• Tidak ada hasil yang ditemukan

Fisdas II Pertemuan 4

N/A
N/A
Pisteuen Zega

Academic year: 2024

Membagikan "Fisdas II Pertemuan 4"

Copied!
18
0
0

Teks penuh

(1)

Hukum Gauss

Pertemuan 4

(2)

1. Permukaan Gauss

Permukaan Gauss adalah permukaan tertutup

sembarang yang mempunyai sifat simetri, misalnya, silinder, bola, atau permukaan tertutup lainnya yang bersifat simetri. Tujuan dari permukaan tertutup

adalah untuk membedakan titik-titik yang berada di bagian dalam permukaan, tepat pada permukaan, atau di luar permukaan.

Hukum Gauss menyatakan hubungan antara medan listrik pada permukaan Gauss dengan muatan yang ditutupi oleh permukaan tersebut.

(3)

?

Gambar 1

Permukaan Gauss Berbentuk Bola

(4)

2. Fluks

Misal terdapat aliran udara dengan kecepatan seragam (uniform) v pada sebuah permukaan A, seperti yang ditunjukkan pada Gambar 2a. Misalkan  volume laju aliran (volume per satuan waktu).

Laju aliran  tergantung dari sudut antara v dan bidang permukaan. Jika v tegak lurus bidang maka

 = vA. Akan tetapi jika v sejajar bidang, maka  = 0.

Jika sudut antara v dan permukaan bidang adalah, serti pada Gambar 18.2b maka,

 = (v cos  ) A (1)

Persaman (1) adalah contoh dari sebuah fluks atau lengkapnya volume fluks.

(5)

Gambar 2

(a) Aliran udara seragam dengan kecepatan v dan tegak lurus permukaan A

(b) Komponen v yang tegak lurus permukaan adalah v cos

(a) (b)

Aliran udara

v

v

(6)

(c) (d)

Gambar 2

(c) Vektor permukaan A tegak lurus permukaan dan membentuk sudut  dengan vektor v.

(d) Medankecepatan melintasi permukaan A

v

(7)

Pada Gambar (2c) A adalah vektor area yang besarnya Sama dengan luas permukaan dan arahnya tegak lurus terhadap permukaan. Jika kita tulis persamaan (1)

sebagai perkalian skalar atau perkalian titik, didapat

 = v A cos  = v.A (2)

Istilah flux berasal dari bahasa latin yang berarti aliran (flow). Pada Gambar (2d) kita tentukan vektor

kecepatan pada tiap titik pada permukaan. Gabungan dari seluruh vektor kecepatan tersebut adalah medan kecepatan. Sehingga persamaan (2) adalah fluks

medan kecepatan yang menembus permukaan.

(8)

Gambar 3

Permukaan Gauss berbentuk sembarang yang berada dalam medan listrik.

3 Fluks Medan Listrik

Fluks medan listrik didefinisikan sebagai:

 = E . A (3)

E vektor = medan listrik, dan A = vektor luas permukaan.

(9)

Tabel 1 Tiga buah persegi pada permukaan Gauss

Persegi  Arah E E . A

1 > 900 Menuju permukaan Negatif 2 = 900 Sejajar permukaan Nol 3 < 900 Keluar permukaan Positif

A E

A

E

A

E

Gambar 4

Vektor medan listrik E dan vektor area A (a)  > 900 (b)  = 900 (c)  < 900

(1) (2) (3)

(10)

Persamaan (3) mengisyaratkan bahwa kita harus meninjau setiap persegi pada permukaan Gauss untuk mengevaluasi perkalian skalar E . A untuk setiap nilai E dan A pada masing-masing persegi. Selanjutnya hasil perkalian perkalian skalar dijumlahkan secara aljabar.

Tanda dari hasil masing-masing perkalian skalar menentukan apakah fluks positif, nol, atau negatif.

Jika masing-masing persegi pada Gambar 3 kita buat semakin kecil, maka pers. (3) dapat ditulis menjadi

(4)

Persamaan (4) adalah fluks listrik yg melalui permukaan Gauss. Lambang menunjukkan bahwa integral dilakukan terhadap keseluruhan permukaan tertutup.

(11)

Contoh 1

Permukaan Gauss yang berbentuk silinder diletakkan pada medan listrik yang seragam (uniform) E. Sumbuy silinder sejajar dengan medan listrik. Berapakah fluks listrik yang Melalui permukaan silinder?

Penyelesaian

dA

E

c b

a dA

dAE E

(12)
(13)

4 Hukum Gauss

Hukum Gauss menghubungkan total fluks  medan listrik yang melalui permukaan tertutup (permukaan Gauss) dengan muatan netto q yang tertutup

permukaan tersebut, atau

0  = q (5)

Besaran ∊0 adalah konstanta permisivitas

= 8,85 x 10–12 C2 /N.m2

Substitusi persamaan (4) ke (5) didapat (6)

(14)

Gambar 4

Permukaan Gauss pada dua muatan titik yang sama besar dan berlawanan.

Terdapat 4 permukaan Gauss yaitu S1, S2, S3, dan S4.

(15)

Permukaan S1

Seluruh medan listrik pad setiap titik mengarah ke luar permukaan tersebut, sehingga fluks medan listriknya = 0 Permukaan S2

Seluruh medan listrik mengarah ke dalam pada setiap titik pada permukaan tersebut. Sehingga fluks medan listriknya negatif

Permukaan S3

Permukaan ini tidak mengandung muatan listrik, sehingga q = 0 dan fluks medan listrik = 0.

Permukaan S4

Permukaan ini tidak mempunyai muatan netto, karena muatan positif dan negatif sama besarnya, sehingga fluks = 0

(16)

Contoh 2

Sebuah bongkahan terdiri tiga buah plastik yang bermuatan dan sebuah koin yang netral. Irisan dua permukaan Gauss Ditunjukkan pada Gambar berikut. Berapakah fluks medan listrik yang melalui permukaan S1 dan S2 jika q1 = +3,1 nC, q2 = –5,9 nC, dan q3 = –3,1 nC.

+ S1

S2

q1

q2 q3

Penyelesaian

(17)

Pada permukaan S1 muatan netto adalah q1. Dari pers. 5

Tanda positif menunjukkan bahwa muatan netto pada

permukaan positif dan fluks netto yang melalui permukaan mengarah ke luar. Pada permukaan S2, muatan netto adalah q1 + q2 + q3 sehingga

(18)

Tanda negatif menunjukkan bahwa muatan netto pada permukaan positif dan fluks netto yang melalui

permukaan mengarah ke dalam.

Referensi

Dokumen terkait

Sehingga dengan menghitung besarnya kerapatan daya sesaat yang menggunakan daya speaker dan luas permukaan bola maka dapat dihitung pula besarnya medan listrik dan kerapatan

Potensial Elektroda arus tunggal pada permukaan bumi homogen isotropis yang keluar dari sumber titik di bawah permukaan dengan adanya medan kontur ekuipotensial

terbentuk beads pada serat disebabkan oleh pengaruh tegangan permukaan larutan, ketika tegangan permukaan mendominasi gaya coloumb medan listrik pada larutan yang

Percobaan ini dilakukan menggunakan pasir sebagai media penghantar arus listrik yang juga akan diukur besar medan listriknya di beberapa titik pada pasir tersebut,

Subjek uji coba yang ahli di bidang isi produk dapat memiliki kualifikasi keahlian tingkat S1 (untuk skripsi), S2 (untuk tesis), dan S3 (untuk disertasi). Yang penting setiap

Berdasarkan percobaan yang dilakukannya, Faraday menyimpulkan bahwa medan magnet konstan tidak dapat menghasilkan arus listrik, namun perubahan fluks medan magnetik di dalam

Pada permukaan ini medan listrik mempunyai besar yang sama di setiap titik bola dan arahnya radial keluar, sehingga di setiap titik pada permukaan Gauss, E sejajar dengan

Karena muatan yang berada di dalam permukaan adalah muatan dan arah medan listrik sejajar dengan arah fluks listrik yang dihasilkan oleh muatan maka persamaan (6)