Haegeman, and F.

Verstraete, โ€œFaster methods for contracting infinite two-dimensional tensor networks,โ€ Physical Review B, vol. 98, no. 23, p. 235 148, 2018. doi: 10.

1103/PhysRevB.98.235148.

[37] O. Buerschaper, M. Aguado, and G. Vidal, โ€œExplicit tensor network represen- tation for the ground states of string-net models,โ€Physical Review B, vol. 79, no. 8, p. 085 119, 2009. doi:10.1103/PhysRevB.79.085119.

[38] Z.-C. Gu, M. Levin, B. Swingle, and X.-G. Wen, โ€œTensor-product represen- tations for string-net condensed states,โ€ Physical Review B, vol. 79, no. 8, p. 085 118, 2009. doi:10.1103/PhysRevB.79.085118.

[39] R. Kรถnig, B. W. Reichardt, and G. Vidal, โ€œExact entanglement renormaliza- tion for string-net models,โ€ Physical Review B, vol. 79, no. 19, p. 195 123, 2009. doi:10.1103/PhysRevB.79.195123.

[40] N. Schuch, I. Cirac, and D. Pรฉrez-Garcรญa, โ€œPEPS as ground states: Degeneracy and topology,โ€Annals of Physics, vol. 325, no. 10, pp. 2153โ€“2192, 2010. doi:

10.1016/j.aop.2010.05.008.

[41] O. Buerschaper, โ€œTwisted injectivity in projected entangled pair states and the classification of quantum phases,โ€Annals of Physics, vol. 351, pp. 447โ€“476, 2014. doi:10.1016/j.aop.2014.09.007.

[42] M. B. ลžahinoฤŸlu, D. Williamson, N. Bultinck, M. Mariรซn, J. Haegeman, N. Schuch, and F. Verstraete, โ€œCharacterizing topological order with matrix product operators,โ€ 2014. arXiv:1409.2150.

[43] D. J. Williamson, N. Bultinck, M. Mariรซn, M. B. ลžahinoฤŸlu, J. Haegeman, and F. Verstraete, โ€œMatrix product operators for symmetry-protected topological phases: Gauging and edge theories,โ€ Physical Review B, vol. 94, no. 20, p. 205 150, 2016. doi:10.1103/PhysRevB.94.205150.

[44] N. Bultinck, M. Mariรซn, D. J. Williamson, M. B. ลžahinoฤŸlu, J. Haegeman, and F. Verstraete, โ€œAnyons and matrix product operator algebras,โ€Annals of Physics, vol. 378, pp. 183โ€“233, 2017. doi:10.1016/j.aop.2017.01.004. [45] M. B. ลžahinoฤŸlu, M. Walter, and D. J. Williamson, โ€œA tensor network frame- work for topological order in higher dimensions,โ€ Bulletin of the American Physical Society, 2016.

[46] B. Swingle, โ€œEntanglement renormalization and holography,โ€ Physical Re- view D, vol. 86, no. 6, p. 065 007, 2012. doi: 10 . 1103 / PhysRevD . 86 . 065007.

[47] F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, โ€œHolographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence,โ€

Journal of High Energy Physics, no. 6, p. 149, Jun. 2015. doi: 10.1007/

JHEP06(2015)149.

[48] P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter, and Z. Yang, โ€œHolo- graphic duality from random tensor networks,โ€ Journal of High Energy Physics, no. 11, p. 009, 2016. doi:10.1007/JHEP11(2016)009.

[49] C. Akers and P. Rath, โ€œHolographic Rรฉnyi entropy from quantum error cor- rection,โ€ 2018. arXiv:1811.05171.

[50] X. Dong, D. Harlow, and D. Marolf, โ€œFlat entanglement spectra in fixed-area states of quantum gravity,โ€ 2018. arXiv:1811.05382.

[51] F. G. Brandao, E. Crosson, M. B. ลžahinoฤŸlu, and J. Bowen, โ€œQuantum error correcting codes in eigenstates of translation-invariant spin chains,โ€ 2017.

arXiv:1710.04631.

[52] I. H. Kim and M. J. Kastoryano, โ€œEntanglement renormalization, quantum error correction, and bulk causality,โ€Journal of High Energy Physics, no. 4, p. 40, Apr. 2017, issn: 1029-8479. doi:10.1007/JHEP04(2017)040. [53] F. Pastawski, J. Eisert, and H. Wilming, โ€œTowards holography via quantum

source-channel codes,โ€Physical Review Letters, vol. 119, no. 2, p. 020 501, 2017. doi:10.1103/PhysRevLett.119.020501.

[54] T. M. Stace, S. D. Barrett, and A. C. Doherty, โ€œThresholds for topological codes in the presence of loss,โ€Physical Review Letters, vol. 102, p. 200 501, 20 May 2009. doi:10.1103/PhysRevLett.102.200501.

[55] H. Pollatsek and M. B. Ruskai, โ€œPermutationally invariant codes for quantum error correction,โ€Linear Algebra and its Applications, vol. 392, pp. 255โ€“288, 2004. doi:10.1016/j.laa.2004.06.014.

[56] Y. Ouyang, โ€œPermutation-invariant quantum codes,โ€ Physical Review A, vol. 90, no. 6, p. 062 317, 2014. doi:10.1103/PhysRevA.90.062317. [57] S. Bravyi, M. B. Hastings, and S. Michalakis, โ€œTopological quantum order:

Stability under local perturbations,โ€Journal of Mathematical Physics, vol. 51, no. 9, p. 093 512, 2010. doi:10.1063/1.3490195.

[58] M. B. Hastings, โ€œTopological order at nonzero temperature,โ€Physical Review Letters, vol. 107, p. 210 501, 21 Nov. 2011. doi:10.1103/PhysRevLett.

107.210501.

[59] T. Ogawa and H. Nagaoka, โ€œA new proof of the channel coding theorem via hypothesis testing in quantum information theory,โ€ inProceedings IEEE International Symposium on Information Theory,, Jun. 2002, pp. 73โ€“. doi:

10.1109/ISIT.2002.1023345.

[60] M. Aguado and G. Vidal, โ€œEntanglement renormalization and topological order,โ€ Physical Review Letters, vol. 100, p. 070 404, 7 Feb. 2008. doi:

10.1103/PhysRevLett.100.070404.

[61] M. B. Hastings and T. Koma, โ€œSpectral gap and exponential decay of corre- lations,โ€Communications in Mathematical Physics, vol. 265, no. 3, pp. 781โ€“

804, 2006. doi:10.1007/s00220-006-0030-4.

[62] F. G. Brandรฃo and M. Horodecki, โ€œAn area law for entanglement from expo- nential decay of correlations,โ€ Nature Physics, vol. 9, no. 11, p. 721, 2013.

doi:10.1038/nphys2747.

[63] โ€”โ€”, โ€œExponential decay of correlations implies area law,โ€Communications in Mathematical Physics, vol. 333, no. 2, pp. 761โ€“798, 2015. doi:10.1007/

s00220-014-2213-8.

[64] N. Schuch, D. Pรฉrez-Garcรญa, and I. Cirac, โ€œClassifying quantum phases using matrix product states and projected entangled pair states,โ€ Physical Review B, vol. 84, p. 165 139, 16 Oct. 2011. doi:10.1103/PhysRevB.84.165139. [65] M. B. Hastings, โ€œSolving gapped Hamiltonians locally,โ€Physical Review B,

vol. 73, no. 8, p. 085 115, 2006. doi:10.1103/PhysRevB.73.085115. [66] J. Haegeman, S. Michalakis, B. Nachtergaele, T. J. Osborne, N. Schuch,

and F. Verstraete, โ€œElementary excitations in gapped quantum spin systems,โ€

Physical Review Letters, vol. 111, no. 8, p. 080 401, 2013. doi: 10.1103/

PhysRevLett.111.080401.

[67] V. Murg, V. E. Korepin, and F. Verstraete, โ€œAlgebraic Bethe ansatz and tensor networks,โ€ Physical Review B, vol. 86, no. 4, 2012. doi:10.1103/

PhysRevB.86.045125.

[68] C. Crรฉpeau, D. Gottesman, and A. Smith, โ€œApproximate quantum error- correcting codes and secret sharing schemes,โ€ in Advances in Cryptology โ€“ EUROCRYPT 2005, R. Cramer, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 285โ€“301, isbn: 978-3-540-32055-5.

[69] H. Barnum, E. Knill, and M. A. Nielsen, โ€œOn quantum fidelities and chan- nel capacities,โ€ IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1317โ€“1329, Jul. 2000, issn: 0018-9448. doi:10.1109/18.850671. [70] E. Knill, R. Laflamme, A. Ashikhmin, H. Barnum, L. Viola, and W. Zurek,

โ€œIntroduction to quantum error correction,โ€ 2002. arXiv:quant-ph/0207170. [71] C. Bรฉny and O. Oreshkov, โ€œGeneral conditions for approximate quantum error

correction and near-optimal recovery channels,โ€ Physical Review Letters, vol. 104, p. 120 501, 12 Mar. 2010. doi: 10 . 1103 / PhysRevLett . 104 . 120501.

[72] D. E. Evans and R. Hoegh-Krohn, โ€œSpectral properties of positive maps on C*-algebras,โ€Journal of the London Mathematical Society, vol. s2-17, no. 2, pp. 345โ€“355, 1978. doi:10.1112/jlms/s2-17.2.345.

[73] M. S. Ruiz, โ€œTensor networks in condensed matter,โ€ Ph.D. dissertation, Tech- nische Universitรคt Mรผnchen, 2011.

[74] M. M. Wolf, โ€œQuantum channels & operations,โ€ 2012. [Online]. Available:

https : / / www - m5 . ma . tum . de / foswiki / pub / M5 / Allgemeines / MichaelWolf/QChannelLecture.pdf.

[75] T. C. Bohdanowicz, E. Crosson, C. Nirkhe, and H. Yuen, โ€œGood approximate quantum LDPC codes from spacetime circuit hamiltonians,โ€ 2018. arXiv:

1811.00277.

[76] J. Haegeman, T. Osborne, and F. Verstraete, โ€œPost-matrix product state meth- ods: To tangent space and beyond,โ€ Physical Review B, vol. 88, p. 075 133, 2013. doi:10.1103/PhysRevB.88.075133.

[77] J. Haegeman, M. Mariรซn, T.Osborne, and F. Verstraete, โ€œGeometry of matrix product states: Metric, parallel transport, and curvature,โ€Journal of Mathe- matical Physics, vol. 55, no. 2, p. 021 902, 2014. doi:10.1063/1.4862851. [78] C. A. Fuchs and J. van de Graaf, โ€œCryptographic distinguishability measures

for quantum mechanical states,โ€ 1997. arXiv:quant-ph/9712042.

C h a p t e r 3

OBSTACLES TO STATE PREPARATION AND VARIATIONAL

Dalam dokumen Quantum Information at High and Low Energies (Halaman 111-123)