BAB VII SIMPULAN DAN SARAN
7.2 Saran
Penelitian ini merupakan penelitian awal yang melakukan analasis terhadap efek pemberian VEGF pada kasus defek tulang setelah dilakukan bone recycling dengan nitrogen cair. Diharapkan adanya penelitian lanjutan pada manusia sehingga pemberian VEGF dapat dipakai untuk membantu proses regenerasi dari defek tulang.
!
DAFTAR PUSTAKA
Abdel Rahman, M., Bassiony, A. & Shalaby, H., 2009. Reimplantation of the resected tumour-bearing segment after recycling using liquid nitrogen for osteosarcoma. International Orthopaedics, 33(5), pp.1365–1370.
Aela, M.I.C.H. & De, B.O., 2000. Characterization of type I and type II and type III collagens in human tissues,
Almubarak, S. et al., 2016. Tissue engineering strategies for promoting vascularized bone regeneration. Bone, 83, pp.197–209.
Amini, A.R., Laurencin, C.T. & Nukavarapu, S.P., Bone tissue engineering: recent advances and challenges. Critical reviews in biomedical engineering, 40(5), pp.363–408.
Barnes, G.L. et al., 1999. Growth factor regulation of fracture repair. Journal of bone and mineral research": the official journal of the American Society for Bone and Mineral Research, 14(11), pp.1805–15.
Baust, J.G. et al., 2004. Cryosurgery - A putative approach to molecular-based optimization. Cryobiology, 48(2), pp.190–204.
Bayliss, L., Mahoney, D.J. & Monk, P., 2012. Normal bone physiology, remodelling and its hormonal regulation. Surgery (Oxford), 30(2), pp.47–53.
Bickels, J. et al., 1999. The role and biology of cryosurgery in the treatment of bone tumors. A review. Acta orthopaedica Scandinavica, 70(3), pp.308–15.
Bickels, J., Meller, I. & Kollender, Y., of Bone Tumors. , pp.1–9.
Bickels, J., Meller, I. & Malawer, M., 2001. The Biology and Role of Cryosurgery in the Treatment of Bone Tumors. , pp.135–146.
Bose, S., Roy, M. & Bandyopadhyay, A., 2012. Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 30(10), pp.546–554.
Carano, R.A.D. & Filvaroff, E.H., 2003. Angiogenesis and bone repair. Drug Discovery Today, 8(21), pp.980–989.
Clarke, B., 2008. Normal bone anatomy and physiology. Clinical journal of the American Society of Nephrology": CJASN, 3 Suppl 3, pp.131–139.
Clarkin, C.E. & Gerstenfeld, L.C., 2013. VEGF and bone cell signalling: An essential vessel for communication? Cell Biochemistry and Function, 31(1), pp.1–11.
Costa, F.W.G. et al., 2011. Histomorphometric assessment of bone necrosis produced by two cryosurgery protocols using liquid nitrogen: an experimental study on rat femurs. Journal of applied oral science": revista FOB, 19(6), pp.604–9.
Crockett, J.C. et al., 2011. Bone remodelling at a glance. Journal of cell science, 124, pp.991–998.
Dabak, N. et al., 2003. Early results of a modified technique of cryosurgery.
International Orthopaedics, 27(4), pp.249–253.
Drosse, I. et al., 2008. Tissue engineering for bone defect healing: An update on a multi-component approach. Injury, 39(SUPPL.2).
Eckardt, H. et al., 2005. Recombinant human vascular endothelial growth factor enhances bone healing in an experimental nonunion model. The Journal of bone and joint surgery. British volume, 87(10), pp.1434–1438.
Gao, C. et al., 2013. MSC-seeded dense collagen scaffolds with a bolus dose of vegf promote healing of large bone defects. European Cells and Materials, 26, pp.195–207.
Gelse, K., Pöschl, E. & Aigner, T., 2003. Collagens - Structure, function, and biosynthesis. Advanced Drug Delivery Reviews, 55(12), pp.1531–1546.
Kamal, A., Putro, R. & Pattiata, R., 2011. Diagnosis and Treatment of Ewing Sarcoma. Journal of Indonesian Orthopaedic, (71), pp.92–100.
Kruger, T.E., Miller, A.H. & Wang, J., 2013. Collagen scaffolds in bone sialoprotein-mediated bone regeneration. The Scientific World Journal, 2013(I), p.812718.
Lieberman, J.R. & Friedlaender, G.E., 2005. Bone regeneration and repair,
Liu, J. et al., 2014. Calcium Sulfate Hemihydrate/Mineralized Collagen Loading Vascular Endothelial Growth Factors and the In Vivo Performance in Rabbit Femoral Condyle Defects Model. Journal of Biomaterials and Tissue Engineering, 4(12), pp.1054–1062.
Maes,&C.&et&al.,&2002.&Impaired&angiogenesis&and&endochondral&bone&formation&in&
mice&lacking&the&vascular&endothelial&growth&factor&isoforms&VEGF164&and&
McGonnell, I.M. et al., 2012. Physiology of Bone Formation, Remodeling, and Metabolism. In I. Fogelman, G. Gnanasegaran, & H. van der Wall, eds.
Frontiers in endocrinology. Berlin, Heidelberg: Springer Berlin Heidelberg, p.
88.
Mohler, D.G. et al., 2010. Curettage and cryosurgery for low-grade cartilage tumors is associated with low recurrence and high function. Clinical Orthopaedics and Related Research, 468(10), pp.2765–2773.
Munthe, R. & Suroto, H., 2014. Chip Freeze Dried Cancellous Bone Allograft as Scaffold to Fill Small Bone Defect in Long Bone. Journal of Orthopaedic and Traumatology Surabaya, 3(1), pp.193–201.
Nandi, S.K. et al., 2010. Orthopaedic applications of bone graft & graft substitutes:
A review. Indian Journal of Medical Research, 132(7), pp.15–30.
Ng, Y.S. et al., 2001. Differential expression of VEGF isoforms in mouse during development and in the adult. Developmental dynamics": an official publication of the American Association of Anatomists, 220(2), pp.112–121.
Nishida, H., Tsuchiya, H. & Tomita, K., 2008. Re-implantation of tumour tissue treated by cryotreatment with liquid nitrogen induces anti-tumour activity against murine osteosarcoma. The Journal of bone and joint surgery. British volume, 90(9), pp.1249–55.
Papachroni, K.K. et al., 2009. Mechanotransduction in osteoblast regulation and bone disease. Trends in Molecular Medicine, 15(5), pp.208–216.
Pearce, A.I. et al., 2007. Animal models for implant biomaterial research in bone:
A review. European Cells and Materials, 13(FEBRUARY), pp.1–10.
Pei, F. et al., 2012. Evaluation of a biodegradable graft substitute in rabbit bone defect model. Indian Journal of Orthopaedics, 46(3), p.266.
Peng,&H.&et&al.,&2002.&Synergistic&enhancement&of&bone&formation&and&healing&by&
stem&cellOexpressed&VEGF&and&bone&morphogenetic&proteinO4.&Journal*of*
Clinical*Investigation,&110(6),&pp.751–759.&
Phedy, P., 2011. Mesenchymal stem cells: Source of isolation, survival in hydroxyapatite-calcium sulphate, and effect in healing of bone defect. Clinical Biochemistry, 44(13), p.S295.
Phillips, A.M., 2005. Overview of the fracture healing cascade. Injury, 36 Suppl 3(3), pp.S5-7.
osteoblasts. Bone, 46(1), pp.81–90.
Prideaux, M., Findlay, D.M. & Atkins, G.J., 2016. Osteocytes: The master cells in bone remodelling. Current Opinion in Pharmacology, 28, pp.24–30.
Ramajayam, K.K. & Kumar, A., 2013. A novel approach to improve the efficacy of tumour ablation during cryosurgery. Cryobiology, 67(2), pp.201–213.
Rauschmann, M.A. et al., 2005. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials, 26(15), pp.2677–2684.
Robinson, D., Halperin, N. & Nevo, Z., 2001. Two freezing cycles ensure interface sterilization by cryosurgery during bone tumor resection. Cryobiology, 43(1), pp.4–10.
Sipola, A., 2009. Effects of Vascular Endothelial Growth Factor (VEGF-A) And Endostatin On Bone,
Street, J. et al., 2002. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proceedings of the National Academy of Sciences of the United States of America, 99(15), pp.9656–61.
Thomas, M. V. & Puleo, D.A., 2009. Calcium sulfate: Properties and clinical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 88B(2), pp.597–610.
Tsuchiya, H. et al., 2010. Pedicle frozen autograft reconstruction in malignant bone tumors. Journal of Orthopaedic Science, 15(3), pp.340–349.
Uchihashi, K. et al., 2013. Osteoblast migration into type I collagen gel and differentiation to osteocyte-like cells within a self-produced mineralized matrix: A novel system for analyzing differentiation from osteoblast to osteocyte. Bone, 52(1), pp.102–110.
Wallace, J.M. et al., 2010. Distribution of type I collagen morphologies in bone:
Relation to estrogen depletion. Bone, 46(5), pp.1349–1354.
Whittaker, D.K., 1984. Mechanisms of tissue destruction following cryosurgery.
Annals of the Royal College of Surgeons of England, 66(5), pp.313–318.
Yang, Y. et al., 2015. In vitro evaluation of rhBMP-2-induced expression of VEGF in human adipose-derived stromal cells. , 8(1), pp.222–230.
Yang, Y.-Q. et al., 2012. The role of vascular endothelial growth factor in ossification. International journal of oral science, 4(2), pp.64–8.
Yazawa, M., Mori, T. & Kishi, K., 2013. A Comparison of Malignant Bone Treatments for Reuse. , 2013(January), pp.49–52.
Yiu, W.K. et al., 2007. Cryosurgery: A review. International Journal of Angiology, 16(1), pp.1–6.
Zelzer, E. & Olsen, B.R., 2004. Multiple Roles of Vascular Endothelial Growth Factor (VEGF) in Skeletal Development, Growth, and Repair. Current Topics in Developmental Biology, 65, pp.169–187.
Zhou, H. & Lee, J., 2011. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomaterialia, 7(7), pp.2769–2781.
Lampiran 1. Surat Keterangan Kelaikan Etik
Lampiran 2. Surat Keterangan Selesai Melakukan Penelitian
Lampiran 3. Surat Keterangan Hasil Pemeriksaan Histopatologi dan Imunohistokimia
Lampiran 4. Data Analisis SPSS Data Deskriptif Osteoblast
Case%Processing%Summary!
Kelompok!
Cases!
Valid! Missing! Total!
N! Percent! N! Percent! N! Percent!
OsteoblastCount! Perelakuan! 16! 100.0%! 0! 0.0%! 16! 100.0%!
Kontrol! 16! 100.0%! 0! 0.0%! 16! 100.0%!
Descriptives!
Kelompok! Statistic! Std.!Error!
OsteoblastCount! Perelakuan! Mean! 387.8750! 4.39685!
95%!Confidence!Interval!for!
Mean!
Lower!Bound! 378.5033!
Upper!Bound! 397.2467!
5%!Trimmed!Mean! 388.7500!
Median! 390.0000!
Variance! 309.317!
Std.!Deviation! 17.58740!
Minimum! 347.00!
Maximum! 413.00!
Range! 66.00!
Interquartile!Range! 22.00!
Skewness! T.891! .564!
Kurtosis! .827! 1.091!
Kontrol! Mean! 284.9375! 2.50245!
95%!Confidence!Interval!for!
Mean!
Lower!Bound! 279.6037!
Upper!Bound! 290.2713!
5%!Trimmed!Mean! 285.1528!
Median! 286.5000!
Variance! 100.196!
Std.!Deviation! 10.00979!
Minimum! 267.00!
Maximum! 299.00!
Range! 32.00!
Interquartile!Range! 18.25!
Skewness! T.201! .564!
Kurtosis! T1.195! 1.091!
Tests%of%Normality!
Kelompok!
KolmogorovTSmirnova! ShapiroTWilk!
Statistic! df! Sig.! Statistic! df! Sig.!
OsteoblastCount! Perelakuan! .141! 16! .200*! .943! 16! .391!
Kontrol! .135! 16! .200*! .949! 16! .477!
!
*.!This!is!a!lower!bound!of!the!true!significance.!
a.!Lilliefors!Significance!Correction!
%
Grafik%Histograms%Osteoblast%
%
%
Normal%Q?Q%Plots%
Detrended%Normal%Q?Q%Plots%
Independent%T?Test%Jumlah%Osteoblast%
Group%Statistics!
Kelompok! N! Mean! Std.!Deviation! Std.!Error!Mean!
OsteoblastCount! Perelakuan! 16! 387.8750! 17.58740! 4.39685!
Kontrol! 16! 284.9375! 10.00979! 2.50245!
Independent%Samples%Test!
Levene's!Test!for!Equality!of!
Variances!
tTtest!for!Equality!of!
Means!
F! Sig.! t! df!
OsteoblastCount! Equal!variances!assumed! 2.274! .142! 20.347! 30!
Equal!variances!not!
assumed! 20.347! 23.795!
!
Independent%Samples%Test!
tTtest!for!Equality!of!Means!
Sig.!(2Ttailed)! Mean!Difference!
Std.!Error!
Difference!
OsteoblastCount! Equal!variances!assumed! .000! 102.93750! 5.05910!
Equal!variances!not!assumed! .000! 102.93750! 5.05910!
!
Independent%Samples%Test!
tTtest!for!Equality!of!Means!
95%!Confidence!Interval!of!the!Difference!
Lower! Upper!
OsteoblastCount! Equal!variances!assumed! 92.60543! 113.26957!
Equal!variances!not!assumed! 92.49126! 113.38374!
' '
Crosstabs'
Case'Processing'Summary!
Cases!
Valid! Missing! Total!
N! Percent! N! Percent! N! Percent!
KolagenTypeI!*!Kelompok! 32! 100.0%! 0! 0.0%! 32! 100.0%!
Kelompok!
Total!
Perlakuan! Kontrol!
KolagenTypeI! Tidak!Ada!Ekspresi! Count! 0! 16! 16!
%!within!KolagenTypeI! 0.0%! 100.0%! 100.0%!
%!within!Kelompok! 0.0%! 100.0%! 50.0%!
%!of!Total! 0.0%! 50.0%! 50.0%!
Ekspresi!Ringan! Count! 16! 0! 16!
%!within!KolagenTypeI! 100.0%! 0.0%! 100.0%!
%!within!Kelompok! 100.0%! 0.0%! 50.0%!
%!of!Total! 50.0%! 0.0%! 50.0%!
Total! Count! 16! 16! 32!
%!within!KolagenTypeI! 50.0%! 50.0%! 100.0%!
%!within!Kelompok! 100.0%! 100.0%! 100.0%!
%!of!Total! 50.0%! 50.0%! 100.0%!
Descriptive'Statistics!
N! Mean! Std.!Deviation! Minimum! Maximum!
Percentiles!
25th! 50th!(Median)! 75th!
KolagenTypeI! 32! 1.5000! .50800! 1.00! 2.00! 1.0000! 1.5000! 2.0000!
Kelompok! 32! 1.5000! .50800! 1.00! 2.00! 1.0000! 1.5000! 2.0000!
'
Mann?Whitney'Test'
Ranks!
Kelompok! N! Mean!Rank! Sum!of!Ranks!
KolagenTypeI! Perlakuan! 16! 24.50! 392.00!
Kontrol! 16! 8.50! 136.00!
Total! 32!
KolagenTypeI!
MannTWhitney!U! .000!
Wilcoxon!W! 136.000!
Z! T5.568!
Asymp.!Sig.!(2Ttailed)! .000!
Exact!Sig.![2*(1Ttailed!Sig.)]! .000b!
!
a.!Grouping!Variable:!Kelompok!
b.!Not!corrected!for!ties.!
Lampiran 5. Dokumentasi Penelitian
Gambar 1. Persiapan
Gambar 2. Tikus Coba
Gambar 3. Persiapan Tikus Coba
Gambar 4. Proses
Gambar 5. Proses Approach Femur Tikus
Gambar 6. Sampling Graft Femur yang akan di Rendam Nitrogen Cair
Gambar 7. Nitrogen Cair
Gambar 8. Femur Tikus Dimasukkan dalam Nitrogen Cair
Gambar 10. Calcium Sulfate, VEGF
Gambar 11. Perlakuan
Gambar 12. VEGF
Gambar 13. Sampel Post Tindakan dan Sampel Selama Perawatan
Gambar 14. Pemanenan Sampel : Alat –Alat