Numerical methods in geomechanics
Hasan Ghasemzadeh
ﮏﯿﺎﮑﻣﻮژ یدﺪ ی شور
http://wp.kntu.ac.ir/ghasemzadeh
ﯽ ﻮ ﻦﺪ اﺮ ﻪ اﻮ ﯽ هﺎﮕﺸاد
ﻖﺤﻟا لﻮﻗ
ِزﺎﻨَﻣ ُهَرَّﺪَﻗو اًرﻮﻧ َﺮَﻤَﻘﻟاو ًءﺎﻴِﺿ َﺲﻤَّﺸﻟا َﻞَﻌَﺟ يﺬَّﻟا َو َل
َبﺎﺴِﺤﻟاو َﻦﻴﻨِّﺴﻟا َدَﺪَﻋ اﻮﻤَﻠﻌَﺘِﻟ
ﺲﻧﻮﻳ 5
ﻲﺑﺎﻳزرا
1 - مﺮﺘﻧﺎﻳﺎﭘ نﺎﺤﺘﻣا 70
3 - هژوﺮﭘ 20
4 - رﺎﻨﻴﻤﺳ و تﺎﻨﻳﺮﻤﺗ 10
5 - ﺖﺒﻴﻏ تارﺮﻘﻣ ﻖﺑﺎﻄﻣ –
Dr. Hasan Ghasemzadeh 3
ﻊﺎﻨ
A first course in the fem(2010) Daryl Logan 5th ed.
Fundamentals of engineering numerical analysis(2010) Parviz Moin 2en ed.
Numerical Methods for Engineers and Scientific (2001) Joe D. Hoffma.
Numerical Mathematics(2000) , Alfio Quarteroni, Riccardo Sacco, Fausto Saleri
Finite Elements and Approximation, (1983) Univ. of Wales, Swansea, U. K.
(1983) O. C. Zien kiewicz & K. Morgan, John Wiley & Sons,
The Boundary Element Method For Engineers, 1980, Brebbia C.A.
Numerical Methods for Elliptic and Parabolic Partial Differential Equations, 2003, Peter Knabner Lutz Angermann
The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media (1998) R.W. Lewis and B.W. Schrefler
1380 ، داﮋﻧرﺪﺻ ﻦﻳﺪﻟاﺮﻴﻣاﺪﻴﺳ مﻮﺣﺮﻣ، دوﺪﺤﻣ ءاﺰﺟا شور ﺮﺑ يا ﻪﻣﺪﻘﻣ
يدﺪﻋ يﺎﻬﺷور ﻪﺑ طﻮﺑﺮﻣ ﻲﻤﻠﻋ تﻻﺎﻘﻣ
سﻼﻛ هوﺰﺟ
Dr. Hasan Ghasemzadeh 4
تﺎﻴﻠﻛ شور يﺎﻫ يدﺪﻋ رد ﻚﻴﻧﺎﻜﻣﻮﺋژ
– ﻞﻴﺴﻧاﺮﻔﻳد تﻻدﺎﻌﻣ
شور توﺎﻔﺗ دوﺪﺤﻣ
شور ياﺰﺟا دوﺪﺤﻣ
دﺮﺑرﺎﻛ شور ﻞﺋﺎﺴﻣ ﻞﺣ رد يدﺪﻋ يﺎﻫ ﻚـﻴﻧﺎﻜﻣﻮﺋژ
) ،ﺖـﺴﺸﻧ شﺮﺘـﺴﮔ ﺎﻬـﺸﻨﺗ
ـﭘ ، ﻲ يﺎـﻫ
، ﻞﺋﺎﺣ يﺎﻫراﻮﻳد ،ﺎﻫ ﻊﻤﺷ ،ﻲﺤﻄﺳ ،ﺖﻔﻧ نزﺎﺨﻣ
هﺎﭼ يﺎﻫ ﺖﻔﻧ (...
هزﺎﻓ ﻪﺳ ود يﺎﻬﻄﻴﺤﻣ يدﺪﻋ ﻞﺣ ﺖﻛﺮﺣ ﻞﺣ جﻮﻣ
ﻞﺨﻠﺨﺘﻣ يﺎﻬﻄﻴﺤﻣ رد
يدﺪﻋ يﺎﻫﻮﮕﻟا –
يرﺎﺘﺧﺎﺳ تﻻدﺎﻌﻣ -
ﺎﻬﺠﻨﺳاﺮﻓ ﻲﺑﺎﻳزرا
Dr. Hasan Ghasemzadeh 5
سرد ﺐﻟﺎﻄﻣ ﺖﺳﺮﻬﻓ
- رد تﻻدﺎﻌﻣ ﻚﻴﻧﺎﻜﻣﻮﺋژ
يدﺪﻋ يﺎﻬﺷور تﺎﻴﻠﻛ - يدﺪﻋ يﺎﻬﺷور عاﻮﻧا - ﻞﺣ يروآدﺎﻳ - تﻻدﺎﻌﻣ
يدﺪﻋ يﺮﻴﮔ لاﺮﮕﺘﻧا - يژﺮﻧا لﻮﺻا -
تﺎﻴﻠﻛ شور يدﺪﻋ يﺎﻫ ﻚﻴﻧﺎﻜﻣﻮﺋژ رد
كﺎﺧ رد شواﺮﺗ
2
0
2 2
2
z k h x
k
xh
zDr. Hasan Ghasemzadeh 7
شواﺮﺗ
كﺎﺧ رد شواﺮﺗ
z K D z
z
t
( () )
h
K D( ) ( )
Dr. Hasan Ghasemzadeh 8
كﺎﺧ رد ﻲﮔدﻮﻟآ
Dr. Hasan Ghasemzadeh 9
pollution
groundwater mining subsidence
كﺎﺧ رد ﻲﮔدﻮﻟآ
2 2
c c c
D C
x x t
Dr. Hasan Ghasemzadeh 11
كﺎﺧ رد تراﺮﺣ رﺎﺸﺘﻧا
Nuclear waste disposal
كﺎﺧ رد تراﺮﺣ رﺎﺸﺘﻧا
T
2t T
Dr. Hasan Ghasemzadeh 12
كﺎﺧ رد ﻢﻴﻜﺤﺗ
Dr. Hasan Ghasemzadeh 13
2
2 v
u u
z c t
2 2 2
2
u w
t C z
w u
t D z
كﺎﺧ رد ﻞﻜﺷ ﺮﻴﻴﻐﺗ و ﺶﻨﺗ ﻞﻴﻠﺤﺗ
لدﺎﻌﺗ ﻪﻟدﺎﻌﻣ )
ﻪﻟدﺎﻌﻣ ﻪﺳ (
ﺶﻧﺮﻛ يرﺎﮔزﺎﺳ ﻪﻄﺑار -
ﻪﻄﺑار ﺶﺷ (
يرﺎﺘﺧﺎﺳ ﻪﻄﺑار
Dr. Hasan Ghasemzadeh 15
يﺪﻌﺑ ﻚﻳ جﻮﻣ ﻪﻟدﺎﻌﻣ E
cp xx
p
tt
c u
u
2يﺪﻌﺑ ﻪﺳ ﻂﻴﺤﻣ رد جﻮﻣ ﻪﻟدﺎﻌﻣ تﻻدﺎﻌﻣ ﻴﻣﺎﻨﻳدﻮﺘﺳﻻا ﻚ
كﺎﺧ رد ﻲﻟﻮﻃ جاﻮﻣا رﺎﺸﺘﻧا
v 2 x 22xu u
x t
v 2 y 22yu u
y t
v 2 z 22zu u
z t
First‐Order PDEs
First‐order linear wave equation (advection eq.)
Propagation of wave with speed c
Advection of passive scalar with speed c
First‐order nonlinear wave equation (inviscid Burgers’s
equation) gas dynamics and traffic flow
Dr. Hasan Ghasemzadeh 16
x 0 c u t
u
x 0 u u t
u
Second‐Order PDEs
•Advection‐diffusion equation (linear)
•Burger’s equation (nonlinear)
Dr. Hasan Ghasemzadeh 17
2 2
u u u
t x u x
2 2
T T T
t x c x
Other Common PDEs
•Korteweg‐de Vries (KdV) equation
•Laplace and Poisson’s equations
x 0 u x
u u t u
3
3
Nonlineardispersive wave
waves on shallow water surfaces
: Poisson
Laplace :
) ,
( f 0
0 y f
x y f
u x
u u
22 2 2 2
Other Common PDEs
•Helmholtz equation
•Tricomi equation
Dr. Hasan Ghasemzadeh 19
Time-dependent harmonic waves Propagation of acoustic waves
0 u y k
u x
u
22 2 2
2
hyperbolic
:
elliptic
:
0 y
0 0 y
y u x
y u
22 2
2 Mixed-type
transonic flow
Other Common PDEs
•Wave equation
•Fourier equation (Heat equation)
Dr. Hasan Ghasemzadeh 20
x 0
c u t
u
2 2 2 2
2
2 2
x T t
T
Navier‐Stokes Equations
•Navier‐Stokes equation
•Vorticity / stream function formulation
Dr. Hasan Ghasemzadeh 21
2 2 2
2 2
y y x
x v t u
Navier‐Stokes Equations
•Navier‐Stokes equation
•Primitive variables
2 2 2 2
2 2 2 2
y v x
v y
p 1 y
v v x u v t v
y u x
u x
p 1 y
v u x u u t u
y 0 v x u
RANS Equations: Turbulent Flows
•Reynolds‐Averaged Navier‐Stokes equation
Dr. Hasan Ghasemzadeh 23
y vv x uv y
V x
V y
P 1 y V V x U V t V
y uv x
uu y
U x
U x
P 1 y V U x U U t U
y 0 V x U
2 2 2 2
2 2 2 2
) (
) (
) (
1 2
2 2 2 2 t
2 2 2 2 t
C G k C y y x
x V t U
y G k x
k y
V k x U k t k
•Linear second‐order PDE in two independent variables (x,y), (x,t), etc.
•A, B, C, …, G are constant coefficients (may be generalized)
Dr. Hasan Ghasemzadeh 24
0 G y Fu
E u x D u y C u y x B u x
A u 2
2 2
2
2
Classification of PDEs
The equation types are coordinate invariant, i.e., coordinate transformation will not change the type of equations
Physical processes are independent of coordinates
Coordinate Transformation
•Physical plane Transformed plane
Dr. Hasan Ghasemzadeh 25
Physical Plane
x y
Transformed Plane
) , (
) , (
) , (
) ,
(
y y
x x y
x y x
Classification of PDEs
•The classification depends only on the highest‐order derivatives (independent of D, E, F, G)
•For nonlinear problems [A,B,C = f(x,y,u)],the discriminant can still be used.
0 G Fu Eu
Du Cu
Bu
Auxx xy yy x y
hyperbolic :
parabolic :
elliptic :
tion Classifica
0 AC 4 B
0 AC 4 B
0 AC 4 B
2 2 2
Classification of PDEs
•General form of second‐order PDEs (2 variables)
(1) Hyperbolic PDEs (Propagation)
Dr. Hasan Ghasemzadeh 27
0 G Fu Eu
Du Cu
Bu
Au
xx
xy
yy
x
y
order) (second
0
order) -
(first 0
2 2 2 2 2
x c u t
u x u u t Advection equation u
Wave equation
hyperbolic :
0 4
4 2
2 AC c
B
Classification of PDEs
•General form of second‐order PDEs (2 variables)
(2) Parabolic PDEs (Time‐ or space‐marching)
Dr. Hasan Ghasemzadeh 28
0 G Fu Eu
Du Cu
Bu
Au
xx
xy
yy
x
y
2 2
2 2
x t
ν x
u x t
Burger’s equation
Fourier equation
Diffusion / dispersion
2 4 0 : p bolic B A C ara
Classification of PDEs
•General form of second‐order PDEs (2 variables)
(3) Elliptic PDEs (Diffusion, equilibrium problems)
Dr. Hasan Ghasemzadeh 29
0 G Fu Eu
Du Cu
Bu
Au
xx
xy
yy
x
y
0 y c
x
y x y f
x
y 0
x
2 2 2 2 2
2 2 2 2
2 2 2 2
) , ( Laplace equation
Possion’s equation Helmholtz equation
elliptic :
0 4
2 4AC B
Classification of PDEs
•General form of second‐order PDEs (2 variables)
(4) Mixed‐type PDEs
0 G Fu Eu
Du Cu
Bu
Au
xx
xy
yy
x
y
supersonic
:
subsonic
: )
( M 1
1 0 M
n M s
1 2
2 2 2
2
Steady, compressible potential flow
1 0
4 4 ) 1
(
4 2 2
M M M
parabolic :
1
elliptic :
1 M
M
Classification of PDEs
•General form of second‐order PDEs (2 variables)
(5) System of Coupled PDEs
Dr. Hasan Ghasemzadeh 31
0 G Fu Eu
Du Cu
Bu
Au
xx
xy
yy
x
y
Navier-Stokes Equations
2 2 2 2
2 2 2 2
y v x
v y
p 1 y v v x u v t v
y u x
u x
p 1 y v u x u u t u
y 0 v x u
Dr. Hasan Ghasemzadeh 32
ﺖﻔﻧ هﺎﭼ فاﺮﻃا شواﺮﺗ
Dr. Hasan Ghasemzadeh 33
ﺖﻔﻧ هﺎﭼ فاﺮﻃا ﻞﻜﺷﺮﻴﻴﻐﺗ
تﻻدﺎﻌﻣ ﻞﺣ يﺎﻫ شور
شور يﺎﻫ ﻲﻠﻴﻠﺤﺗ شور
يﺎﻫ يدﺪﻋ
تﻻدﺎﻌﻣ هدﺎﺳ
و فوﺮﻌﻣ
تﻻدﺎﻌﻣ ﻲﻄﺧ
ﻂﻳاﺮﺷ يزﺮﻣ هدﺎﺳ
باﻮﺟ ﻖﻴﻗد عاﻮﻧا
تﻻدﺎﻌﻣ تﻻدﺎﻌﻣ ﻲﻄﺧ
و ﺮﻴﻏ ﻲﻄﺧ
ﻂﻳاﺮﺷ يزﺮﻣ هﺪﻴﭽﻴﭘ
باﻮﺟ ﻲﺒﻳﺮﻘﺗ
يﺎﻫزﺎﻴﻧ
ﻲﺳﺪﻨﻬﻣ نﺎﻣز
ﻞﺣ ﺐﺳﺎﻨﻣ
ﺖﻗد ﺐﺳﺎﻨﻣ
ﻦﺘﺴﻧاد دوﺪﺣ ﺐﻳﺮﻘﺗ
ﻪﺑ هدﺎﺳ شﺮﮕﻧ دﺮﻜﻠﻤﻋ
يدﺪﻋ يﺎﻫ شور
Dr. Hasan Ghasemzadeh 35
يدﺪﻋ يﺎﻬﺷور رد ﻞﻴﺴﻧاﺮﻔﻳد تﻻدﺎﻌﻣ
ﺮﺑ ﻢﻛﺎﺣ ﻂﻴﺤﻣ ﻜﻳ ﻪﺑ ﻪﻟﺎﺴﻣ يﺮﺴ
ددﺮﮔ لﺪﺒﻣ هدﺎﺳ يﺮﺒﺟ تﻻدﺎﻌﻣ .
ﺑ باﻮﺟ ﻪﻠﺻﺎﺣ تﻻدﺎﻌﻣ يدﺪﻋ ﻞﺣ ﺎﺑ ﺎ
ددﺮﮔ ﻲﻣ ﻞﺻﺎﺣ ﺎﻄﺧ يرﺪﻗ .
ﻪﺑ هدﺎﺳ شﺮﮕﻧ دﺮﻜﻠﻤﻋ
يدﺪﻋ يﺎﻫ شور
يدﺪﻋ ﺎﻬﺷور عاﻮﻧا دوﺪﺤﻣ فﻼﺘﺧا
دوﺪﺤﻣ ي اﺰﺟا‐ يزﺮﻣ ي اﺰﺟا‐ مﺎﺠﺣا‐ دوﺪﺤﻣ
اﺰﺠﻣ ياﺰﺟا‐ ﻪﻜﺒﺷ نوﺪﺑ‐
Dr. Hasan Ghasemzadeh 36
Dr. Hasan Ghasemzadeh 37