• Tidak ada hasil yang ditemukan

No-Go Theorem: Degenerate Ground Spaces of Gapped Hamiltonians are Constant-Distance AQEDCare Constant-Distance AQEDC

QUANTUM ERROR-DETECTION AT LOW ENERGIES

2.5 No-Go Theorem: Degenerate Ground Spaces of Gapped Hamiltonians are Constant-Distance AQEDCare Constant-Distance AQEDC

The main result of this section is the following upper bound on the matrix elements of geometrically๐‘‘-local operators with respect to two MPS.

Theorem 2.4.5. Let|ฮจ1i= |ฮจ(๐ด

1, ๐‘‹

1, ๐‘›)i,|ฮจ2i= |ฮจ(๐ด

2, ๐‘‹

2, ๐‘›)i โˆˆ (Cp)โŠ—๐‘›be two MPS with bond dimensions๐ท

1and๐ท

2, where

๐‘‹๐‘— =|๐œ‘๐‘—ih๐œ“๐‘—|, with k๐œ‘๐‘—k = k๐œ“๐‘—k =1 for ๐‘— =1,2, are rank-one operators. Let๐ธ =๐ธ(๐ด

1, ๐ด

2) โˆˆ B (C๐ท1 โŠ—C๐ท2) denote the combined transfer operator defined by the MPS tensors ๐ด

1 and ๐ด

2, โ„Žโˆ—

๐‘— the size of the largest Jordan block of๐ธ๐‘— =๐ธ(๐ด๐‘—) for ๐‘— =1,2, andโ„Žโˆ—the size of the largest Jordan block of ๐ธ = ๐ธ(๐ด

1, ๐ด

2). Assume that the spectral radii ๐œŒ(๐ธ), ๐œŒ(๐ธ

1), and ๐œŒ(๐ธ

2) are contained in [0,1]. Then, for any๐น โˆˆ B ( (Cp)โŠ—๐‘‘), we have

|hฮจ1| (๐นโŠ— ๐ผ(

Cp)โŠ—๐‘›โˆ’๐‘‘) |ฮจ2i| โ‰ค 16ยท k๐นk ยท๐‘‘(โ„Ž

โˆ— 1+โ„Žโˆ—

2โˆ’2)/2(๐‘›โˆ’๐‘‘)โ„Žโˆ—โˆ’1 for๐‘‘ ๐ท

1, ๐ท

2and (๐‘›โˆ’๐‘‘) ๐ท

1๐ท

2. Proof. The matrix elements๐›ผ= hฮจ1| (๐น โŠ—๐ผ(

Cp)โŠ—๐‘›โˆ’๐‘‘) |ฮจ2iof interest can be written as

๐›ผ= (h๐œ“

1| โŠ— h๐œ“

2|)๐ธ๐น๐ธ๐‘›โˆ’๐‘‘(|๐œ‘

1i โŠ— |๐œ‘

2i) . By the Cauchy-Schwarz inequality, we have

|๐›ผ| โ‰ค k๐ธโ€ 

๐น(|๐œ“

1i โŠ— |๐œ“

2i) k ยท k๐ธ๐‘›โˆ’๐‘‘(|๐œ‘

1i โŠ— |๐œ‘

2i k

โ‰ค k๐นk

โˆš๏ธƒ

k๐ธ๐‘‘

1k ยท k๐ธ๐‘‘

2k ยท k๐ธ๐‘›โˆ’๐‘‘k,

by the definition of the operator norm and Lemma 2.4.4. Then, the claim follows from Lemma 2.4.2 (i), which provides the bounds

k๐ธ๐‘‘

๐‘—k โ‰ค 4๐‘‘โ„Ž

โˆ— ๐‘—โˆ’1

for ๐‘— =1,2, k๐ธ๐‘›โˆ’๐‘‘k โ‰ค 4(๐‘›โˆ’๐‘‘)โ„Žโˆ—โˆ’1

by our assumptions : ๐œŒ(๐ธ๐‘—) โˆˆ [0,1],๐œŒ(๐ธ) โˆˆ [0,1], and๐‘‘ ๐ท๐‘— โ‰ฅ โ„Žโˆ—

๐‘— for ๐‘— =1,2, as well as๐‘›โˆ’๐‘‘ ๐ท

1๐ท

2 โ‰ฅ โ„Žโˆ—.

2.5 No-Go Theorem: Degenerate Ground Spaces of Gapped Hamiltonians

than constant. We prove this result by employing the necessary condition for approximate error-detection from Lemma 2.3.6 for the code subspaces generated by varying the boundary conditions of an (open-boundary) injective MPS. Note that, given a translation invariant MPS with periodic boundary conditions and bond dimension๐ท, there exists a local gapped Hamiltonian, called the parent Hamiltonian, with a unique ground state being the MPS [28].

We need the following bounds which follow from the orthogonality and normaliza- tion of states in such codes.

Lemma 2.5.1. Let๐ดbe the MPS tensor of an injective MPS with bond dimension๐ท, and let ๐‘‹ , ๐‘Œ โˆˆ B (C๐ท) be such that the states |ฮจ๐‘‹i = |ฮจ(๐ด, ๐‘‹ , ๐‘›)i and |ฮจ๐‘Œi =

|ฮจ(๐ด, ๐‘Œ , ๐‘›)i are normalized and orthogonal. Let us write the transfer operator as ๐ธ =|๐ผiihhฮ›| โŠ•๐ธหœ (cf. Equation(2.4.2)). Assume๐‘› ๐ท. Then

(i) The Frobenius norm of๐‘‹ (and similarly the norm of๐‘Œ) is bounded by k๐‘‹k๐น =๐‘‚(1) .

(ii) We have

|hhฮ›| (๐‘‹ โŠ—๐‘Œ) |๐ผii| =๐‘‚(๐œ†

๐‘›/2 2 ),

|hhฮ›| (๐‘Œ โŠ— ๐‘‹) |๐ผii| =๐‘‚(๐œ†

๐‘›/2 2 ). In the following proofs, we repeatedly use the inequality

|tr(๐‘€

1. . . ๐‘€๐‘˜) | โ‰ค k๐‘€

1k๐น ยท k๐‘€

2k๐นยท ยท ยท k๐‘€๐‘˜k๐น (2.30) for ๐ทร— ๐ท-matrices {๐‘€๐‘—}๐‘˜

๐‘—=1. Note that the inequality (2.5) is simply the Cauchy- Schwarz inequality for๐‘˜ =2. For ๐‘˜ >2, the inequality follows from the inequality for๐‘˜ =2 and the submultiplicativity of the Frobenius-norm because

|tr(๐‘€

1. . . ๐‘€๐‘˜) | โ‰ค k๐‘€

1k๐น ยท k๐‘€

2ยท ยท ยท๐‘€๐‘˜k๐น โ‰ค k๐‘€

1k๐น ยท k๐‘€

2k๐นยท ยท ยท k๐‘€๐‘˜k๐น . Proof. The proof of (i) follows from the fact that the stateฮจ๐‘‹ is normalized, i.e.,

1=kฮจ๐‘‹k2

=tr

๐ธ๐‘›(๐‘‹ โŠ— ๐‘‹)

=tr

|๐ผiihhฮ›| (๐‘‹ โŠ— ๐‘‹)

+tr(๐ธหœ๐‘›(๐‘‹ โŠ— ๐‘‹))

=tr(ฮ›๐‘‹ ๐‘‹โ€ ) +tr(๐ธหœ๐‘›(๐‘‹ โŠ— ๐‘‹))

โ‰ฅ ๐œ†

min(ฮ›) ยท k๐‘‹k2๐น+tr(๐ธหœ๐‘›(๐‘‹ โŠ— ๐‘‹)),

where๐œ†

min(ฮ›) denotes the smallest eigenvalue of ฮ›, and we make use of the fact that๐‘‹ ๐‘‹โ€ is positive with trace tr(๐‘‹ ๐‘‹โ€ ) = k๐‘‹k2

๐น. Since

|tr(๐ธหœ๐‘›(๐‘‹ โŠ— ๐‘‹)) | โ‰ค k๐ธหœ๐‘›k๐น ยท k๐‘‹ โŠ— ๐‘‹k๐น โ‰ค ๐œ†๐‘›/2

2 k๐‘‹k2๐น for๐‘› ๐ท by (2.5) and (2.4.2), we conclude

k๐‘‹k2๐น โ‰ค

๐œ†min(ฮ›) โˆ’๐œ†๐‘›/2

2

โˆ’1

=๐œ†

min(ฮ›)โˆ’1(1+๐‘‚(๐œ†๐‘›/2

2 )). Then the claim (i) follows since๐œ†

min(ฮ›)โˆ’1is a constant.

Now, consider the first inequality in (ii) (the bound for |hhฮ›| (๐‘Œ โŠ— ๐‘‹) |๐ผii| is shown analogously). Using the orthogonality of the states|ฮจ๐‘‹iand|ฮจ๐‘Œi, we obtain

0=hฮจ๐‘‹|ฮจ๐‘Œi=tr

๐ธ๐‘›(๐‘‹ โŠ—๐‘Œ)

=tr

(|๐ผiihhฮ›| +๐ธหœ๐‘›) (๐‘‹ โŠ—๐‘Œ)

=hhฮ›| (๐‘‹ โŠ—๐‘Œ) |๐ผii +tr(๐ธหœ๐‘›(๐‘‹ โŠ—๐‘Œ)), hence

|hhฮ›| (๐‘‹ โŠ—๐‘Œ) |๐ผii| =|tr(๐ธหœ๐‘›(๐‘‹ โŠ—๐‘Œ)) | โ‰ค k๐ธหœk๐น ยท k๐‘‹ โŠ—๐‘Œk๐น

โ‰ค ๐œ†

๐‘›/2

2 k๐‘‹k๐นยท k๐‘Œk๐น , using (2.4.2). The claim (ii) then follows from (i).

With the following lemma, we prove an upper bound on the overlap of the reduced density matrices๐œŒ๐‘‹and๐œŒ๐‘Œ, supported on 2ฮ”-sites surrounding the boundary, of the global states|ฮจ๐‘‹iand|ฮจ๐‘Œi, respectively.

Lemma 2.5.2. Let๐ดbe an MPS tensor of an injective MPS with bond dimension๐ท, and let ๐‘‹ , ๐‘Œ โˆˆ B ( (Cp)โŠ—๐‘›) be such that the states |ฮจ๐‘‹i = |ฮจ(๐ด, ๐‘‹ , ๐‘›)i and |ฮจ๐‘Œi =

|ฮจ(๐ด, ๐‘Œ , ๐‘›)i are normalized and orthogonal. Letฮ” ๐ท. Let S ={1,2, . . . ,ฮ”} โˆช {๐‘›โˆ’ฮ”+1, ๐‘›โˆ’ฮ”+2, . . . , ๐‘›} be the subset of2ฮ”spins consisting of ฮ” systems at the left and andฮ”systems at the right boundary. Let ๐œŒ๐‘‹ = tr[๐‘›]\S|ฮจ๐‘‹ihฮจ๐‘‹| and ๐œŒ๐‘Œ =tr[๐‘›]\S|ฮจ๐‘Œihฮจ๐‘Œ|be the reduced density operators on these subsystems. Then

tr(๐œŒ๐‘‹๐œŒ๐‘Œ) โ‰ค ๐‘๐œ†

ฮ” 2

2

where ๐œ†

2 is the second largest eigenvalue of the transfer operator ๐ธ = ๐ธ(๐ด) and where๐‘is a constant depending only on the minimal eigenvalue of๐ธ and the bond dimension๐ท.

Figure 2.4: The two expressions in Equation (2.5), where ๐ฟ, ๐‘€, and ๐‘…are used to denote the sites defined in (2.5).

Proof. For convenience, let us relabel the systems as (๐ฟ

1, . . . , ๐ฟฮ”) = (1,2, . . . ,ฮ”) (๐‘€

1, . . . , ๐‘€๐‘›โˆ’

2ฮ”) = (ฮ”+1,ฮ”+2, . . . , ๐‘›โˆ’ฮ”) (๐‘…

1, . . . , ๐‘…ฮ”) = (๐‘›โˆ’ฮ”+1, ๐‘›โˆ’ฮ”+2, . . . , ๐‘›)

(2.31) indicating their location on the left, in the middle, and on the right, respectively.

For the tensor productH๐ด โŠ— H๐ต of two isomorphic Hilbert spaces, we denote by F๐ด ๐ต โˆˆ B (H๐ดโŠ— H๐ต) the flip-operator which swaps the two systems. The following expressions are visualized in Figure 2.4. We have

tr(๐œŒ๐‘‹๐œŒ๐‘Œ) =tr( (๐œŒ๐ฟ1ยทยทยท๐ฟฮ”๐‘…1ยทยทยท๐‘…ฮ”

๐‘‹ โŠ— ๐œŒ

๐ฟ0

1ยทยทยท๐ฟ0

ฮ”๐‘…0

1ยทยทยท๐‘…0

ฮ”

๐‘Œ ) (F๐ฟ ๐ฟ0 โŠ—F๐‘… ๐‘…0)), where F๐ฟ ๐ฟ0 =F๐ฟ1๐ฟ0

1

โŠ—F๐ฟ2๐ฟ0

2

โŠ— ยท ยท ยท โŠ—F๐ฟฮ”๐ฟ0

ฮ”

, F๐‘… ๐‘…0 =F๐‘…1๐‘…0

1

โŠ—F๐‘…2๐‘…0

2

โŠ— ยท ยท ยท โŠ—F๐‘…ฮ”๐‘…0

ฮ”

. DefiningF๐‘€ ๐‘€0 analogously, ๐ผ๐‘€ ๐‘€0 = ๐ผ๐‘€

1๐‘€0

1

โŠ— ยท ยท ยท โŠ— ๐ผ๐‘€

๐‘›โˆ’2ฮ”๐‘€0

๐‘›โˆ’2ฮ”, and similarly ๐ผ๐ฟ ๐ฟ0

and๐ผ๐‘… ๐‘…0, this can be rewritten (by the definition of the partial trace) as tr(๐œŒ๐‘‹๐œŒ๐‘Œ)

=(hฮจ๐ฟ ๐‘€ ๐‘…๐‘‹ | โŠ— hฮจ๐‘Œ๐ฟ0๐‘€0๐‘…0|) (F๐ฟ ๐ฟ0 โŠ— ๐ผ๐‘€ ๐‘€0 โŠ—F๐‘… ๐‘…0) (|ฮจ๐ฟ ๐‘€ ๐‘…๐‘‹ i โŠ— |ฮจ๐‘Œ๐ฟ0๐‘€0๐‘…0i)

=(hฮจ๐ฟ ๐‘€ ๐‘…๐‘‹ | โŠ— hฮจ๐‘Œ๐ฟ0๐‘€0๐‘…0|) (๐ผ๐ฟ ๐ฟ0 โŠ—F๐‘€ ๐‘€0 โŠ— ๐ผ๐‘… ๐‘…0) (|ฮจ๐‘Œ๐ฟ ๐‘€ ๐‘…i โŠ— |ฮจ๐ฟ๐‘‹0๐‘€0๐‘…0i).(2.32)

In the last identity, we have used thatF2 =๐ผ is the identity.

Reordering and regrouping the systems as (๐ฟ

1๐ฟ0

1) (๐ฟ

2๐ฟ0

2) ยท ยท ยท (๐ฟฮ”๐ฟ0

ฮ”) (๐‘€

1๐‘€0

1) (๐‘€

2๐‘€0

2) ยท ยท ยท (๐‘€๐‘›โˆ’

2ฮ”๐‘€0

๐‘›โˆ’2ฮ”) (๐‘…

1๐‘…0

1) (๐‘…

2๐‘…0

2) ยท ยท ยท (๐‘…ฮ”๐‘…0

ฮ”),

we observe that|ฮจ๐ฟ ๐‘€ ๐‘…

๐‘‹ i โŠ— |ฮจ๐ฟ0๐‘€0๐‘…0

๐‘Œ iis an MPS with MPS tensor๐ดโŠ—๐ดand boundary tensor๐‘‹โŠ—๐‘Œand|ฮจ๐ฟ ๐‘€ ๐‘…

๐‘Œ i โŠ— |ฮจ๐ฟ0๐‘€0๐‘…0

๐‘‹ iis an MPS with MPS tensor๐ดโŠ—๐ดand boundary tensor๐‘Œ โŠ—๐‘‹. Let us denote the virtual systems of the first MPS by๐‘‰

1๐‘‰

2, and those of the second MPS by ๐‘Š

1๐‘Š

2, such that the boundary tensors are ๐‘‹๐‘‰1 โŠ—๐‘Œ๐‘‰2 and ๐‘Œ๐‘Š1โŠ—๐‘‹๐‘Š2, respectively. Let ห†๐ธ = ๐ธ๐‘‰1๐‘Š

1โŠ—๐ธ๐‘‰2๐‘Š

2be the associated transfer operator.

Then we have from (2.5) tr(๐œŒ๐‘‹๐œŒ๐‘Œ) =tr

ห† ๐ธฮ”๐ธห†

FโŠ—๐‘›โˆ’2ฮ”๐ธห†ฮ” h

(๐‘‹

๐‘‰1 โŠ—๐‘Œ

๐‘‰2) โŠ— (๐‘Œ๐‘Š1 โŠ— ๐‘‹๐‘Š2)i

. (2.33) Recall that๐ธฮ” = |๐ผiihhฮ›| โŠ•๐ธหœฮ”, where we have

k๐ธหœฮ”k๐น โ‰คโˆš๏ธ

๐ท2ยท k๐ธหœฮ”k โ‰ค ๐ทยท๐œ†ฮ”/2

2 forฮ” ๐ท ,

k |๐ผiihhฮ›| k๐น =k |๐ผii k2ยท k |ฮ›ii k2 โ‰ค ๐ท2.

In the second line, we use the fact that k |ฮ›ii k2 = tr(ฮ›โ€ ฮ›) = ร

๐‘–๐œ†๐‘–2 โ‰ค 1 and k |๐ผii k2 =๐ท2. Therefore, we have

๐ธฮ” = โˆ‘๏ธ

๐‘โˆˆ{0,1}

๐ป๐‘, where๐ป

0= |๐ผiihhฮ›|and๐ป

1=๐ธหœฮ”satisfy k๐ป

0k๐น โ‰ค ๐ท2, and k๐ป

1k๐น โ‰ค ๐ทยท๐œ†ฮ”/2

2 forฮ” ๐ท . (2.34) Note that

ห†

๐ธฮ” =๐ธฮ” โŠ—๐ธฮ” = โˆ‘๏ธ

๐‘1,๐‘

2โˆˆ{0,1}

๐ป๐‘

1 โŠ—๐ป๐‘

2 . Inserting this into (2.5) gives a sum of 16 terms

tr(๐œŒ๐‘‹๐œŒ๐‘Œ) โ‰ค โˆ‘๏ธ

๐‘1,๐‘

2,๐‘

3,๐‘

4โˆˆ{0,1}

|๐›ผ๐‘

1,๐‘

2,๐‘

3,๐‘

4|, where

๐›ผ๐‘

1,๐‘

2,๐‘

3,๐‘

4 =tr

(๐ป๐‘‰1๐‘Š1

๐‘1

โŠ— ๐ป๐‘‰2๐‘Š2

๐‘2

)๐ธห†

FโŠ—๐‘›โˆ’2ฮ”(๐ป๐‘‰1๐‘Š1

๐‘3

โŠ— ๐ป๐‘‰2๐‘Š2

๐‘4

) h (๐‘‹

๐‘‰1โŠ—๐‘Œ

๐‘‰2) โŠ— (๐‘Œ๐‘Š1 โŠ— ๐‘‹๐‘Š2)i .

Consider the term with๐‘๐‘— =0 for all ๐‘— โˆˆ {1, . . . ,4}. This is given by ๐›ผ0,0,0,0=tr

(|๐ผiihhฮ›|๐‘‰1๐‘Š1 โŠ— |๐ผiihhฮ›|๐‘‰2๐‘Š2)๐ธห†

FโŠ—๐‘›โˆ’2ฮ”(|๐ผiihhฮ›|๐‘‰1๐‘Š1 โŠ— |๐ผiihhฮ›|๐‘‰2๐‘Š2)

ยท h (๐‘‹

๐‘‰1 โŠ—๐‘Œ

๐‘‰2) โŠ— (๐‘Œ๐‘Š1 โŠ— ๐‘‹๐‘Š2)i

=hhฮ›| (๐‘‹ โŠ—๐‘Œ) |๐ผiihhฮ›| (๐‘Œยฏ โŠ— ๐‘‹) |๐ผii (hhฮ›| โŠ— hhฮ›|)๐ธห†

FโŠ—๐‘›โˆ’2ฮ”(|๐ผii โŠ— |๐ผii).(2.35) By inserting this into (2.5), we get with Lemma 2.5.1 (ii) and the Cauchy-Schwarz inequality

|๐›ผ

0,0,0,0|=๐‘‚(๐œ†๐‘›

2) ยท

hhฮ›| โŠ— hhฮ›|)๐ธห†

FโŠ—๐‘›โˆ’2ฮ”(|๐ผii โŠ— |๐ผii

=๐‘‚(๐œ†๐‘›

2) ยท k |ฮ›ii โŠ— |ฮ›ii k ยท k๐ธห†

FโŠ—๐‘›โˆ’2ฮ”(|๐ผii โŠ— |๐ผii k . With Lemma 2.4.4, this can further be bounded as

|๐›ผ

0,0,0,0| =๐‘‚(๐œ†๐‘›

2) ยท k |ฮ›ii k2ยท k |๐ผii k2ยท kFโŠ—๐‘›โˆ’2ฮ”k ยท k๐ธ๐‘›โˆ’2ฮ”k .

SincekFk =1 andk |ฮ›ii k =๐‘‚(1), k |๐ผii k =๐‘‚(1) andk๐ธ๐‘›โˆ’2ฮ”k =๐‘‚(1)(cf. (2.4.3)), we conclude that

|๐›ผ

0,0,0,0|=๐‘‚(๐œ†๐‘›

2) . (2.36)

The remaining terms|๐›ผ๐‘

1,๐‘

2,๐‘

3,๐‘

4|with(๐‘

1, ๐‘

2, ๐‘

3, ๐‘

4) โ‰  (0,0,0,0)can be bounded as follows: using inequality (2.5), we have

|๐›ผ๐‘

1,๐‘

2,๐‘

3,๐‘

4|= tr

(๐ป๐‘

1 โŠ— ๐ป๐‘

2)๐ธห†

FโŠ—๐‘โˆ’2ฮ”(๐ป๐‘

3 โŠ—๐ป๐‘

4)h

(๐‘‹ โŠ—๐‘Œ) โŠ— (๐‘Œ โŠ— ๐‘‹)i

โ‰ค k๐ป๐‘

1 โŠ— ๐ป๐‘

2k๐น ยท k๐ธ

FโŠ—๐‘โˆ’2๐‘›k๐น ยท k๐ป๐‘

3 โŠ— ๐ป๐‘

4k๐น ยท k๐‘‹ โŠ—๐‘Œ โŠ—๐‘Œ โŠ— ๐‘‹k๐น

=k๐‘‹k2๐น ยท k๐‘Œk2๐น ยทยฉ

ยญ

ยซ ร–4

๐‘—=1

k๐ป๐‘

๐‘—k๐นยช

ยฎ

ยฌ

ยท k๐ธ

FโŠ—๐‘›โˆ’2ฮ”k๐น

=๐‘‚(๐œ†ฮ”/2

2 ) ยท k๐‘‹k2๐นยท k๐‘Œk2๐น ยท k๐ธ

FโŠ—๐‘›โˆ’2ฮ”k๐น , where we use (2.5) and the assumption that (๐‘

1, ๐‘

2, ๐‘

3, ๐‘

4) โ‰  (0,0,0,0). We use Lemma 2.4.4 and (2.4.3) to get the upper bound k๐ธ

FโŠ—๐‘›โˆ’2ฮ”k โ‰ค ๐ท2k๐นโŠ—๐‘›โˆ’2ฮ”k ยท k๐ธ๐‘›โˆ’๐ทk =๐‘‚(1). Thus

|๐›ผ๐‘

1,๐‘

2,๐‘

3,๐‘

4| =๐‘‚(๐œ†ฮ”/2

2 ) for (๐‘

1, ๐‘

2, ๐‘

3, ๐‘

4) โ‰  (0,0,0,0) . (2.37) Combining (2.5) with (2.5), we conclude that

|tr(๐œŒ๐‘‹๐œŒ๐‘Œ) | โ‰ค โˆ‘๏ธ

๐‘1,๐‘

2,๐‘

3,๐‘

4โˆˆ{0,1}

|๐›ผ๐‘

1,๐‘

2,๐‘

3,๐‘

4| โ‰ค |๐›ผ

0,0,0,0| +15 max

(๐‘1,๐‘

2,๐‘

3,๐‘

4)โ‰ (0,0,0,0)

|๐›ผ๐‘

1,๐‘

2,๐‘

3,๐‘

4|

=๐‘‚(๐œ†ฮ”/2

2 ) .

The claim follows from this.

Recall that we call (a family of subspaces) C โŠ‚ (Cp)โŠ—๐‘› an approximate error- detection code if it is an (๐œ– , ๐›ฟ) [ [๐‘›, ๐‘˜ , ๐‘‘]]-code with๐œ– โ†’ 0 and๐›ฟ โ†’ 0 for๐‘› โ†’ โˆž. Our main result is the following:

Theorem 2.5.3. LetC โŠ‚ (Cp)โŠ—๐‘›be an approximate error-detecting code generated from a translation-invariant injective MPS of constant bond dimension๐ทby varying boundary conditions. Then the distance ofCis constant.

Proof. LetC =C๐‘› โŠ‚ (Cp)โŠ—๐‘› be a (family of) subspace(s) of dimensionp๐‘˜ defined by an MPS tensor ๐ดby choosing different boundary conditions, i.e.,

C๐‘›={|ฮจ(๐ด, ๐‘‹ , ๐‘›)i | ๐‘‹ โˆˆ X} โŠ‚ (Cp)โŠ—๐‘›

for some (fixed) subspaceX โŠ‚ B (C๐ท). For the sake of contradiction, assume that C๐‘›is an (๐œ–๐‘›, ๐›ฟ๐‘›) [ [๐‘›, ๐‘˜ , ๐‘‘๐‘›]]-code with

๐œ–๐‘›, ๐›ฟ๐‘› โ†’0 and code distance๐‘‘๐‘›โ†’ โˆž for๐‘›โ†’ โˆž. (2.38) Let |ฮจ๐‘‹i = |ฮจ(๐ด, ๐‘‹ , ๐‘›)i,|ฮจ๐‘Œi = |ฮจ(๐ด, ๐‘Œ , ๐‘›)i โˆˆ C be two orthonormal states defined by choosing different boundary conditions ๐‘‹ , ๐‘Œ โˆˆ X. From Lemma 2.5.2, we may chooseฮ”sufficiently large such that the reduced density operators ๐œŒ๐‘‹, ๐œŒ๐‘Œ on๐‘‘sites surrounding the boundary satisfies

tr(๐œŒ๐‘‹๐œŒ๐‘Œ) โ‰ค ๐‘๐œ†๐‘‘/4

2 for all ๐‘‘ โ‰ฅ2ฮ”. (2.39)

We note thatฮ”only depends on the transfer operator and is independent of๐‘›. Fix any constant๐œ– , ๐›ฟ โˆˆ (0,1)and choose some๐‘‘ โ‰ฅ 2ฮ”sufficiently large such that

๐œ(๐œŒ๐‘‹, ๐œŒ๐‘Œ) :=๐‘ ๐ท2๐œ†๐‘‘/4

2

satisfies

๐œ– < 1โˆ’10๐œ and ๐›ฟ < (1โˆ’๐œ)2. (2.40) Since by assumption๐‘‘๐‘› โ†’ โˆž, there exists some๐‘

0 โˆˆNsuch that ๐‘‘๐‘› > ๐‘‘ for all๐‘› โ‰ฅ ๐‘

0. (2.41)

Combining (2.5), (2.5), and (2.5) with Lemma 2.3.6, we conclude thatC๐‘›is not an (๐œ– , ๐›ฟ) [ [๐‘›, ๐‘˜ , ๐‘‘๐‘›]]-code for any๐‘› โ‰ฅ ๐‘

0.

By assumption (2.5), there exists some๐‘

1 โˆˆNsuch that ๐œ–๐‘› < ๐œ– and ๐›ฟ๐‘› < ๐›ฟ for all๐‘› โ‰ฅ ๐‘

1. Let us set๐‘ =max{๐‘

0, ๐‘

1}. Then we obtain thatC๐‘›is not an (๐œ–๐‘›, ๐›ฟ๐‘›) [ [๐‘›, ๐‘˜ , ๐‘‘๐‘›]]- code for any๐‘› โ‰ฅ ๐‘, a contradiction.

In terms of the TQO-1 condition (cf. [57]), Theorem 2.5.3 shows the absence of topological order in 1D gapped systems. The theorem also tells us that we should not restrict our attention to the ground space of a local Hamiltonian when looking for quantum error-detecting codes.5 In the following sections, we bypass this no-go result by extending our search for codes to low-energy states. In particular, we show that single quasi-particle momentum eigenstates of local gapped Hamiltonians and multi-particle excitations of the gapless Heisenberg model constitute error-detecting codes. See Sections 2.6 and 2.7, respectively.