• Tidak ada hasil yang ditemukan

ناریا ینابغاب مولع

N/A
N/A
Protected

Academic year: 2024

Membagikan "ناریا ینابغاب مولع"

Copied!
11
0
0

Teks penuh

(1)

53 1

1401 ) 85 - 75

( Vol 53, No 1, Spring 2022 (75-85)

DOI:10.22059/ijhs.2021.315279.1886

* Corresponding author E-mail:[email protected]

:

!"

# $%

&

' (

) Rosa damascena Mill (

!

! +

, +-

1 $ . 1 * 22 3

1 5 67

3 67 ' 9 : "

3

1 . !"

#

# $%&

# '

# & &

#

2 . )*

+$

'

# '

# ,

#

3 . . / 0/

0%1 2 !"

#

# $%&

# '

# & &

#

3 ) :)6

26 / 10 / 1399 - 3 : <=

1 / 8 / 1400 (

2' ;

+ A B

C ) D E%C*

F&

2

# G HI J F&

0C K

F 6

LM N O "

P % J F 6 K +

E +*

!"

# $%&

Q J 1399 - 1397 2

0 &

. S O "

F * Q C ) D +

TU ) VW 5 10 S ( EJ F * Y G HI J F&

0C ,Z TU

)

# /

# C [

# \ ]

# $%&

( 0H . S

^ _ V

` + = 0 F&

+ = UN F&

# F&

a + =

#

F&

b c + = E%C*

F&

a E%C*

F&

b c J

C a 0H

&

0H0/

. ' H

# H S

L J C AH

C VW + M U

V TU

Q C d b 0W 2 .)/

S _ V

` + S 0 F&

+ S UN F&

S E%C*

F&

a E%C*

F&

b c C

G HI J )M d e 0d

C ) D a ) S

EJ ( FW d

&

0 . AH E%C*

F&

G HI

# / EC*

F&

a 35 / 2319 Y & % EJ E%C*

F&

b c 22 / 651

Y & % EJ S

G HI

# $%&

E%C*

F&

a 16 / 1317 Y & % EJ E%C*

F&

b c 23 / 452 Y & %

EJ S C E%C*

F&

.0 / S fCJ 1 $!CJ S

c VW C S

^ H

# E%C*

F&

b c EJ

g

U g + h $ i 0 F&

+ = ) 95 / 0

= ( r E%C*

a F&

) 96 / 0

= ( r .)/

2%

&

' HI: G E%C*

F&

UN F&

F&

0C C

.) D

Effects of different levels of vermicompost on flower yield and its components in genotypes of Damask rose (Rosa damascena Mill.) in Golestan province

Hossein Rezvani1*, Ali baba Golzadeh2, Gholam-Ali Gholami3 and Majid Asiai3

1. Assistant Professor, Golestan Agriculture and Natural Resources Research and Education Center, AREEO, Gorgan, Iran 2. Ph.D. in Agronomy of Institute of Education and Extension, AREEO, Tehran, Iran

3. M.Sc. in Forestry, Golestan Agriculture and Natural Resources Research and Education Center. AREEO, Gorgan, Iran (Received: Jan. 15, 2020 - Accepted: Oct. 23, 2020)

ABSTRACT

In order to investigate the effect of vermicompost on the floweryield and its components in genotypesof Damask rose (Rosa damascena Mill.), a factorial experiment was carried out based on randomized complete blocks design with three replications since 2018-2020 years in the Research Field of Golestan Research Center of Agriculture and Natural Resources.

Experimental factors were included three levels of vermicompost (0, 5 and 10 ton ha-1) and four levels of Damask rose genotypes (Kashan, Semnan, Azerbaijan Garbi and Golestan). In this experiment, average plant height, number of flower per plant, flower diameter, fresh weight of flower per plant, dray weight of flower per plant, yield of fresh flowers and yield of dry flowers were measured for each treatment. The results showed that there was a significant difference between the treatments combinations in terms of all the studied traits (P<0.01). The highest average plant height, maximum number of flowers per plant, highest flower diameter, highest fresh flower yield and dry flower yield were obtained in all genotypes in the maximum application of vermicompost (10 ton/ha). In terms of flower yield, Kashan genotype with fresh flower yield 2319.35 kg/ha and yield of dry flower with 651.22 kg/ha has the highest and Golestan genotype with fresh flower yield 1317.16 kg/ha and dry flower yield with 452.23 kg/ha had the lowest flower yield. Also signification correlation was observed between some of the quantitative traits in this experiment, yield of dry flowers per hectare direct and high relationship with the number of flowers per plant (r=0.95) and fresh flower yield (r = 0.96).

Keywords: Flower diameter, flower yield, genotype, Rosa damascena Mill, vermicompost.

(2)

= '>

12 58 9, :

)0

Rosa damascena Mill.

5 $

8#; "

< '

=>2

?@ A, B)*+, C

$D .E-

, F

A0 12 ),

$D

= G9, ,

$2

)

Omidbeigi, 2007

.(

FH' "

C 3I . - 12

58 9, FJ$0

5C E- E-

F KLD

*' D

8A , M I BJ ,$-

$, 5 2C ' .0 AN

O- FAD3 5 6 '

$#P EQ 6 , .8 R&'

.E- SD K #2

*'

*G)2 1 N F4 "

K T , C

U ' 1396 , U TW*' K$

$

$N F*I$2 .' .

$X-

*G - Y#

*'

*G)2

3#

ZD $ 2 ,6 :C[

5 $ . - FH' "

SD

K #2 .8 12 5 SD K #2 5 $ 8#; "

< '

=>2

\D AJ

$&0 5C ' ED 6

* 8 D

D ]^

, K B*'

$N , 8 $#2 ) Baydar et al.,

2008 .( SD $ A F4 "

F _ `, 2 2 F-

12

58 9,

\D AJ ()*+, YT'

K8 .'

U ' 5

$#a F4 "

5 DC F SD K #2 U ]T, . $2

$b

F .#

12 58 9, c J

*B $#^

E-

5 6C K 6$I 5 6 F KLD

=>2

< '

d $+*'

=>2

< ' 12 8,6 1J e C .E- 12

58 9, 1 N F4 "

8 a .

S#Af gD 3I 8,6

C E-

* h $I O#W*G, 12 gD 3I 8 a

.I D )

Omidbeigi, 2007

.(

' $ E

K 8 F-

K 5

;6 C F) 4

5 -

, , - .' /

K >0

$ c $!

58#B, F-

$ c #J `a D3#I

D # # Di ; # 53#+)J e

j a 8 D C

- O , 5 j a

= G9, , 8 )

.(Arancon

et al., 2011

K B*' :k "

C

5 -

;6 8H, F

A"

C # F _$`,

5 -

D # # g -

, 8

F ) F K$#al 5i$

53#+)J e j a

gD 3I 8#; "

U `9, g -

2 ;6 Z#9, .GDC ,

$2

) .(Sinha et al., 2010

C I$@

8#; "

`9, [ c D ]^

.#B#- K B*'

C

5 -

*GDC F A"

m0

.D

$@ a _$`, 28AA- ,

F ) S#,n"

S# o"

'

>

., G4 6 3#

p . SD $ A

5 $

#*' F _ 8 5C E- 8D p

K B*' C

5 5 $ S#,n"

5 C # D ]^

K #2 F q - c 4 ,

K8 C S- ' j a 5 $ 8 a

)

.(Supratim et al., 2018

S#Af h 32 8D $2 F-

gD 3I

% &' , .' / - 3#,

i $*#

SD

$J A0

3#

gD 3I .I D F 5 @ F-

$ - 63 S"

, .' / - SD$*E#

8W, F a

`*a .

S#Af SD WW9, h 32

8 $- F- 3I

, .' / - F

j a F A"

O $I

$-

$J A0

D ]^

, C # K #2 gD 3I , 8 F ) T

ZD $ D3#I 5 8AD $I

" #e j a S rD

qD

$*G Y' A, 5 $ 8 FED YT' gD 3I 8

\D$G"

gA- 5 G#; *, ,

)

Gurav et al.,

.(2010

FH; &, 5 ' $

$!

5 -

#e

$

$ ) 0 - B#- 12 58 9, h 32 K8 .' F-

c $!

8#B,

$ - -

;6 m0 gD 3I s B"

Z' *,

F"

.e G,

$&N d "

g p

$&N 12

$ ) 0 12

K8 .' )

Rahmani et al., 2013

. (

D C ), 0 F-

$ 5 c BJ Di ; I , 8

12 58 9,

$#!n"

K B*' C

5 -

D # ,

, 8 F-

Y#-$"

8 - K $ 5 # 6 1, 0

, C # 5 $

8 FH' "

K #2 K$#al

=6 i $*#

.'

)

Omidbeigi, 2007

.(

S#Af h 32 K8

.' 12

58 9,

#2 .' F- 8 3#, 8)2 F"

5

6 c8E

$ 5 $`A0 D ]^

F*G .' 5 $ F

.' 6

$ ) 0 Y' A,

*GD tD]u"

T' A,

c J

$#2

.(Rezaee et al., 2013)

FH; &, 5$PD

F- s A"

#* i

$ ) 0 12

c #J `a

Di ; I , 12

58 9, .E

v#" i FW&A,

=$^

E- ' $

8 $- w+E, 8D $2

v#" i 5

rD l6

$^

r C 1#

5 SD$*E#

$ ) 0

8A*G

) Tabaei-Aghdaei et al., 2004

.(

S#Af

#)N ZD $ .9" K8 : r ' $ *' $-

v#" i S# 8D $2 w+E, $b C 5 AH, _>*a

12 $ ) 0 c BJ 6 5 34

5 @ F . 4

12 $ ) 0 F- 12 5 34

v#" i C $*E# 3W'

D$, )

Yousefi1 & Fadakar., 2022

.(

?#W9"

5$PD ' $

< ' 12 58 9,

?@ A, U

$^

53-$, E- w+E, 8D $2 F- 3#,

< '

Y#-$"

5 K8 0 12 58 9, x 8T,

rD l6 N$

(3)

g#

C v#" i 5 FW&A, - ..' SD _>*a

F O^

.E- v#" i

y I ZD $

&#9, G D

K8 E, K8D $2 .' F- E K8A _>*a

58A "

5

#* i 6 C

$b .# - .#B#-

< ' 5$"$

12 58 9, rD l6 .'

)

Rahamani

et al., 2013

(.

F )- @ C D r 6 F- c 0>@

58A*G,

, .E- v#" i 5 12 58 9, S#Af

$ -

5 -

qDi ; #

*'

*G)2 4 8

FH; &,

$ e 5 *'

_$`, FA#

C

5 -

, - .' / v#" i

5 ()*+, 12 58 9,

I$H, SD$*

v#" i ZD $

=6 z

FW&A,

e $@

$4 8 .

?

&

gD ,C6 2$2

F0 3,

" W#W9"

3-$, c W#W9"

hC ,6 5C E-

\ A, H#T@

*'

*G)2

S#P #, 28

F #; ' 450 - 400 )#,

$*, s B"

160

$*, C R&' D c `*+, D #I $u4

U @ 54

F4 25 FW#N N$

|$0 36 F4 45 FW#N

; U ' 5 1399 - 1397 : r .8 . 4

D ' A .#H j a 19, : r gD ,C6 F

Y-$,

C

? 0

$BJ "

30 30 "

60

* ' 5$*, F# "

a D3#I D # #

j a F0 3, ,

- .' /

K PED ,C6 FD3r"

j a 3-$, c W#W9"

5C E-

\ A, H#T@

*'

*G)2 F

%$

U 84 5 1 2

1Dl S##H"

.8

F gD ,C6 Y; N 1D *- I c J

j ) %$@

5

I `" 1, - F'

$ "

$4 F Ki $p SD .8,6

1, 0 U 1, , - $BJ) R&' F' .' / 5

10 ( * S"

" i : 1, 0

# v 5 58 9, 12

" i) 1, R&' Q

# v 5 - A ' l6

D r

$^

( *G)2 8

5C ' K ,6 c #) 0 .

U U ' 3#D p S#,C R#&G" qGD O+ 1, ED ,C6 FEW F# " C <p .8D $2 : r gD ,C6

- U . U ' K , SD $I 1D

1397 : r

.8 F ) C # , - }D * F F4 " (FD p - A0

Y' A, 5 - F#J " j a D ]^ , FD3r"

M ' SD $ .8D $2 _$`,

$D W,

5 -

K$BGI

F' *p F 8W, 60 :$2 )#-

* 8#G-

$BGI

8#G- M *p F Y#"$"

\TA, C 5 -

$p ' c BGI

1/D$"

c B; ' O#' *p 1TN U . - C F

S#,C

K U .8 v#" i 58 9, 12 FH; &, , 5

*G)2 F *G D #2 .-$ C ~ W C

()*+, F# " E- .8D $2

$

$ "

12 c$-

$ c$- F' U 58 9, 12 v#" i C

*+, 5 ()

F F* - $*, 1J I c$- S# 1J I .8 8

F'

$ .8 F*I$2 $b $*, 5

. - 0

U #"

5 - 2 U KC 8 F D 70

× 70

* ' F $*,

? 0 100

* '

$*,

$Be 8 , - .' /

M ' $

#"

5 ,

$b a j )+,

~

2 U F*+D U </' .8 5

C K8 F# "

v#" i SD $I 1D ()*+, 5 U 2 F K ,

5

.8 8D $2 1W*A, K8 K ,6 C 5 # 6 c #) 0 5 $

K$&N 5 # 6 O*G#' 8D $2 K B*' 5

S#Af .

()0 KC T, 1#TN C . c #) 0 $D ' :C[ \N , qa q' ' c I6 KC T, .' C$ 5

$' 8A) S#Af a K $2 q' ' a Fa

: r gD ,C6 5 $4 U @ € C 5 # KC T, . 4 ..I$2 KC T,

q' ' .I6 qa

8A)

F)J I>

: 8N F M$

Fa $' 8e

10

* '

$*, S#D p

$"

C 19, 2 ;6 d a

$- C

F0 3, S*a ' 5 D W 6 8D $2 : 8N .

U 84

1 . c #J `a D3#I

D # # j a 19, gD ,C6 .

Table 1. Physical and chemical soil properties of the experimental site.

Potassium (mg/g) Phosphorus

(mg/g) Organic Carbon

(%) Nitrogen

(mg/g) EC

(dS/m) pH

Texture

118 9

1.23 0.17

1.07 6.5

Loamy clay

U 84

2 . c #J `a D3#I

D # # , .' / - .

Table 2. Physicochemical properties of vermicompost.

Potassium (mg/g) Phosphorus

(mg/g) Nitrogen

(mg/g) Calssium

(mg/g) Magnesium

(mg/g) Organic Carbon

(%) EC

(dS/m) pH

1.65 1.81

1.55 0.95

0.19 12.54

1.85 7.1

(4)

U$*A- q' ' K $2 a K B*' C F)"

5 1&'

6

€ F- 5 *9,

~ )+,

=6 S•^

q;

F )

bA, Y)4

\ 4 5 6 (q' ' : r

..I$2

S#Af 5 $ KC T, 5 #

€ C C K B*' C

‚ N g-

#"

.) F 3#, qD 3 .E TD

K ,

F ƒ9,

„ S#;

Oz>0 5 # : 8N F / '

.8D $2 SD

gD ,C6 2LD

D 8A , s B"

Z' *,

FD p 8H"

12 FD p

$&N 12 C 12 KC "

FD p

C 12 qEa FD p

$ ) 0 12 KC "

$ ) 0 12

qEa 5 $

$

#"

KC 8 5$#2 8 8 . F4 "

F F AD

$ ) 0 5 `*N 12

58 9, C

U ' : ' F 8H

, 8 F S#

1#;

SD gD ,C6 KC 8

5$#2

c BJ Di ; I ,

$ ) 0 12 U ' : ' ) 1399 (

s $ 8)2 : r .8 5 $ FT' 9, 2LD

8H"

12

$ FD p F4 "

F U @ K 12 . $ 12 -

F' ,C

$ qD C 5 8e ED ,C6 C

F'

FD p : r 8D $2

</' S#P #, 6 F A0 K8AD

8H"

12 .8D $2 bA, 5 $

$ qD C 1e $,

<p C

h 12 C KC "

6 3#

F F)#' qD 5 C $"

.N 01 / 0 :$2 FT' 9, K8

SD8 Y#"$"

S#P #,

C 12 KC "

FD p S#Af

s r, C 12 KC "

FD p 1J e C

\ 4 F' . . $ KC 8 5$#2

8D $2

) Tabaei-Aghdaei et al., 2004

C .(

12 KC "

12 1J e

$ Ge

• Y

$2 : 5 $

$ FD p .T!

8 F-

D p c T' 9, :C[

F bA, S##H"

$ ) 0 C

12 KC "

* c J .I$2 C .

qEa 12 3#

<p C

$N F

K P*' 6 5 ,

75

F4

* '

$2 F c8, 24 .0 ' FT' 9, 8D $2

)

Rahamani et al., 2013

(

$ .

qD C 1e $,

. $

$&N 12 3#

K B*' C qD

<#; - .N

05 / 0 )#,

$*, SDC "

.8 8

<p C KC 8 5$#2

2LD 5 D K8 FD3r"

5 ,6 K

K B*' C

:$

3I 5 ,6

SAS ver. 9.1

: r .8 F4 "

F

AH,

$!

1 W*, FGD W, S#P #,

#"

K F h h$

K B*' C ,C6 LSD

R&' U *e qD 8J c J ..I$2 S#Af

S##H"

P*GT S#

c BJ : r 8

Z#9,

Excel

O#'$"

.8 8

@: $ A(

}D * 1J e C FD3r"

< D K

5 gD ,C6

U 84 3 E F-

5 *- I v#" i

, - .' /

$!

1 W*, 6 R&'

U *e

qD 8J

$#! "

AH, 5

$ s B"

Z' *, FD p 5

12 58 9, .8A*

FGD W, S#P #,

$!

v#" i

E SD$"[

s B"

Z' *, FD p : "

#"

F v#" i - ) 78 / 145

* ' ($*, O- SD$"

6

F v#" i

*G)2 ) 58 / 124

* ' ($*,

?)H"

..

S#Af

$ ' M }D * SD Lp g Z' *, s B"

12 58 9, 3#

C 29 / 122

* '

$*, 8

8

_$`, ,

- .' / F 13 / 152

* '

$*,

#"

$X- 8e 8W, _$`, ,

- .' / K ) S"

( * 8#' F- YT' gD 3I 8e 20 58J

s B"

Z' *, FD p 12 58 9, 8D $2

U 84) 4 .(

, FGD W S#P #,

$!

1 W*, v#" i ,

- .' /

U 84) 5 ( E Z' *,

s B"

FD p 12 58 9,

gD 3I

% &' ,

- .' / , "

: N ,

FH; &, gD 3I ..I D F 5 @ F- gD 3I 3#,

, - .' / K ) S"

( * Z' *, s B"

FD p

12 58 9, C

29 / 120

* '

$*, 8

8

_$`, - F 145

* '

$*, SD$"[

R&'

$ - ,

- .' / ) S#P #, (: N

gD 3I

..I D _>*a s B"

S , .' F

*a '

* i

#

"

D

" i

# v 5 ()*+, K B*'

C

\ A, ()*+,

5 -

~ $, .8

5 -

qDi ; # F

;#

1 D S F-

5 e 8 $*- "C YT'

3I D g H' "

t D FE

=]4

$*

=6 , ]^

D , 8 F- F U T 6 8

D E 2

# K s B"

FD p 3I D g , D 8 )

Yanga et

al., 2015

.(

Tabaei-Aghdaei et al.

)

(2004

c H; &, 5

v#" i 5 12 58 9,

8A*

S#P #, s B"

FD p v#" i 5

()*+, 12

58 9, 5

FA, c $##u"

S#

120 "

213

* '

$*, . S#Af FH; &,

Rhamani et al.

) (2013

2 1 58 9, w+E, 8D $2

$ - -

;6

m0 gD 3I s B"

FD p v#" i 5 12 58 9,

8D $2 )

Kazaz et al., 2010

.(

g Lp 5$PD

$ 5

(5)

F )

Matricaria recutita L.

( h 32 8

$ -

, - .' / m0 gD 3I AH, s B"

Z' *, FD p

8D $2 )

Azizi et al., 2008

.(

!

"#

F P F- U 84 K

) 3 ( K8,6 .'

5 *- I ,

- .' / v#" i

$!

1 W*, 6

$#! "

AH, 5 R&' U *e qD 8J

$ 8H"

12 FD p .8A*

FGD W, S#P #,

$!

v#" i

E g#

SD$"

8H"

12 FD p ) 806 12

(FD p v#" i - O-

SD$"

8H"

12 FD p

) 468 12 (FD p v#" i

*G)2 F

.' .8,6

S#Af FGD W, S#P #,

#"

K B*' C

, - .' / 3#

E F-

$X- 8e 8W,

_$`, ,

- .' / K ) S"

( * FGD W,

:80

$ - SD - YT' gD 3I 38 58J 8H"

12 FD p 8D $2 U 84) 4 .(

FGD W, S#P #,

$!

1 W*, ,

- .' / v#" i

5 12 58 9,

E K8A 4 _>*a AH, S#

5 #"

ED ,C6 .

F 5 @ F-

$X- 8e

$ -

, - .' / K ) S"

( * SD$"[

8H"

12

FD p v#" i - ) 1008 12 (FD p 1J e

8 F- FGD W, v#" i

*G2 ) 624 12

(FD p g#

C 39 8J gD 3I E U 84)

5 .(

FH; &, 5$PD

F-

$ 5 K #2 D

FA,

Artemisia pallens)

r (

: 8D $2 w+E, 8

$`, _ .' / - , Y4 ,

T 1 N Fbe>, )2

8 SD

#2 K D FGD W, 8

$2 8D .

SD Lp g S#Af h 32 8D $2 F

5$#2 -

.' / - , C

?D$@

$*A- U 6 I c

# 5

a j 5C T gA- 5

" #e 8#B, a j

3#

[ *e ]4

=

=6

$J A0 ]^

D m0 3I gD

8 12

#2 K ,

) Pandey et al.,

.(2017

W9"

# W D

$P K8 E, 8

$ -

, - .' / 12

C 2

Echium amoenum) (

8H"

12 .TG F 8 39 8J 3I D g

2018) ., Amiri et al

F .(

)- @ S*

FN '

1D @

$"

F AH, S*

R&' 3*A' *I K8AA- g#

$"

8#; "

,

#; *, g#

$"

5 $ S*

8H"

12 5

#

$*E FD p , 8

2009) ., Iqbal et al .(

$%

"#

F4 "

F }D * FD3r"

< D K8 E, 8D $2 F-

5 *- I ,

- .' / v#" i

$!

1 W*, 6

$#! "

AH, 5 R&' U *e qD 8J

$

$&N

12 8A*

U 84) 3 .(

FGD W, S#P #,

#"

E

S#

v#" i SD$*E#

$&N 12

~ $, F

v#" i 12 58 9, -

$&N 12 ) 86 / 5

* ' ($*, FGD W, 12

58 9,

*G)2

$&N

12 ) 15 / 3

* ' ($*, . S#Af

#"

K B*' C

, - .' / 3#

E F-

$X- 8e 8W,

_$`, ,

- .' / K ) S"

( *

$&N 12 3#

C 73 / 4

* '

$*, 8

8 _$`,

, - .' / F 13 / 6

* '

$*, gD 3I .I D

U 84) 4 .(

FGD W, S#P #,

$!

1 W*, v#" i -

;6 , - .' / E F-

gD 3I

% &'

()*+, ,

- .' /

$&N 12 , "

v#" i

, FH; &, gD 3I ..I D F 5 @ F- SD$*E#

KC 8

$&N 12

$X- 8e

$ - , - .' / K ) S"

( *

~ $, F v#" i 12 58 9, - ) 11 / 6

* ' ($*, SD$* -

$&N 12

~ $, F v#" i

*G)2 ) 75 / 3

* ' ($*, .'8 8,6 F- 8e

6 / 41 8J gD 3I F*

.' U 84) 5 .(

$&N 12

F- K8AD

$&N FfA^

F#;

, 8 5 *- I O ,

D C FfA^

12 58 9, .'

)

Lebaschi et al.,

.(2011

S#Af FH; &,

5 w+E, 8D $2

$ -

, - .' /

$&N FN '

$&N 12

$&N

†$T,

8H"

12 FD p

12 58 9, 3I

D g )

Kazaz

et al., 2010

.(

?#W9"

5$PD

$ 5 12 58 9,

w+E, 8D $2

$ - 15 S"

* - ,

F K $ 40 :$2 )#-

*

$BGI 40 :$2 )#-

* O#' *p m0 gD 3I AH,

$&N 12 8D $2

12 D

$&N

$*2 3 8#; "

)

Rhamani et al.,

2013

0 .(

.) SD gD 3I ,

"

SD S#AQ F#4 "

$- F- FI

$- ,

;6 F j a m0

=]4

$*E#

$J A0 D ]^

Z' "

FED gD 3I 8

(6)

ED 8#; "

$*E#

†$

, F- SD

$, F

F a YT' gD 3I R&'

=]4 5

R&'

53*A' *I F*a '

8 , A $- 8#

†$

gD 3I 1#I $)-

†$

.D gD 3I

$&N 12

$ ) 0 12 FD p 8 a 8 )

Hati et al., 2006

.(

&

'&

"#

}D * 1J e C FD3r"

< D K

E F-

5 #"

, - .' / ON

$!

1 W*, 6

R&' U *e qD 8J

$ C KC "

12

$ FD p 12

58 9, AH, U 84)

3 .(

FGD W, S#P #, S#

v#" i C

$b SD .BJ E F-

SD$*E#

C

KC "

12

~ $, F v#" i - ) 24 / 1529 (:$2

SD$* - 6

~ $, F v#" i

*G)2 ) 11 / 994 (:$2

K ..' S#Af FGD W, S#P #,

#"

K B*' C

, - .' / 3#

E F-

gD 3I 8W,

, - .' / C KC "

12 FD p F

@ AH, 5

gD 3I .I D F 5 @ F- g#

SD$"

C KC "

12

#"

$X- 8e

$ - , - .' / K ) S"

( * F

3#, 51 / 1676 :$2 1J e 8 F- FGD W,

#"

8 8 )

$ - ,

- (.' / 38 / 1013 :$2

qD 3 F 5 / 36 8J

$*E#

U 84) 4 .(

S#Af

FGD W, S#P #,

$!

1 W*, 5 *- I ED ,C6

3#

$

C KC "

12 FD p E F- SD$*E#

C KC "

12

FD p

#"

$X- 8e

$ - ,

- .' /

v#" i - F 8W, 41 / 2051 :$2 F .' 8,6 F-

FGD W, .; e

:80 K B*' C SD - 8e 32

8J

$*E#

K .' U 84) 5 .(

* D } FH; &,

$ e

}D * FH; &,

Fatma et al.

) (2008

2

# K h r C$,

) Origanum vulgare (

Rezaee et al. (2013)

Rhamani et al.

(2013)

2 1 58 9, O

a

. .

&

( )

"#

}D * FD3r"

< D K E F-

5 *- I

, - .' / v#" i

$!

1 W*, 6 R&'

U *e qD 8J

$#! "

AH, 5

$ C qEa 12

$ FD p 8A*

U 84) 3 .(

F&

v#" i 5 ,

FH; &, 3#

FGD W, S#P #, - e

C

$#! "

AH, v#" i gD 3I

C qEa 12 FD p

F 5 @ F- SD$*E#

C qEa 12 FD p

~ $, F

v#" i 12 58 9, - ) 79 / 289 (:$2 SD$* -

6

~ $, F 12 58 9,

*G)2 C

qEa

) 46 / 137 (:$2 .

S#Af ' $

FGD W,

S#P #, 3#

K8 E, 8

F- C qEa 12 FD p

.; e K B*' C , - .' / gD 3I 8#p

$-

F 5 @ F- S#

5 #"

$ - g#

SD$"

C qEa

FD p

#"

$X- 8e ,

- .' / K ) S"

( * F 3#, 87 / 391 :$2 F .' 8,6 F- .TG F

#"

8 ) 53 / 252 (:$2 8e 5 / 35 8J

$*E#

U 84) 3

.(

FGD W, S#P #,

$!

1 W*,

, - .' / v#" i 3#

8 4 _>*a SH,

S#

5 #"

ED ,C6 F

5 @ F-

#"

K S"

* , - .' / SD$"[

8W, C qEa 12

FD p v#" i - ) 38 / 402 (:$2 1J e 8 F-

FGD W, v#" i

12 58 9,

*G)2 ) 65 / 281

(:$2 g#

C 31 8J gD 3I E U 84)

5 .(

}D * SD FH; &, }D *

Lp g

Shaalan

)

(2005

$

5

#2 K D K #' F )

Nigella sativa

(

Rezaee

et al.

) ( 2013

$ 5 12 58 9, Z, .W .

'& "# * +

}D * 1J e C FD3r"

< D K F- E

$!

, .' / - v#" i

1 W*, $!

6 R&'

U *e qD 8J

$

$ ) 0 12 KC " C AH,

U 84) 3 FGD W, .(

S#P #, S#

v#" i SD $b C

F- E .BJ ~ $, 12 KC " C $ ) 0 SD$*E#

) - v#" i F 35

/ 2319 ( * :$2 )#-

) *G)2 v#" i F ~ $, 6 SD$* - 16

/ 1317

U 84) ( * :$2 )#- 4

FGD W, .(

S#P #,

K B*' C , 3# .BJ SD $b C .' / - E

F- , _$`, 8W, $X- 8e .' / -

S" K )

) 12 KC " C $ ) 0 ( * 81

/ 3074 :$2 )#-

F- ( * FGD W,

$ - :80 #"

SD -

) 21 / 2398 ( * :$2 )#- YT'

gD 3I 40

KC " 12 C $ ) 0 58J U 84) 8D $2

4 .(

(7)

U 84 3 . }D * FD3r"

< D

$!

, - .' /

$ c BJ - B#- v#" i 5 12 58 9, .

Table 3. Results of variance analysis effect of vermicompost on quantitative and qualitative traits of Rosa damascena Mill. genotypes.

Mean of squares

Source of variatoin

df Average plant height Numbeof flower pr er plant Flower diameter Fresh weight of flower per plant Yield of dry Flowers Yield of fresh flowers Yield of dry flowers

Replication 2 1.34ns 0.392ns 0.00060ns 4.12ns 3.931ns 12.61 ns 4.96 ns

Vermicompost 2 174.92** 152307.24** 1.373** 9370.73** 36001.43** 2252989.43** 196220.45**

Genotype 3 296.6** 262896.94** 8.879** 242436.17** 19957.34** 2223177.33** 99058.23**

Vermicompost×genotype 6 10.32** 1339.94** 0.294** 847.58** 196.61** 11360.61** 6914.38**

Error 22 1.20 65.15 0.0041 116.91 91.24 213.24 113.89

CV (%) - 2.71 4.47 6.64 9.71 7.12 8.14 7.81

*

**

Y#"$" F :ns

c B"

AH, U *e R&' 5

1 8J T c B"

AH, .

*, **, ns: Significantly difference at 5 and 1% of probability level, and non-significantly difference, respectively.

U 84

4 . FGD W, S#P #,

$!

, - .' /

$ c BJ - B#- v#" i 5 12 58 9, .

Table 4. Mean comparison effect of vermicompost on quantitative and qualitative traits of Rosa damascena Mill.

genotypes.

Treatmentst

Average plant Height (cm) Number of flower per plant Flower diameter (cm) Fresh weight of flower per plant (g) Dry weight of flower per plant (g) Yield of fresh Flowers (kg/ha) Yield of dry Flowers (kg/ha)

Genotypes

Kashan 145.78a 806.58a 5.86a 1529.24a 289.79a 2319.35a 651.28a

Semnan 139.23b 678.25b 5.21b 1377.65b 229.65b 1953.25b 568.22b

Azerbaijan Garbi 131.49c 546.25c 4.12c 1246.38c 188.54c 1684.21c 504.25c

Golestan 124.58d 468.78d 3.15d 994.11d 137.46d 1317.16d 452.23d

Vermicompost (Ton/ha)

0 122.29c 613.29c 4.73c 1013.38c 252.51c 2098.21c 539.21c

5 148.53b 865.53b 5.25b 1356.94b 315.72b 2745.25b 671.53b

10 152.13a 1005.13a 6.13a 1676.51a 391.7a 3474.81a 918.83a

*

$

*' ,

# P

# S 5 j$*E, _$e qD 1N 8e AH, c B"

5 R&' U *e 5 8J 8 8 .

* In each column, means with similar letters are not significantly difference at 5% probability level.

U 84 5 . FGD W, S#P #,

$!

1 W*, , .' / - v#" i

$ c BJ - B#-

" i

# v 5 ()*+, 12 8 9, 5 .

Table 5. Mean comparison of interaction effect of Vermicompost on quantitative and qualitative traits of Rosa damascena Mill. genotypes.

Genotypes Vermicompost (Ton/ha) Average plant Height (cm) Number of flower per plan Flower diameter (cm) Fresh weight of flower per plant (g) Dry weight of flower per plant (g) Yield of fresh Flowers (kg/ha) Yield of dry Flowers (kg/ha)

Kashan

0 142.78c 823.41c 5.53c 1581.32c 279.32c 2418.31c 643.11c

5 149.23b 865.17b 5.58b 122.94b 335.54b 2863.25b 689.24b

10 155.49a 1008.52a 6.12a 2051.41a 402.38a 3421.18a 983.28a

Semnan

0 137.25c 689.31c 5.01c 1491.46c 231.28c 2005.11c 562.74c

5 140.41b 741.22b 5.25b 1589.33b 298.36b 2451.36b 683.43b

10 144.54a 923.18a 5.65a 801.17a 345.74a 2854.44a 812.54a

Azerbaijan Garbi

0 135.71c 501.19c 4.14c 1295.77c 201.33c 1554.36c 501.66c

5 138.23b 623.48b 4.45b 1488.19b 254.47b 2018.88b 604.33b

10 141.53a 756.66a 4.75a 1681.33a 305.55a 244128a 753.63a

Golestan

0 121.41c 412.16c 3.12c 1229.52c 185.25c 1424.16c 450.39c

5 134.11b 495.48b 3.52b 1351.43b 223.38b 1752.51b 506.57b

10 138.66a 624.66a 3.95a 1408.67a 281.65a 2145.22a 610.36a

* , *' $

# P

# S 5 j$*E, _$e qD 1N 8e AH, c B"

5 U *e R&' 5

8J 8 8 .

* In each column, means with similar letters are not significantly difference at 5% probability level.

(8)

U 84 6 . YD $ P*GT

S#

a$

c BJ - B#- v#" i 5 ()*+, 12 58 9,

.

Table 6. Correlation coefficients between some quantitative and qualitative traits of Rosa damascena Mill. genotypes.

Yield of dry flowers Yield of fresh flowers

Dry weight of flower per plant (g) Fresh weight of flower per plant (g)

Flower Diameter (cm) Number of flowers per plan

Characteristics

1 Number of flowers per plan

1 0.94**

Flower diameter

1 0.93**

0.93**

Fresh weight of flower per plant

1 0.94**

0.94**

0.95**

Dry weight of flower per plant

1 0.84**

0.84**

0.84**

0.90**

Yield of fresh Flowers

1 0.96**

0.83**

0.82**

0.82**

0.95**

Yield of dry Flowers

S#Af FGD W,

S#P #,

$!

1 W*,

, - .' / v#" i

E F-

$ qD C

v#" i gD 3I

3#, -

;6 , - .' /

$ ) 0 C

KC "

12 gD 3I .I D

; gA-

$

qD C Q v#" i

$ -

5 3#,

()*+,

, - .' / G D T F 5 @ F- v#" i -

$ ZD

$`, _ K S"

* , - .' /

81 / 3421 -

# ) :$2 C KC "

12 5 SD$*E#

3#,

$ ) 0 v#" i

*G)2 12

/ 2145 -

# ) :$2

C KC "

12 5 SD$* - 3#,

$ ) 0 8

U 84) 5 .(

$b F , 8' .)0 gD 3I

$ ) 0 C

KC "

12 v#" i - .TG F v#" i 5 ,

FH; &,

$PD F 1#;

S*

s B"

Z' *,

$*E#

c 8N 8#; "

12

$*E#

*D S*

C KC "

12

C qEa 12 q"

FD p

$*E#

SD v#" i .8

E Lp F-

F bA,

!n"

#

$ W, D

$ ()*+,

, - .' /

$ 2

# K D D 9

) Ocimum

basilicum

c J( .I$2

# 8 F- _$`, 5 S"

* , - .' / F K $ 50 8J -

#

# D 5$"$

5C C

$b

$ ) 0 K , qEa 1-

.TG F "

# 8

8 ) _$`, -

#

# D

, - .' / . (

)

et al., 2017; Anwar et al.,

2005; Rahamani et al., 2017

( }D * .

SD g Lp

}D * g Lp

Mamta et al.

(2010)

2

# K

*' D

) Stevia rebaudiana

(

Fatma et al.

) (2008

2

# K

h r C$, )

Origanum vulgare

S#Af (

Rahamani et al.

) 2013

v#" i (

5 2 1 58 9,

O a .

.

* +

"#

( )

* D } 1J e C 3r"

D F D

<

K E F-

#"

5 , - .' / v#" i

$!

1 W*, 6

R&' U *e D q 8J

$

$ ) 0 C

qEa 12

AH, U 84)

3 .(

F&

v#" i 5 ,

FH; &, 3#

FGD W, S#P #, S#

v#" i C

$b SD

.BJ E SD$*E#

$ ) 0 12 qEa

~ $, F

v#" i 12 58 9, -

C qEa 22 / 651

:$2 )#-

* SD$* - 6

~ $, F v#" i 12

58 9,

*G)2 C

qEa 23 / 452 -

# :$2 )

* U 84) 4 .(

' $ FGD W, S#P #, 3#

K8 E, 8

$ ) 0 C qEa 12 .; e K B*'

C , - .' / gD 3I 8#p

$- F 5 @ F- S#

5 #"

$ - , - .' / g#

SD$"

C qEa

FD p

#"

$X- 8e ,

- .' / K ) S"

( *

F 3#, 68 / 918 :$2 )#-

* F .' 8,6 F-

.TG F

#"

8 ) 21 / 539 :$2 )#- ( *

8e 5 / 35 8J

$*E#

. FGD W, S#P #,

$!

1 W*,

, - .' / v#" i 3#

E K8A 4 _>*a

AH, S#

5 #"

ED ,C6 F

5 @ F-

#"

K S"

* , - .' / SD$*E#

$ ) 0

C qEa 12 v#" i - ) 28 / 983 -

# :$2 )

* ( 1J e 8 F- FGD W, v#" i

12 58 9,

*G)2 ) 36 / 610 -

# :$2 )

* ( g#

C 31 8J

gD 3I E U 84) 5 .(

F )- @ v#" i .TG

F s 3#,

5 -

, '

* K B gA- 5

" B*, E

8 v#" i - /#" i

5$D]p - [

F- gD 3I 3#, -

;6

(9)

, - .' /

$ ) 0 C

$"

qEa 12 SD

v#" i

$*E#

C v#" i A ' rD l6

$^

*G)2 .TG F 8 gD 3I E .

$b F , 8'

-

;6 , - .' / F F)#' FH' "

re D FE

]4

=

$*E#

$J A0 ]^

D 3I gD 3#, 3*A' *I

Y4 , T

$ ) 0 K , qEa 12 , "

" i

# v 5 12 8 9, 5

$2 D 8 . c H; &, : r

K8

$

5 3#AE2 w+E, K8

.' F- "

# 5 - 5

U 0 K8 b

#

$ - 5

# i ; D q , - .' /

m0 3I D g s B"

C qEa SD 2

# K 8D $2

)

Bigohna et al., 2008

.(

S#Af h 32 K8

.'

% &' ()*+, ,

- .' / ,

h

$ ,

# 3 K ,

qEa , K$! , D 9 )

Ocimum basilicum

(

$! ,

.' )

Azizi et al., 2008

( W#W9" .

tW&A, 8 ,

F-

$ 5 v#" i 5 ()*+, 12 58 9, : r

8

w+E, 8D $2 SD$*E#

h 12 FD p

$ $

810

80 SD$"[

$ ) 0 12 KC "

$ $ 2465 :$2 )#-

* F .' K8,6 .' )

(Lebaschi, 2012

. F )- @

}D * g Lp

$ e }D *

c H; &,

Darzi et al.

(2016)

K #2 D T )

Dracocephalum

moldavica

( S#Af

Rahamani et al.

2013)

(

Tabaei-Aghdaei et al.

(2004) Rezai et al.

)

( 2013

$ 5 12 58 9, .W &, ..

, - + ./

0 1

}D * YD$

P*GT gD ,C6

E U 84) 6 (

F-

$ ) 0 C

12 qEa

* 12 58 9,

F&

O#W*G, D[

a$

c BJ qDi ; I ,

c BJ - KC 8 5$#2 K8 C 1#TN c BJ 8H"

12 FD p ) 95 / 0

= (r

C

$"

12 ) 96 / 0

= (r

$&N

12 ) 82 / 0

= (r

$ ) 0 C

KC "

12 FD p

) 82 / 0

= (r

..

SD }D * h 32 5 4 ,

, P*GT

$ ) 0 12 c BJ ()*+, 12

58 9, O

D ' E , 8 )

Tabaei-Aghdaei

et al., 2004

.(

Rezaee et al.

) (2013

3#

P*GT

O#W*G, D[

#, c BJ - 2 v#" i 5

12 58 9, K8 E, 8 $- 6

„ 8A*

S#

$ ) 0 12

* c BJ 8H"

12 FD p )

95 / 0

= (r

$&N d "

g p ) 91 / 0

= (r

P*GT

.TX, [

4 .

S#Af

Rhamani et al.

) (2013

3#

c H; &, 12

58 9, S#

$ ) 0 C

qEa 12

* F&

O#W*G,

D[

a$

c BJ - 12 58 9, 8A , c BJ

8H"

12 FD p ) 95 / 0

= (r

C KC "

12 ) 96 / 0

= ( r

K8 E, .8 $- }D * SD gD ,C6 }D *

' $ 5

$PD WW9, )

Jaimand et al., 2005; Kudori et al.,

2015; Kazaz et al., 2010; Lebaschi, 2012 Yousefi, 2018

( , P*GT

$ ) 0 12

BJ c ()*+, 12 8 9, 5 D 'O E , .8

2/

3 /#

4

}D * SD ' $ E F-

$ - -

;6

, - .' / Y4 , gD 3I

$ ) 0 12 c BJ

qDi ; I , KC 8

5$#2 K8 12 58 9, .TG

F

8 8 _$`, ,

- .' / .8D $2 0 :8

_$`, K

5 D # # 8•#; "

#2 D

$I 6 K 5 6

~$

)J 8#; "

c[ `9,

q# 2 H#T@

6 .' .

$ A D S F4 "

F

$ ) 0 1 N F4 "

C qEa 12 5 34 6

"#

K S"

-

;6 , - .' /

*

$b

F c> E, C

D .G 9,

#

&

C

$ -

5 -

#

# D 5 *'

# 1 F _ 8

; "

# 8 p D 8

_$`, K S"

, - .' /

* . 4 U `e

$ ) 0 1 N F4 "

12 58 9, J "

# F ,

$2 .

S#Af

•*

D } ' $

$!

5 -

()*+,

$

v#" i E C c B"

gA- v#" i .TG

F

"#

5 5 - .

F- D S

$, c H; &,

#

$*E

5 G *p

# 1

$ ) 0 Af

# S

# 5 C ]u"

D F 5

D S

" i

# v 5 $ , C ' . Af

# S F4 "

F

D * d )- C SD

$ ' 4 P*GT a$

BJ c

,

• FH; &,

$ ) 0 12 ,

"

6 [

$

$ ) 0 F, $

5 e>J L F

5 F -

$ .

$

' M 0>@

c F .' 6 8, K C D•

S C6 gD , v#" i

- 5

SD$"[

$ ) 0 12 c BJ qDi ; I ,

F-

" , 6 F A0 qD v#" i

$"$

FW&A, , FH; &, .G

v#" i

• 5 A '

Referensi

Dokumen terkait

(Biology yield/ plant(g)) with effects of organic, chemical fertilizer , and Animal manure fertilizers with interaction of each parameters while for biological yield

Effect of planting pattern, plant density and nitrogen levels on grain yield and yield components of maize cv.. Meta- analysis of effects level of nitrogen fertilizer on production

The study of different seed rates & plant density on seed yield, yield components & qualitative characteristics of soybean & sorghum intercropping... Proceeding of 3rd Iranian congress

Effects of different plant density on quantitative and qualitative characteristics of mixture of berseem clover and barley.. Sci., Karaj

Mean comparision effect of different potassium to nitrogen rarios on leaf number of gerbera cv.. Mean comparision effect of different potassium to nitrogen rarios on leaf fresh

Humic acid application significantly increased p≤ 1 plant height, number of branches, total chlorophyll, leaf relative water content, phenol and flavonoid content, and decreased leaf

In this research, the interactions of gas exchange and photosynthetic parameters were investigated with leaf nutrients contents of olive trees cv.. ‘Arbequina’ in super high density

ANOVA results showed that gamma irradiation affected the quantitative morphological traits of pisang ambon such as plant height, stem diameter, leaf length, leaf width and number of