• Tidak ada hasil yang ditemukan

The Recursive Quantum Approximate Optimization Algorithm

Dalam dokumen Quantum Information at High and Low Energies (Halaman 130-140)

OBSTACLES TO STATE PREPARATION AND VARIATIONAL OPTIMIZATION FROM SYMMETRY PROTECTION

3.3 The Recursive Quantum Approximate Optimization Algorithm

dist(๐‘— , ๐‘˜) > 2๐‘…, one infers that๐‘‰โ€ ๐‘๐‘—๐‘‰ and๐‘‰โ€ ๐‘๐‘˜๐‘‰ have disjoint support. Thus h+๐‘›|๐‘‰โ€ ๐‘๐‘—๐‘๐‘˜๐‘‰|+๐‘›i =h+๐‘›| (๐‘‰โ€ ๐‘๐‘—๐‘‰) (๐‘‰โ€ ๐‘๐‘˜๐‘‰) |+๐‘›i

= h+๐‘›|๐‘‰โ€ ๐‘๐‘—๐‘‰|+๐‘›i ยท h+๐‘›|๐‘‰โ€ ๐‘๐‘˜๐‘‰|+๐‘›i=0.

This proves Eq. (3.9). Suppose one prepares the state๐‘‰|+๐‘›iand measures a pair of qubits ๐‘— < ๐‘˜ in the standard basis. Then ๐œ–๐‘— , ๐‘˜ is the probability that the measured values on qubits ๐‘— and๐‘˜ disagree. By the union bound,

๐œ–๐‘— , ๐‘˜ โ‰ค

๐‘˜โˆ’1

โˆ‘๏ธ

๐‘–=๐‘—

๐œ–๐‘–,๐‘–+

1.

Indeed, if qubits ๐‘— and ๐‘˜ disagree, at least one pair of consecutive qubits located in the interval [๐‘— , ๐‘˜] must disagree. Set๐‘˜ = ๐‘— +2๐‘…+1. Then๐œ–๐‘— , ๐‘˜ =1/2 by Eq. (3.9).

Take the expected value of Eq. (3.10) with respect to random uniform ๐‘— โˆˆZ๐‘›. This gives

1 2

โ‰ค 2๐‘…+1 ๐‘›

โˆ‘๏ธ

๐‘–โˆˆZ๐‘›

๐œ–๐‘–,๐‘–+

1= 2๐‘…+1 ๐‘›

h+๐‘›|๐‘‰โ€ ๐ป๐‘›๐‘‰|+๐‘›i

proving Eq. (3.8). In Appendix 3.B, we construct aZ2-symmetric range-๐‘…circuit๐‘ˆ such that๐‘ˆ|+๐‘›iis a tensor product of GHZ-like states on consecutive segments of 2๐‘…+1 qubits. We show that such circuit saturates the upper bound Eq. (3.6). This completes the proof of Theorem 3.2.3.

First, run the standard QAOA to maximize the expected value of ๐ป๐‘› on the state

|๐œ“i = ๐‘ˆ(๐›ฝ, ๐›พ) |+๐‘›i. For every edge (๐‘— , ๐‘˜) โˆˆ ๐ธ, compute ๐‘€๐‘— , ๐‘˜ = h๐œ“โˆ—|๐‘๐‘—๐‘๐‘˜|๐œ“โˆ—i, where๐œ“โˆ— is the optimal variational state.

Next, find a pair of qubits (๐‘–, ๐‘—) โˆˆ ๐ธ with the largest magnitude of ๐‘€๐‘–, ๐‘— (breaking ties arbitrarily). The corresponding variables ๐‘๐‘– and ๐‘๐‘— are correlated if ๐‘€๐‘–, ๐‘— > 0 and anti-correlated if๐‘€๐‘–, ๐‘— < 0. Impose the constraint

๐‘๐‘— =sgn(๐‘€๐‘–, ๐‘—)๐‘๐‘–

and substitute it into the Hamiltonian๐ป๐‘›to eliminate the variable๐‘๐‘—. For example, a term๐‘๐‘—๐‘๐‘˜ with๐‘˜ โˆ‰{๐‘–, ๐‘—}gets mapped to sgn(๐‘€๐‘–, ๐‘—)๐‘๐‘–๐‘๐‘˜. The term ๐ฝ๐‘–, ๐‘—๐‘๐‘–๐‘๐‘— gets mapped to a constant energy shift๐ฝ๐‘–, ๐‘—sgn(๐‘€๐‘–, ๐‘—). All other terms remain unchanged.

This yields a new Ising Hamiltonian ๐ป๐‘›โˆ’

1 that depends on ๐‘› โˆ’1 variables. By construction, the maximum energy of๐ป๐‘›โˆ’

1coincides with the maximum energy of ๐ป๐‘›over the subset of assignments satisfying the constraint Eq. (3.11).

Finally, call RQAOA recursively to maximize the expected value of ๐ป๐‘›โˆ’

1. Each recursion step eliminates one variable from the cost function. The recursion stops when the number of variables reaches some specified threshold value๐‘›๐‘ ๐‘›. The remaining instance of the problem with ๐‘›๐‘ variables is then solved by a purely classical algorithm (for example, by a brute force method). Thus the value of ๐‘›๐‘ controls how the workload is distributed between quantum and classical computers.

We describe a generalization of RQAOA applicable to Ising-like cost functions with multi-spin interactions in Appendix 3.C.

Imposing a constraint of the form (3.11) can be viewed as rounding correlations among the variables ๐‘๐‘– and ๐‘๐‘—. Indeed, the constraint demands that these vari- ables must be perfectly correlated or anti-correlated. This is analogous to rounding fractional solutions obtained by solving linear programming relaxations of combi- natorial optimization problems. We note that reducing the size of a problem to the point that it can be solved optimally by brute force is a widely used and effective approach in combinatorial optimization.

We compare the performance of the standard QAOA, RQAOA, and local classical algorithms by considering the Ising Hamiltonians in Eq. (3.3) with couplings๐ฝ๐‘,๐‘ž =

ยฑ1 defined on the cycle graph. In Appendix 3.D, we prove:

Theorem 3.3.1. For each integer๐‘›divisible by6, there exists a family of2๐‘›/3Ising Hamiltonians of the form ๐ป๐‘› = ร

๐‘˜โˆˆZ๐‘›๐ฝ๐‘˜๐‘๐‘˜๐‘๐‘˜+

1 with ๐ฝ๐‘˜ โˆˆ {1,โˆ’1} such that the

(a) (b)

Figure 3.1: Comparisons of level-1 RQAOA and the Goemans-Williamson Al- gorithm. (a) Approximation ratios achieved by level-1 RQAOA (blue) and the Goemans-Williamson (GW) algorithm [21] (red) for 15 instances of the Ising cost function with random ยฑ1 couplings defined on the 2D toric grid of size 16ร— 16.

In case (b) the Ising Hamiltonian also includes random ยฑ1 external fields. The RQAOA threshold value is ๐‘›๐‘ = 20. We found that the standard level-1 QAOA achieves approximation ratios below 1/2 for all considered instances (not shown).

The GW algorithm was implemented with๐‘› =256 rounding attempts and the best found solution was selected. The exact maximum energy was computed using integer linear programming.

following holds for all Hamiltonians in the family:

(i) There is a local classical algorithm which achieves the approximation ratio1. (ii) Level-๐‘QAOA achieves an approximation ratio of at most ๐‘/(๐‘+1).

(iii) Level-1RQAOA achieves the approximation ratio1.

Our definition of local classical algorithms follows [20]. We also show that the level-1 RQAOA achieves the optimal approximation ratio for any 1D Ising model with coupling coefficients๐ฝ๐‘˜ โˆˆ {1,โˆ’1}. This proves that, in certain cases, RQAOA is strictly more powerful than QAOA.

Finally, we report a numerical comparison between the level-1 RQAOA and the Goemans-Williamson algorithm [21] for the Ising cost function Eq. (3.3) with ran- dom coefficients๐ฝ๐‘— , ๐‘˜ =ยฑ1. Two graphs are considered: (a) the 2D grid, and (b) the 2D grid with one extra vertex connected to all grid points. The latter is equivalent to the 2D Ising model with random ยฑ1 external fields. As shown in [23], the problem of maximizing the energy ๐ถ(๐‘ฅ) admits an efficient algorithm in case (a) while case (b) is NP-hard. To compute the mean values h๐œ“(๐›ฝ, ๐›พ) |๐‘๐‘—๐‘๐‘˜|๐œ“(๐›ฝ, ๐›พ)i,

we used a version of the algorithm by Wang et al [24], as detailed in Appendix 3.C.

Figure 3.1 shows approximation ratios achieved by each algorithm for 15 problem instances with the grid size 16ร—16. It can be seen that RQAOA outperforms the Goemans-Williamson algorithm for all except for one instance. We found that the standard level-1 QAOA achieves approximation ratio below 1/2 for all considered instances.

Note added: After submission of this work, analogous limitations were estab- lished for random regular graphs by exploiting the locality and spatial uniformity of QAOA [25], [26]. We focus onZ2-symmetry and locality, and our statements also apply to non-uniform local algorithms.

Acknowledgements

The authors thank Giacomo Nannicini and Kristan Temme for helpful discussions.

SB was partially supported by the IBM Research Frontiers Institute and by the Army Research Office (ARO) under Grant Number W911NF-20-1-0014. ET ac- knowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and funding provided by the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (NSF Grant No. PHYโ€“1733907).

RK and AK gratefully acknowledge support by the DFG cluster of excellence 2111 (Munich Center for Quantum Science and Technology) and by IBM.

3.A Proof of Corollary 3.2.2

In this appendix, we give a proof of Corollary 3.2.2 in the main text. Here and below, we will denote the expected approximation ratio achieved by the QAOA with Hamiltonian๐ปas

QAOA๐‘(๐ป) =

max

๐›ฝ,๐›พโˆˆR๐‘

hฮจ๐ป(๐›ฝ, ๐›พ) |๐ป|ฮจ๐ป(๐›ฝ, ๐›พ)i

ยท

max

๐‘ฅโˆˆ{0,1}๐‘›

h๐‘ฅ|๐ป|๐‘ฅi โˆ’1

, where

|ฮจ๐ป(๐›ฝ, ๐›พ)i =๐‘ˆ๐ป(๐›ฝ, ๐›พ) |+๐‘›i and ๐‘ˆ๐ป(๐›ฝ, ๐›พ) =

๐‘

ร–

๐‘š=1

๐‘’๐‘– ๐›ฝ๐‘š๐ต๐‘’๐‘– ๐›พ๐‘š๐ป

(3.16) for ๐›ฝ, ๐›พ โˆˆ R๐‘ and where๐ต =ร๐‘›

๐‘—=1๐‘‹๐‘—. Let us first record a few general features of the QAOA for later use.

Let ๐บ = (๐‘‰ , ๐ธ) be a graph, ๐‘› = |๐‘‰|, ๐‘š = |๐ธ|, and let ๐ฝ = (๐ฝ๐‘’)๐‘’โˆˆ๐ธ โˆˆ R๐ธ be an assignment of edge weights on๐บ. Let us define the Hamiltonian๐ป๐บ(๐ฝ) as

๐ป๐บ(๐ฝ) = โˆ‘๏ธ

{๐‘ข,๐‘ฃ}โˆˆ๐ธ

๐ฝ{๐‘ข,๐‘ฃ}๐‘๐‘ข๐‘๐‘ฃ . (3.17) It will be useful for later to also define

๐ป๐บ = โˆ‘๏ธ

{๐‘ข,๐‘ฃ}โˆˆ๐ธ

๐‘๐‘ข๐‘๐‘ฃ, and ๐ปMaxCut

๐บ = 1

2

(๐‘š ๐ผ โˆ’๐ป๐บ),

where ๐ปMaxCut

๐บ is the Hamiltonian used in QAOA for the Maximum Cut problem on the graph๐บ. We will use the following bound on the circuit depth of a QAOA unitary.

Lemma 3.A.1. Let ๐‘ˆ = ๐‘ˆ๐ป(๐›ฝ, ๐›พ) with ๐›ฝ, ๐›พ โˆˆ R๐‘ be a level-๐‘ QAOA unitary (cf. Eq.(3.A)) for a Hamiltonian๐ป =๐ป๐บ(๐ฝ)on a graph๐บ(cf.(3.A)). Let๐ทbe the maximum degree of๐บ. Then๐‘ˆ can be realized by a circuit of depth๐‘‘ โ‰ค ๐‘(๐ท+1) consisting of2-qubit gates.

If ๐บ is ๐ท-regular and bipartite, then the circuit depth of ๐‘ˆ can be bounded by ๐‘‘ โ‰ค ๐‘ ๐ท.

Proof. By Vizingโ€™s theorem [27], there is an edge coloring of๐บ with at most๐ท+1 colors. Taking such a coloring ๐ธ = ๐ธ

1โˆช ยท ยท ยท โˆช ๐ธ๐ท+

1, we may apply each level ๐‘’๐‘– ๐›ฝ ๐ต๐‘’๐‘– ๐›พ ๐ป of๐‘ˆ in depth ๐ท +1 by applying (รŽ

๐‘ฃโˆˆ๐‘‰๐‘’๐‘– ๐›ฝ ๐‘‹๐‘ฃ)รŽ๐ท+1

๐‘=1 ๐‘‰๐‘(๐›พ), where each ๐‘‰๐‘(๐›พ) =

รŽ

{๐‘ข,๐‘ฃ}โˆˆ๐ธ๐‘

๐‘’๐‘– ๐›พ ๐ฝ{๐‘ข , ๐‘ฃ}๐‘๐‘ข๐‘๐‘ฃ

is a depth-1-circuit of two-local gates.

If๐บ is๐ท-regular and bipartite, we may reduce the chromatic number upper bound from ๐ท +1 to ๐ท since all bipartite graphs are ๐ท-edge-colorable by Kล‘nigโ€™s line coloring theorem. We illustrate the construction of the circuit on Figure 3.2 for the case๐ท =3 and ๐‘=1.

The expected QAOA approximation ratios of suitably related instances are identical:

Lemma 3.A.2. LetL โŠ‚ ๐‘‰ be an arbitrary subset of vertices and ๐œ•L be the set of edges that have exactly one endpoint inL. Let๐ฝ =(๐ฝ๐‘’)๐‘’โˆˆ๐ธ โˆˆR๐ธ be arbitrary edge weights. Define๐ฝหœ= (๐ฝหœ๐‘’)๐‘’โˆˆ๐ธ โˆˆR๐ธ by

หœ ๐ฝ๐‘’ =

๏ฃฑ๏ฃด

๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃณ

โˆ’๐ฝ๐‘’ if๐‘’ โˆˆ๐œ•L ๐ฝ๐‘’ otherwise.

Figure 3.2: Example for the construction of the circuit given in Lemma 3.A.1: a 4-colorable graph with maximum degree 3 alongside its associated depth-5 quantum circuit for the level-1 QAOA unitary.

Then expected QAOA approximation ratios satisfy

QAOA๐‘(๐ป๐บ(๐ฝ)) =QAOA๐‘(๐ป๐บ(๐ฝหœ)).

Proof. Let us write ๐ป = ๐ป๐บ(๐ฝ) and หœ๐ป = ๐ป๐บ(๐ฝหœ) for brevity. Let ๐‘‹ = ๐‘‹[L]

be a tensor product of Pauli-๐‘‹ operators acting on every qubit in L โŠ‚ ๐‘‰. Then

หœ

๐ป = ๐‘‹ ๐ป ๐‘‹, which implies that

๐‘ฅโˆˆ{max0,1}๐‘›h๐‘ฅ|๐ป|๐‘ฅi= max

๐‘ฅโˆˆ{0,1}๐‘›h๐‘ฅ|๐ปหœ|๐‘ฅi. (3.18) Let๐›ฝ, ๐›พ โˆˆR๐‘be arbitrary. Then we also have

๐‘‹|ฮจ๐ปหœ(๐›ฝ, ๐›พ)i =

๐‘

ร–

๐‘š=1

(๐‘‹ ๐‘’๐‘– ๐›ฝ๐‘š๐ต๐‘’๐‘– ๐›พ๐‘š๐ปหœ๐‘‹) |+๐‘›i=

๐‘

ร–

๐‘š=1

(๐‘’๐‘– ๐›ฝ๐‘š๐ต๐‘’๐‘– ๐›พ๐‘š๐ป) |+๐‘›i=|ฮจ๐ป(๐›ฝ, ๐›พ)i,

where identities in the middle follow since|+๐‘›iis stabilized by๐‘‹, and since[๐‘‹ , ๐ต] = 0. Therefore we have

hฮจ๐ปหœ(๐›ฝ, ๐›พ) |๐ปหœ|ฮจ๐ปหœ(๐›ฝ, ๐›พ)i =hฮจ๐ปหœ(๐›ฝ, ๐›พ) |๐‘‹ ๐ป ๐‘‹|ฮจ๐ปหœ(๐›ฝ, ๐›พ)i =hฮจ๐ป(๐›ฝ, ๐›พ) |๐ป|ฮจ๐ป(๐›ฝ, ๐›พ)i.

Combined with (3.A), this implies the claim.

In particular, if๐บ = (๐‘‰ , ๐ธ)is a bipartite graph, then Lemma 3.A.2 implies that QAOA๐‘(๐ป๐บ) =QAOA๐‘(โˆ’๐ป๐บ)

and

QAOA๐‘(๐ปMaxCut

๐บ ) = 1

2

(1+QAOA๐‘(๐ป๐บ)). (3.19) We now prove Corollary 1. It is a direct consequence of Theorem 1, which we restate here for convenience in the notation of this appendix:

Theorem 3.A.1. Consider a family {๐บ๐‘› = ( [๐‘›], ๐ธ๐‘›)}๐‘›โˆˆI of graphs with Cheeger constant lower bounded asโ„Ž(๐บ๐‘›) โ‰ฅ โ„Ž > 0for all๐‘›โˆˆ I. Then

h๐œ‘|๐‘ˆโ€ ๐ป๐บ

๐‘›๐‘ˆ|๐œ‘i< |๐ธ๐‘›| โˆ’ โ„Ž๐‘› 3

for any Z2-symmetric depth-๐‘‘ circuit ๐‘ˆ composed of two-qubit gates, any Z2- symmetric product state๐œ‘, and any๐‘› >4828๐‘‘,๐‘› โˆˆ I.

Then we have the following:

Corollary 3.A.1. For every integer๐ท โ‰ฅ 3, there exists an infinite family of bipartite ๐ท-regular graphs{๐บ๐‘›}๐‘›โˆˆI such that

QAOA๐‘(๐ปMaxCut

๐บ๐‘›

) โ‰ค 5 6

+

โˆš ๐ทโˆ’1

3๐ท as long as

๐‘ < (1/3 log2๐‘›โˆ’4)๐ทโˆ’1 .

Proof. Fix some๐ท โ‰ฅ 3. By the results of [28], [29], there exists an infinite family {๐บ๐‘›}๐‘›โˆˆI of bipartite ๐ท-regular Ramanujan graph with๐‘› vertices for every๐‘› โˆˆ I. Consider a fixed ๐‘› โˆˆ I and let ๐‘ = ๐‘(๐‘›) be the associated QAOA level. Let ๐‘ˆ๐‘› = ๐‘ˆ๐ป

๐บ๐‘›(๐›ฝโˆ—, ๐›พโˆ—) be a level-๐‘ QAOA unitary for the Hamiltonian ๐ป๐บ

๐‘› on ๐บ๐‘›, and assume that ๐›ฝโˆ—, ๐›พโˆ— โˆˆ R๐‘ are such that the expectation of ๐ป๐บ

๐‘› is maximized.

Because๐บ๐‘›is๐ท-regular, the circuit depth of๐‘ˆ๐‘›can be bounded from above by ๐‘ ๐ท according to Lemma 3.A.1. Condition (3.12) implies that๐‘› >4828๐‘ ๐ท, thus

QAOA๐‘(๐ป๐บ

๐‘›) = 1

|๐ธ๐‘›|h+๐‘›|๐‘ˆโ€ 

๐‘›๐ป๐บ

๐‘›๐‘ˆ๐‘›|+๐‘›i < 1โˆ’ โ„Ž

3|๐ธ๐‘›|๐‘› =1โˆ’ 2โ„Ž 3๐ท

by Theorem 1, where we have used that |๐ธ๐‘›| =๐‘› ๐ท/2. With (3.A) (using that๐บ๐‘›is bipartite), we conclude that

QAOA๐‘(๐ปMaxCut

๐บ๐‘›

) < 1โˆ’ โ„Ž 3๐ท

. The claim then follows from the boundโ„Ž/๐ท โ‰ฅ (๐ทโˆ’2

โˆš

๐ทโˆ’1)/(2๐ท), valid for all Ramanujan graphs.

3.B Optimal Variational Circuit for the Ring of Disagrees

In this section we prove that the upper bound of Theorem 2 in the main text is tight whenever๐‘›is a multiple of 2๐‘…+1. Let

|GHZni=2โˆ’1/2(|0๐‘›i + |1๐‘›i) be the GHZ state of๐‘›qubits.

Lemma 3.B.1. Suppose๐‘›=2๐‘+1for some integer๐‘. There exists aZ2-symmetric range-๐‘quantum circuit๐‘‰ such that

|GHZni=๐‘‰|+๐‘›i.

Proof. We shall writeCX๐‘,๐‘ก for the CNOT gate with a control qubit๐‘ and a target qubit๐‘ก. Let๐‘= ๐‘+1 be the central qubit. One can easily check that

|GHZni=ยฉ

ยญ

ยซ

๐‘

ร–

๐‘—=1

CX๐‘,๐‘โˆ’๐‘—CX๐‘,๐‘+๐‘—

ยช

ยฎ

ยฌ

๐ป๐‘|0๐‘›i.

AllCXgates in the product pairwise commute, so the order does not matter. Inserting a pair of Hadamards on every qubit ๐‘— โˆˆ [๐‘›] \ {๐‘}before and after the respectiveCX gate and using the identity(๐ผ โŠ—๐ป)CX(๐ผโŠ— ๐ป) =CZ, one gets

|GHZni=ยฉ

ยญ

ยซ ร–

๐‘—โˆˆ[๐‘›]\{๐‘}

๐ป๐‘—ยช

ยฎ

ยฌ

ยฉ

ยญ

ยซ

๐‘

ร–

๐‘—=1

CZ๐‘,๐‘โˆ’๐‘—CZ๐‘,๐‘+๐‘—ยช

ยฎ

ยฌ

|+๐‘›i.

Let๐‘†=exp[๐‘–(๐œ‹/4)๐‘] be the phase-shift gate. Define the two-qubit Clifford gate RZ=(๐‘†โŠ— ๐‘†)โˆ’1CZ=exp(โˆ’๐‘– ๐œ‹/4)exp[โˆ’๐‘–(๐œ‹/4) (๐‘ โŠ—๐‘)].

ExpressingCZin terms ofRZand๐‘† in Eq. (3.14), one gets

|GHZni =๐‘†2

๐‘ ๐‘

ยฉ

ยญ

ยซ ร–

๐‘—โˆˆ[๐‘›]\{๐‘}

๐ป๐‘—๐‘†๐‘—ยช

ยฎ

ยฌ

ยฉ

ยญ

ยซ

๐‘

ร–

๐‘—=1

RZ๐‘,๐‘โˆ’๐‘—RZ๐‘,๐‘+๐‘—

ยช

ยฎ

ยฌ

|+๐‘›i.

Multiply both sides of Eq. (3.15) on the left by a product of ๐‘† gates over qubits ๐‘— โˆˆ [๐‘›] \ {๐‘}. Noting that

๐‘† ๐ป ๐‘† =๐‘–exp[โˆ’๐‘–(๐œ‹/4)๐‘‹], one gets (ignoring an overall phase factor)

ร–

๐‘—โˆˆ[๐‘›]\{๐‘}

๐‘†๐‘—|GHZni=๐‘†2

๐‘ ๐‘

ยฉ

ยญ

ยซ ร–

๐‘—โˆˆ[๐‘›]\{๐‘}

exp[โˆ’๐‘–(๐œ‹/4)๐‘‹๐‘—]ยช

ยฎ

ยฌ

ยฉ

ยญ

ยซ

๐‘

ร–

๐‘—=1

RZ๐‘,๐‘โˆ’๐‘—RZ๐‘,๐‘+๐‘—ยช

ยฎ

ยฌ

|+๐‘›i.

Using the identity

ร–

๐‘—โˆˆ[๐‘›]\{๐‘}

๐‘†๐‘—|GHZni =๐‘†2

๐‘

๐‘ |GHZni, one can cancel๐‘†2

๐‘

๐‘ that appears in both sides of Eq. (3.16). We arrive at Eq. (3.13) with

๐‘‰ =ยฉ

ยญ

ยซ ร–

๐‘—โˆˆ[๐‘›]\{๐‘}

exp[โˆ’๐‘–(๐œ‹/4)๐‘‹๐‘—]ยช

ยฎ

ยฌ

ยฉ

ยญ

ยซ

๐‘

ร–

๐‘—=1

RZ๐‘,๐‘โˆ’๐‘—RZ๐‘,๐‘+๐‘—ยช

ยฎ

ยฌ .

The circuit diagram of๐‘‰ in the case ๐‘› = 7 is shown in Figure 3.3. Obviously,๐‘‰ isZ2-symmetric since any individual gate commutes with ๐‘‹โŠ—๐‘›. Let us check that ๐‘‰ has range-๐‘. Consider any single-qubit observable๐‘‚๐‘ž acting on the ๐‘ž-th qubit.

Consider three cases:

Case 1: ๐‘ž = ๐‘. Then ๐‘‰โ€ ๐‘‚๐‘ž๐‘‰ may be supported on all ๐‘› qubits. However, [๐‘โˆ’ ๐‘, ๐‘+๐‘] = [1, ๐‘›], so the ๐‘-range condition is satisfied trivially.

Case 2: 1 โ‰ค ๐‘ž < ๐‘. Then all gates RZ๐‘,๐‘+๐‘— in๐‘‰ cancel the corresponding gates in๐‘‰โ€ , so that๐‘‰โ€ ๐‘‚๐‘ž๐‘‰ has support in the interval[1, ๐‘] โŠ† [๐‘žโˆ’ ๐‘, ๐‘ž+ ๐‘]. Thus the ๐‘-range condition is satisfied.

Case 3: ๐‘ < ๐‘ž โ‰ค ๐‘›. This case is equivalent to Case 2 by symmetry.

Recall that we consider the ring of disagrees Hamiltonian ๐ป๐‘› = 1

2

โˆ‘๏ธ

๐‘โˆˆZ๐‘›

(๐ผโˆ’๐‘๐‘๐‘๐‘+

1).

Lemma 3.B.2. Consider any integers๐‘›, ๐‘such that๐‘›is even and๐‘›is a multiple of 2๐‘+1. Then there exists aZ2-symmetric range-๐‘circuit๐‘ˆsuch that

h+๐‘›|๐‘ˆโ€ ๐ป๐‘›๐‘ˆ|+๐‘›i= 2๐‘+1/2 2๐‘+1

.

Proof. Let๐‘‰be theZ2-symmetric range-๐‘unitary operator preparing the GHZ state on 2๐‘+1 qubits starting from |+2๐‘+1i, see Lemma 3.B.1. Suppose๐‘› =๐‘š(2๐‘+1) for some integer๐‘š. Define

๐‘ˆ =๐‘ˆ

1๐‘ˆ

2,

Figure 3.3: The Z2-symmetric range-3 quantum circuit to prepare the GHZ state

|GHZ2p+1iof 2๐‘+1=7 qubits (๐‘=3). Here,๐‘…๐‘‚(๐œƒ) =exp(โˆ’๐‘– ๐œƒ ๐‘‚). where

๐‘ˆ1= (๐‘‹ โŠ— ๐ผ)โŠ—๐‘›/2 and ๐‘ˆ

2 =๐‘‰โŠ—๐‘š.

Since each copy of๐‘‰ acts on a consecutive interval of qubits and has range ๐‘, one infers that๐‘ˆ has range๐‘. We have

๐‘ˆโ€ 

1๐ป๐‘›๐‘ˆ

1 = โˆ‘๏ธ

๐‘โˆˆZ๐‘›

๐บ๐‘, ๐บ๐‘ = 1 2

(๐ผ+๐‘๐‘๐‘๐‘+

1). The state๐‘ˆ

2|+๐‘›iis a tensor product of GHZ states supported on consecutive tuples of 2๐‘+1 qubits. The expected value of ๐บ๐‘ on the state๐‘ˆ

2|+๐‘›iequals 1 if ๐บ๐‘ is supported on one of the GHZ states. Otherwise, if๐บ๐‘crosses the boundary between two GHZ states, the expected value of๐บ๐‘on the state๐‘ˆ

2|+๐‘›iequals 1/2. Thus h+๐‘›|๐‘ˆโ€ ๐ป๐‘›๐‘ˆ|+๐‘›i = โˆ‘๏ธ

๐‘โˆˆZ๐‘›

h+๐‘›|๐‘ˆโ€ 

2

๐บ๐‘๐‘ˆ

2|+๐‘›i =๐‘š(2๐‘+1/2) =๐‘›2๐‘+1/2 2๐‘+1

.

3.C Recursive QAOA

In this appendix, we outline the Recursive QAOA algorithm (RQAOA) for general cost functions.

Dalam dokumen Quantum Information at High and Low Energies (Halaman 130-140)