• Tidak ada hasil yang ditemukan

PDF 母平均 検定 問題1 - 熊本大学

N/A
N/A
Protected

Academic year: 2024

Membagikan "PDF 母平均 検定 問題1 - 熊本大学"

Copied!
2
0
0

Teks penuh

(1)

熊本大学 数理科学総合教育

母平均 差 検定 問題 1

1 母集団A, 母集団B 母集団分布 正規分布N(µ1, σ12), N(µ2, σ22) . 以下 母平均 差 仮説検定 (2標本 Z検定) .

(1) 母集団 A , 標本平均x1 = 103, 母分散 σ12 = 152, 標本 n1 = 10, 母集団B , 標本平均x2 = 101, 母分散 σ22 = 152, 標本 n2 = 10,

,

帰無仮説 H0 :µ1 =µ2,

対立仮説 H1 :µ1 ̸=µ2

有意水準 α= 0.05 検定 .

(2) 母集団 A , 標本平均x1 = 15, 母分散σ12 = 52, 標本 n1 = 10, 母集団B , 標本平均x2 = 20, 母分散σ22 = 52, 標本 n2 = 10,

,

帰無仮説 H0 :µ1 =µ2,

対立仮説 H1 :µ1 ̸=µ2

有意水準 α= 0.05 検定 .

(3) 母集団 A , 標本平均x1 = 64, 母分散σ12 = 182, 標本 n1 = 70, 母集団B , 標本平均x2 = 68, 母分散σ22 = 182, 標本 n2 = 85,

,

帰無仮説 H0 :µ1 =µ2,

対立仮説 H1 :µ1 ̸=µ2

有意水準 α= 0.01 検定 .

(4) 母集団 A , 標本平均x1 = 237, 母分散 σ12 = 302, 標本 n1 = 25, 母集団B , 標本平均x2 = 213, 母分散 σ22 = 252, 標本 n2 = 30,

,

帰無仮説 H0 :µ1 =µ2,

対立仮説 H1 :µ1 ̸=µ2

有意水準 α= 0.01 検定 .

(5) 母集団 A , 標本平均x1 = 145, 母分散 σ12 = 402, 標本 n1 = 245, 母集団B , 標本平均x2 = 155, 母分散 σ22 = 452, 標本 n2 = 200,

,

帰無仮説 H0 :µ1 =µ2,

対立仮説 H1 :µ1 ̸=µ2

有意水準 α= 0.01 検定 .

1

(2)

熊本大学 数理科学総合教育

2 母集団A, 母集団B 母集団分布 正規分布N(µ1, σ12), N(µ2, σ22) . 以下 母平均 差 仮説検定 (2標本 t検定) . A B 母分散 等

(σ12 =σ22) 仮定 .

(1) 母集団 A , 標本平均x1 = 13.5, 標本分散 s21 = 12, 標本 n1 = 10, 母集団B , 標本平均x2 = 14.7, 標本分散 s22 = 1.12, 標本 n2 = 10,

,

帰無仮説 H0 :µ1 =µ2,

対立仮説 H1 :µ1 ̸=µ2

有意水準 α= 0.05 検定 .

(2) 母集団 A , 標本平均x1 = 145, 標本分散 s21 = 62, 標本 n1 = 5, 母集団B , 標本平均x2 = 138, 標本分散 s22 = 5.52, 標本 n2 = 5,

,

帰無仮説 H0 :µ1 =µ2,

対立仮説 H1 :µ1 ̸=µ2

有意水準 α= 0.05 検定 .

(3) 母集団 A , 標本平均x1 = 74, 標本分散s21 = 112, 標本 n1 = 28, 母集団B , 標本平均x2 = 81, 標本分散s22 = 112, 標本 n2 = 24,

,

帰無仮説 H0 :µ1 =µ2,

対立仮説 H1 :µ1 ̸=µ2

有意水準 α= 0.01 検定 .

(4) 母集団 A , 標本平均x1 = 10, 標本分散s21 = 32, 標本 n1 = 12, 母集団B , 標本平均x2 = 20, 標本分散s22 = 42, 標本 n2 = 20,

,

帰無仮説 H0 :µ1 =µ2,

対立仮説 H1 :µ1 ̸=µ2

有意水準 α= 0.01 検定 .

(5) 母集団 A , 標本平均x1 = 68, 標本分散s21 = 102, 標本 n1 = 15, 母集団B , 標本平均x2 = 58, 標本分散 s22 = 92, 標本 n2 = 8,

,

帰無仮説 H0 :µ1 =µ2,

対立仮説 H1 :µ1 ̸=µ2

有意水準 α= 0.05 検定 .

2

Referensi

Dokumen terkait

案例2 某學者宣稱利用他所發展的教學法可以讓國中生的作 文成績在半年內明顯的提高至少 2分以上,某教育團 體對該學者的說法質疑,於是該教育團體找了一所國 中進行實驗,首先從該校學生隨機抽取 100位學生進 行測驗,此 100位學生作文平均成績 4.5分,標準差 1.8分。接著進行該項教學法,經過半年後再隨機抽 取 81位學生,得其作文平均分數 5.9分,標準差

熊本大学 数理科学総合教育センター 不偏推定量 , 一致推定量 , 最尤推定量 演習問題2 母数θの母集団からの標本をX1, X2,.. , Xn とする.ここでは統計量,推定量,推定量の不偏 性,一致性を次の意味で用いる.

[r]

一方, 係数行列A の階数はrankA = 2である... 一方, 係数行列A の階数はrankA =

[r]

熊本大学 数理科学総合教育センター 不偏推定量,一致推定量,最尤推定量 演習問題2 解答例 母数θの母集団からの標本をX1, X2,.. , Xn とする.ここでは統計量,推定量,推定量の不偏 性,一致性を次の意味で用いる.

V をK上のベクトル空間とする.以下の問に答えよ. i o′ ∈V は,どんなx∈V に対してもo′+x=xをみたすとする.このとき,o′ =oとな ることを示せ(すなわちベクトル空間V に対して,零ベクトルはただ1つである). 解答.. ii x∈V とする.また,y∈V はx+y=oをみたすとする.このとき,y=−x となるこ とを示せ(すなわちx∈V

1 平成25年度福山平成大学自己点検・評価報告書 日本高等教育評価機構の基準に沿って、平成 25 年度の自己点検・評価を行った。その根拠 となるデータは、教育情報としてまとめ、ホームページ上に既に公表している。 1.使命・目的等 本学及び本学の大学院は学校教育法に従って、その使命・目的及び教育目的を設定してい