• Tidak ada hasil yang ditemukan

AX=(Dom(X),C>^,^),

N/A
N/A
Protected

Academic year: 2024

Membagikan "AX=(Dom(X),C>^,^),"

Copied!
12
0
0

Teks penuh

(1)

Tqp chi khoa hpc Ti Ucfng Dai hgc Quy Nhcfn - Sd'2, Tdp VI ndm 2012

BIEU DIEN CO SO DlT LIEU M 6 B A N G XML

TRAN THIEN THANH", NGUYEN VAN PHONG"

1 GICII THIEU

Trong nhung nam g3n day, nhung nghien cuu v^ co sd dir lieu (CSDL) ma da va dang duQC tiep tuc phat trien trong nucrc cung nhu tren the gioi. Theo hi^u bi^t ciia chiing toi, hau het cac nghien cuu chi xay dung tren mo hinh ly thuy^t, hoac duoc cai dat tren cac mo hinh quan h? co dien, ma chua co mpt mo hinh CSDL mo thyc sy dupe cai dat tren may tinh. Do do, nhieu ket qua nghien cuu chua duoc cai dgt hoan toan tren may tinh nen it nhieu han che vi^c Omg dyng cac ket qua ly thuy^t thu dugrc. Trong bai bao nay, chung toi de xuat mot each bieu dien ca so dij lieu mo bang XML, mo hinh ca so du; lieu mo duQc bieu dien la mo hinh dua tren dai so gia tii Tren co so bieu diln co so du lieu mo bang XML, chung toi xay dyng thuat toan tinh toan va cai dat cac truy van tren co so du lieu mo. Ket qua nay buoc dau cho phep thu thap, Itm tru: dQ lieu ma va thuc hien cac tmy van tren do. Ket qua nay con tiep tuc phat trien cho cac tinh toan va khai thac tri thiic tir CO so du lieu mo.

Bai bao dupe to chiic nhu sau Phan 2 chiing toi nhac lai mot so kien thiic ve mo hinh CO so du lieu mo theo each tiep can dai so gia tii. Chi tiet each bieu dien co so dii lieu ma bang XML duoc trinh bay trong phan 3. Trong phan 4, chiing toi xay dung thuat toan tinh toan va cai d^t cac truy van tren co so du lieu ma. Phan 5, Phan ket lu|n neu ra nhung ket qua dat dupe, mpt so noi dung can dupe nghien ciiu va tiep tuc cai dat tren mo hinh nay.

2. MO HINH CO S 6 DU" LIEU MCJ THEO CACH TIE? CAN HIEN DAI Trong phin nay, chiing toi nhSc lai mpt so khai niem co so du li?u mo theo each tiep can ciia dai so gia tOr, chi tiet hon tham khao trong [1].

2.1. Co-Stf dtf li^u mtf

Binh nghia 2,1 [1]. Gia sii X\k mot bi^n ngon ngQ va mien gia tri ciia ^ l a Dom (X). Mot daii s6 gia tu AXtuang ling ciia A'la mot bp 4 thanh phan

AX=(Dom(X),C>^,^),

trong do C la t$p cac phSn tii sinh, H la t | p cac gia tii va quan he "<" la quan he cam sinh ngu nghia tren Z.

(2)

92

TRAN THlfeN THANH-. NGUYEN vAN PHONO' Trong d?i so ghtiiAX= (Dom(,X), C, H, S) neu tjp X\i C la tjp s5p thir V tuyen tinh thi AA" duoc gpi la dai so gia tOf tuyen tinh,

Djnh nghia 2.2 [4], Gpi Hi^x) \i tap cac phan tu cua X sinh ra tir x boi cac gia tii. Ham fin: X^ [0,1] dupe gpi la ham dp do tinh mo tren .If neu nothoa man cac dieu kien sau

i) fill (.11) = V fi„(hii)

ii) Neu y: la gia tri ro, H{x) = {x} Mfinix) = 0, l.lfin (0) =fin (W) =fin (1) = 0 iii) Voi hai phan hi x v a y trpng X, mpi h trong H, ta co /"'<•>"'> _ f"<i'>y)

fm{x) fmiy) ty le nay khong phu thupc vao r. y va ky hi?u la fi (h) gpi la dp dp tinh mo cua gia tii h.

Djnh nghia 2.3 [I], Ham dau sigw.'A"-> {-1,0, 1) duoc djnh nghia de quy nhu sau:

i) sigji(c') - -\, signic*) = +1

ii) sign{h'hx) = -sign{hx) neu /i' am doi voi h vk h'hx ^hx iii)sigiHh'hx) = sigti(hx) neu h'duang doi voi h\kh'hx ^hx iv) sign{h'hx) = 0 neu h'hx = hx

Dinh nghia 2.4 [3]. Mpt luoc do quan h? mo la mot bo 3 thanh phan (R, AT), trong do R={Ai, A2,.. , An}\k tap cac thuoc tinh, AT={AX\, AXz....AXn} la tap cac dai so gia tu tuyen tinh, AX, la dai so gia hi tuyen tinh tuong ling voi thupc tinh A,, AX,=(Pom(A,), C, H,, <).

Vi du mmh hoa: Cho co so dii lieu mo B A N G - L U O N G (TEN, TUOI, CHUCVU, LUONG, PHUCAP), B-ong do cac tilupc tinh mo la (TUOI, LUONG, PHUCAP) nhu trong Bang 2.1

Bang 2.1. Quan he ma Bang-Luang

Ten

VTnh Hiing Thanh Tuyet

Tai

Tuoi

49

(25, 27) Kha-Tre {29,30,31}

#Null

Chirc-vu Giam doc Pho phong Chuyen vien Chuyen vien Chuyen vien

Luvng Kha-Cao

5.8

Kha-Cao

47 35

Phy-cap

4.6 3.8 40 Cao

Kha-Cao Trong bang du li?u tren thupc tinh mo, Tuoi dupe bieu dien bdi cac dang dC lieu nhu: gia tri ro (Tuoi 49), gia tii ngon ngii mo (Kha-Tre), gia tri khoang (25, 27) (25<Tu6i<27), tap hiiu han cac gia tri ro {29, 30, 31} (hioi co tiie la 29, 30 hoac 31), da lieu tiiieu V jng (Khong biet tiioi la bao nhieu #Null).

2.2. Bieu dien khoang cho cac gia tri ngon ngir 2.2.1. Bieu diin khodng cho da lipi mar

(3)

BIEU D | 6 N CO sd DU LIEU M 6 BANG XML 93 Xet DSGT diy dii, tuyen tinh va ty do A T = (X, G, C, //, CD , 2 , <), vdi / T = {h,.

hp), ff={h.j, ,.., h.q}, a day/), q>2. Trong thye te, so gia tii trong cac gia tri ngon ngir la hihi h^n nen ton t^i mpt s6 nguyen duang k' sao eho 0<|A:|£Ar* VxeX. Voi b5t ky X e ^ , dat 7 = \x\ ; voi m6i so nguyen duong k eho truoe voi l^k^k*, Ian can toi thieu miic A- cua X ky hieu la 0^^f^{x) dupe dinh nghra nhu sau [3]:

- Truong hpp A:=y • O ^ ^ W = 3^^, (ft_jr) .^ 3^^j(A^x}.

~ Truong hpp 1 ^ fr s ; ; O^^,^ (x) = 3^ (x)

- T m o n g h p p j + \£k ^k': 0^^{x)=:ii,^^{h,y')^ :s^^^(h^.y')

Trong do, khoang mo 3»(x) la anh ciia W(x) tren khong gian tham chieu. l,Pe{-q,p}

sao cho hjy ^ x i h^.y'va y, y' e H(x)vai j_v| = |y| = t .

Tii do chiing ta thong nhat each bieu dien du lieu ngon ngii mo theo dinh nghta sau Dinh nghia 2.5 [3]. Cho xeX'uC, mot bieu dien khoang ciia x la mpt t^p Ilip(x) cac khoang duoc xac dinh nhu sau:

2.2.2. Bieu dien khodng cho cdc dgng die U$u khdc (xem [3]) DuHeuro: 0^^^^^{a) = ^a,a^ \a\mQ\ 1 ^ fc £ it * va//?p(o) - Jo, a]}

Du lieu khoang:Oj^^.([a,A]) = j[a,i]} voi mpi isfc^fc* va IRp{ia,b\) = ^a,b'^

Tap h\m han cac gia tri ro: 0^^^^^^(P) = {[a,a]|oe/•} voi moi \<k<k* va IRp(.P) = ^a,a\\aeP].

Du lieu thieu vang: Moi gia tri khong dupe xac djnh (undefine, inapplicable), Ojjyj, ^ {inapplicable) = {^) v o i m p i 1S A < i * v a IRp(,mapplicable) = {^}

De CO the doi sanh cac gia tri ngon ngir dupe bieu diln bang khoang, ta xet moi quan he bang nhau miic k va gan nhau miic k a phan tiep theo.

2.3. So sanh dir lieu vauc k

2.3.1. Quan he gan nhau muc k vd bang nhau mire k tren mien trf cua thupc tinh Bjnh nghia 2.6 [3]. Goi C 'a cac cym dupe sinh ratir cac khoang ma [3]. Moi C thupc C, ta gpi khoang tuong ty miic k ling vai C la

Mfnh de 2.2 [3]. Cho 4 Z l a DSGT tuySn tinh diy dii cua mpt tiiuoc tinh A, ti-ong do H*

va/T CO it nhat 2 phin tii, cac tham so djnh lupng mcr duoc xac dinh theo Dinh nghia 2.1 khi do:

(4)

94 TRAN THlfeN THANH', N G U Y 6 N VAN PHONG'

- Voi m6i k, {sj.(u)|»e.Vuc) dupe xac dinh duy nhat va la mpt phan hoach ciia doan [0,1].

- Voi mpi x, iie.Y^C, neu v(x)s S^j(u)thi Ian can be nhat muc t ciia x nam trong Sliu), hie la o^^j^(x) c .?j.(u)

Djnh nghia 2.7 [3]. Cho DSGT tuyen tinh, day du AXvi dp do mbjm. Gia su v^ la mpt ham dinh luong ngQ nghia tren ^ v a moi A, ma ISifcsifc*, Sk la quan he tuong tu mire k trem DA Khi d6 2 bo ' va s hjy y tren (/, hai gia tri l[A] va slA] hojc l[A] =t s[A]. Neu ton tai mot lop tuong duong Sic{u) cua Sk sao cho Ojj^i^(t[A])zSi^{u}va

2.3.2. Quan h^ bdng nhau muc kvdquan h$ Soi sdnh tren mien trj ffwJ* rpng cua thu^

tinh iXem /SJ)

Voi gia thiet nhu Dinh nghia 2 7, hai gia tri t[A], s[A] thuoc DA dupe gpi la bing nhau mire k, ki hieu l[A]=k s[A], neu mot trong cac m?nh d§ sau day thoa man:

- i[A] va s[A] dong nhat nhau ve ki hieu.

- T6n tai mot lop tuong duong St(,u) ciia quan he tuong tv St sao cho 0„„j^l[A]) c S^u)viO„„AslA])QSi^u).

Djnh nghia 2.8 [3]. Voi mSi k, l<.kik* va hai gia tri bit ky t[Al s[A] trong DA taviet

- 'W it ^W khi va chi khi l[A] =t s[A] hojc llA], s[A] dia tirong thich dupe miic k viSi(,r[A])<St(s[A]);

- i[A] <t slA] khi va chi khi l[A], s{A] ihx tirong thich dupe miic k va S^t[A]) <

S:ls{A]l

3. BEU DifiN CO Sd OffLlEU Md BANG XML

Bang kha nang bieu dien dO lieu cua XML, chung ta dl dang bilu diln duoc cac dai lupng: mien trj tham chiSu, miln gia tri ngon ngtt, va m6i gia tri ngon ngu chung ta phai bieu diln khoang gia tri ngon ngu theo mo hinh co so dO li$u mo dya 0-en dai so gia tir

3.1. The Attribute duoc dimg de xac dinh phan dinh nghia cac thuoc tinh cua mot co sd dii li$u mo <Attribule> .. </Attribute>.

3.2. The Field duoc diing de liet ke cac tiiupc tinh mo ciia co sd dii lieu. The Field nim

trong pham vi cua thi Attribute: <Field> thuqc-linh</FieId>.

(5)

BIEU D I 6 N CO SCi DO LifeU MCi BANG XML 95 3.3. The Type duoc dung de xac dinh kieu dii lieu cua thuoc tinh, kieu dir lieu c6 the nhan

la cac kieu dii lieu nguyen thuy nhu: kieu so nguyen, kieu so thuc, kieu Ipgic, kieu chu6i ky tu,...: <Type>Kieu-dii--lieu</Type>.

3.4. The D duoc dung dl xac dinh miln gia tri tham chieu (qua gia tri dupe cho boi the

<Min></Min> va <Max><^Max>) cho cac thupc tinh mb:<D><Min>. </Mm. '</D>.

3.5. The LDom dupe dimg &k xac dinh mien gia tri ngon ngii cho cac thupc tinh mo.

Trong do tap cac phan hi sinh duoc liet ke trong pham vi ciia the <C></C>, tap cac gia tir duoc liet ke trong pham vi ciia the <H ><,H^

<LDom>

<C>

<Val Poss=fm(x)> i <A'al>

</C>

<H>

<Val Poss=fm(y) Type= H+/H-> y <A'ai>

</H>

</LDoni>

Trong &6fin{x), finiy) la do do mb cua bien ngon ngii x, y. H+/H- de xac dinh gia tir ducmg hay gia tii am. Neu Type="H+ " la gia hi duong, neu Type^"H-" la gia tii am.

Trong pham vi cua the <H>< H> thi thir tu ciia cac gia tu duoc sip xep tang dan theo quan he cam sinh ngii nghia.

Vi du; Bieu dien luoc do co so dii lieu mo cho thupc tinh TEN, LUONG dupe cho a Bang 2.1

<Dennite Fiizzy="BANG_LUONG">

<Altribute>

<FieId>LUONG </Field>

<TEN>

<Type>String</Type>

</TEN>

<LUONG>

<Type>Double</Type>

<D>

<Min>0.0</Min>

<Max>7.0</Max>

</D>

<LDoni>

<C>

(6)

96 TRAN THI6N THANH', NGUYEN VAN PHJDNg

<Val Poss=0.35>Thap</Val>

<Val Poss=0.60>Cao<A'al>

</C>

<H>

<Val Poss=0.30 Type="H-">Gan</Val>

<Val Poss=0.25 Type="H-">it</Val>

<Val Poss=0.25 Typc="H+">Kha<A'al>

<Vai Poss=0.20 Type="H+">Rat<A'ai>

</H>

</LDom>

</LUONG>

</Attribute>

</Derinite>

De bieu dien gia tri ngon ngu mp, chiing toi sii dung cac the sau:

3.6. The Dist dupe diing de xac dinh pham vi cua gia tri ngpn ngir mo

<Dist Type="n ">{Gia tri ngon ngir m^</Disf>

Trong dp n dupe diing de xac dinh cac kieu dir lieu mo dupe neu ra trong 2 1.

3.7. The Interval dupe dung de xac djnh tap cac gia tri khoang ciia bien ngon ngu. Trong dp (x,, 3^, ) la gia tri khpang cua bien ngon ngii.

<Interval>

<I Min="ii" Mai="yi">-=/I>

<I Min="i„" Mai="y„"></I>

</Interval >

Vi du: Bieu dien du lieu chp nhan vien cp gia tri TEN la VTnh, LUONG la "Kha- Cao" dupe cho 0 Bang 2.1 nhu sau:

<Dennite Fuzzy="BANG_LUONG">

<Attribute>...</Attribute>

<Data>

<Eicment>

<Ten>Vinh</Ten>

<Luong>

<Dist Type="r'>

<Intervai Min="5.7S625" Mai="6.375">

</Interval>

<Val>Kha-cao<A'al>

</Dist>

</Luong>

<Eienient>

(7)

BIEU DIEN CCi s d P g LifeU M^ BANG XML 97

</Data>

</Definite>

Voi phuang phap nay, chiing ta de dang thyc hi§n luu tru, tinh toan, va truy van tren CO so du lieu mo neu tren. Trong phan tiep theo, chiing toi trinh bay each xay dyng truy van mo la co so de trien khai cac ling dung tren co so du lieu mo nay.

4. TRUY VAN MC3 TREN CO S6 D C L I B U BifiU DifiN BANG XML 4.1. Bieu dien truy van

De thuc hien cac truy van mo tren ca sa du lieu ma bieu dien bSng XML, tnioc tien ta phai chuyen cac truy van ma ve truy van ro sau do sii dung phuong phap doi sanh mo miic k de thye hien truy van Cau tnic ciia lenh truy van mo dua tren co so cac cau lenh SQL, sii dyng the XML de mo ta cau lenh truy van mo.

4.1.1 The Select duoc diing d8 liet ke cac trudng dupe chpn de thuc hien truy vSn, Ten cac truong dupe Het ke qua the Field

<Select>

<Field>Truong_i</Field>

</Select>

4.1.2. The From dupe dimg d^ chi cac bang dupe chon Ten cac bang duoc liet ke thong qua the Table.

<Froni>

<Table>BangJ</rable>

</Froni>

4.1.3. The Expression dupe diing de bieu diln mpt bigu thiic di^u kien 4.1.3.1. Bieu thiic digu kien mg

<Expression Type=*'Fuzzy">

<Field>Ten-Tru'ffng</Field>

<Math>Phep-toan-so-sanh</Math>

< Val>gia-tr!-a6i-s anh</Val>

</ Expression >

4.1.3.2. Bi6u thiic dieu kien ro

<Expressioii Type="UnFuzzy">

<Field>Ten-Tru^g</Field>

<Math>Phep-toan-so-sanh</Math>

<VaI>gia-tri-d6l-sanh<A'^al>

</ Expression >

(8)

TRAN THifiN THANH', N G U Y S N VAN PHONG' 4.1.4. The Where dupe diing d l liet ke cac bieu thirc dieu kien. Cac bilu thirc dieu kien duoc ket hpp vdi nhau qua thi Math. Jhi Math dupe diing de liet ke phep tpan ket hpp giOa cac bilu thirc dieu kien vii np chi nhan 2 gii tri hpjc la "And" hpic la "Or".

<Where>

<EipressionType=...>...</Eiprcssion>

<Malh>{And, Or!</Malh>

<£xpression Type=.. .>.. .</Ejpression>

<AVhere>

Gia sir ta cp co so da lieu mir dupe cho trpng bdng 2.1. Bay gi6, ta \it truy van sau:

"Tim nhung nhdn vien tre c6 luong khd cao". Dilu kien trpng truy van tren cp the bieu diln boi bieu thirc r[TUOI]=Tre and ([LUONG] s Kha-Cao. Chiing ta se bilu dien cau tmy van nay bSng ngpn ngir XML vdfi cdc th6 dupe quy dinh 6 tren

<SQL>

<Select>

<Field>TEN</Field>

<Field>CHUCVU</Field>

</Select>

<From>

<Table>BangLuong</Table>

</From>

<Where>

<Expression Type="Fu2zy">

<Field>TUOI</Field>

<Math>=</Math>

<Val>Tre<A'al>

</Expression>

<Math>and</Math>

<Expression Type="Fuzzy">

<Fieid>LUONG</Fieid>

< M a t h » = < / M a t h >

<Vai>Kha-Cao<A'ai>

</ExpressiDn>

<AVhere>

</SQL>

4.2. Danh gia truy van

De thuc hien danh gia truy van ta thuc hien danh gia cac gia tri cua bilu thirc dieu

(9)

BIEU D I I N Cd sd DO LIEU M 6 BANG XML 99

kien sau do ket hpp cae gia tri do thong qua phep toan '"And" ho^c "Or" dupe cho bdi the Math. Trong truong hpp bieu thiic dieu kien la mpt bieu thiic dieu kien ma thi ta phai doi gia tri can doi sanh ve gia tri khoang sau do se thuc hien doi sanh voi co so du lieu m6 dua tren quan he doi sanh mo miic k tren gia trj khoang dupe trinh bay trong phan 2.6.

Doi vcri bieu thiic dieu kien ro thi ta chi thuc hien so sanh thong qua cac phep toan doi sanh tren cac kieu dii lieu nguyen thiiy.

Vi dy: Dua vao dinh nghfa ve gia tri khoang cua ngon ngu md ta tinh dupe S\,

•iuoi(tre)=(21 528, 31 23], Si. LuoNG(Kha-Cao)=(5 75625, 6,375]. Sau do ta thuc hien doi sanh vai du lieu da eho ta tim dupe cac bp thda mSn la Hiing

4.3. Thuat toan danh gia truy van

Thu^t toan 4.3.1 Xac dinh gia tri chan ly ciia dan dieu kien mo vdi phep toan i9.

Vao: cho r la mpt quan he xac dinh tren vu try cac thupc tinh U={ Aj, A2. •••,A„}.

Dieu kien A,djvalue, vdi Jvalue la gia tq md va A, la thupc tinh md c6 tinh don dieu,

^A=k-^k^<k^>k\-

Ra Vdi mpi t G rthoa man di§u kien t[Aj\d Jvalue . Phutrag phap

1/ Begin

2/ For each / E r do // Tinh gia tri khoang cho t[Ai]

3/f t[A,]G D^ then /[4]=IRp(Ai) // Tinh gia trj khoang cho fvalue 4/ P=IRp(fvalue)

5/ If ^ la phep toan =k then 6/ Begin

7/ For each / e r do 8/ begin

9 / I f ( f f ^ J c P ) t h e n (([4]=^ >a/Me) = l 10/ Exit

11/End 12/End

13/Else//tru6Tigh9p ^ e { ; ^ ^ , < t , ^ J 14/ For each / e r do

15/Begin 16/Case 9 of

IV ^f^:If(t[Ai]<7iP )then (t[Aj]e Jvalue) =1 W </^: If (t[A,]<P ) then (f(4]&palue) = 1

(10)

'PO TRAN THifeN THANH'. NGUYEN V A N P H O N G ' 19/ >^: If( IIAJ]>P ) then ii[A,]efoalue) = 1

20/ Exit 21/End;

22/ End.

Thuat todn 4.3.2 Xac d)nh gi4 tri chan ly ciia da dilu kien mb vdi phep toan 0.

Vao' cho r la mot quan he x^c djnh tren vii try cac thupc tinh U={ A], A2, ...,y4„}.

D i l u ki$n A^ e ftaliie^ (A ffj f/atue .

Rfl Vpi mpi ter thoa man dieu kien((l>lyI^yi'a/Me,^r[.4.I0j>a/Me.).

Phuwng phap: gia su dilu kien mo co dang A^eJvaluCj^AjB^ fvaluej, \m fvalue,, fvaluCj la gii tri mcr, Ai, Aj la thuoc tinh mo co tinh don dieu; 0e {=^.''^.<^.>^j va 4 la

phep toan and ho$c or Mupn xkc dinh gia tri chSn ly trong truong hpp nay, truoc het cac dilu kien AjBJvaluei va A^ 9, foalue^ dupc x i c dinh dua vao Thuat toan 4.3 1, tilp theo hly thuoc vao { la phep toan and ho5c or dl kit hpp gia cac gia tri chan ly vira xac dinh.

Thuat toan 4.3.3 Thuc hien truy van SQL mo trong truimg hpp don dilu kien Vao Quan he r xac dinh tren t^p vu tru cac thupc tinh U={ A,, A2, ....A„}. Cau truy van dang select ...fi-om r where Aj 9,^,, fralue .

Ra: quan he rr„uit thoa man voi moi t e r^^^^ ta co ([4 ] e,^^. Jvalue Phu'Olig phap

// Khoi tao cac gia tri 1/Begin

2/ Cho a^,,{0.c2,.W.cl.l}, « ^ , = / / + , u / / 2 - Trong do H^i'ih^.h^), ff^'

{ha, h j , v*i hi < hj v i h3> h4. Chgn d$ do mor cho cac phan tii sinh va gia tii.

3/ D^i = [min^j, ma.\^^ J, v<H minAi, raaiAii gia trj nho nhat va Iftn nhat mien tri A,.

4/LDAi=ff^,(<:*)u//^,(c') 5/ Rrcful(= ^ .

6/ //Duyet c4c bp t trong r de tim cac bg thoa miin dieu kifn trAJ e,.., fvalue {Al}

7/ For each 1 e r do

8/ If ru,) s LD^, then Xac djnh Ian can mirc k ciia t[A|] la IRp(A|) 9/ For each (e r do

10/If $ la phep ni then 11/Begin

12/ If t[Ail e IRp(fvalue) then r , ^ , = r,...Bu t 13/ Elseif IRp(A|)=IRp(fvalue) then rr,^,= r ^ m u t

(11)

Bliu DIEN CO s d Dp LifeU Mfl BANG XML 14/End

15/ Else // tru'dng hyp e e {*j, <j. >j. j 16/Begin

17/ Case e of

18/ ^^'.Wi^tfA .\* iRp(/^aiue >) then rmull= rresull u t 19/ <^.: If (^.4 ] < iRpffraiut f) then rresuii= r r „ u i , ^ t 20/ >^: If (,/..! ] > irtp(fi,aijie )) then rt«iiit= r^suit^t 21/End

22/ Return r„suii 23/ End.

Thuat toan 4.3.4. Thuc hien truy van SQL mo trpng truong hop da dilu kien Vao Quan he r xac dinh tren tap vii try cac thuoc tinh U={ Aj, A2, ...,Ar}.

Cau truy v4n dang select ... from r where 4 ft^„ /value, 4 A, e^^^, fvalue , hong do ^ la phep toan ant/hoac or.

Ra: quan he rres^, thoa man vol moi '^r^^suli '^ '^° 'W^lAi)^"'"'1

^•^"^j^hiADfi"""'!-

Phuong phap: Trong trudng hop nay, muon xac dinh gia tri chan ly trudc het cac dieu kien 4 ^(Ai) J^°'"^i "^^ -^j \AI) J^^^"^J ^^^^ ^^^ ^^^^ ^^^ vao Thuat toan 4 4.1, tiep theo tiiy thudc vao ^ la phep toan and hay or de ket hpp cae gia tri chan ly vua xac dinh.

4.4. Cai d^t

Chiing toi da tien hanh cai dat chuong trinh vdi cac chiic nang cap nhat co sd du lieu mo, thuc hien truy van tren ca sd du lieu md bang moi trudng lap trinh Visual C.

5 KET LUAN

Trong bai bao nay, chiing toi da de xu4t mpt phuong phap moi de bieu dien co sd dii lieu md cd nhieu kilu du lieu khac nhau dya tren cau tnic dinh lupng ciia DSGT bang ngon ngu XML, M6i ca sd dii lieu md dupc bilu dien theo mpt cau tnic chung bao gom phan khai bao cac thupc tinh va phin npi dung blng cae the XML. Vdi phuong phap nay, buoc diu chiing toi da cai d^t thanh cong mo hinh CP sd du lieu md cho phep thu thap th6ng tin, cap nhat thong tin va thuc hien mot so tinh toan, cung nhu truy vin md tren ca so du lieu do

(12)

102 TRAN THlfeN THANH". NGUYEN VAf^PHO^

TAI LI$U THAM K H A O

|1] N.C, Ho, W Wechler, Hedge algebras An algebraic approach lo structure of sets of hnguisnc truth values. Fuzzy Set and Systems 35, (1990), tr.281-293.

[2] T, T. Thanh, M0f s6 vdn di& l-p thuyk vii img dung ciia ca sd dQ li^u ma. Ludn dn tiin st Todn hQC, Dai hpc Khoa h<?c tu nhien. Ha Npi, (2004),

13] N C Ho. L. X. Vinh. N. C Hao, Th6ng nhdt d(r li^u vd xdy dimg quan hS lurmg tu trong ca s& da- liSu ngdn ngir bdng dai s6 gia tif. Tap chi Tin hpc va Dieu khien hpc Tap 25, S 4, (2009), tr 314-332

|4| N C Ho, T T Son, T D Khang, L. X, Vi?t, Fuzziness Measure, Quantified Semantic Mapping And Interpolative Method of Approximate Reasoning in Medical Expert Systems, Tap chi Tin hpc va Dieu khicn hpc, 18 (3), (2002), iT.221-152.

SUMMARY

PRESENTATION OF FUZZY DATABASE WITH XML

Tran Thien Thanh, Nguyen Van Phong The fuzzy database model is based on the database relational one with the aim of expanding the ability to present and manipulate incomplete and uncertain data. There has been no stonng and handling data model assisting in deplojing the application in practice so fiir. In this p^er, ^ve describe a method of fuzzy database presentauon with XML that is based on the hedge algebra Thanks to the presentation of fuzzy database with XML, we develop algonthms to calculate and query on the fuzzy database This result allowed us to collect, store data and perform fiizzy queries on it. it was then developed for die calculation and ex-traction of knowledge from fuzzy database by fuzzy data presentation with XML

Truong Dai hpc Quy Nhan, 'Tmimg Dai hoc Quang Trung Ngay nhanbAi' 22/7/2011; Ngiy nhfln dSng, 04/01/2012.

Referensi

Dokumen terkait

Keywords: tuberculosis, adverse drug reactions, anti - tuberculosis medications CAC BIEU HIEN LAM SANG VA DANH GIA KET QUA DIEU TRI CUA VIEM TAY VA AP - XE QUANH AMIDAN TRONG T/\l

Cdc gia thuyet nghien effu dffdc phat bieu nhif sau: HI: Viec Iam va cdc moi quan he Iao ddng tac ddng tich cffe de'n hieu qua tai chinh ciia doanh nghiep; H2: Dieu kien Idm vide va

theo nhffng thdng tin cua cac hd gia dinh cung ca'p, nhdn hai gia tri I va 0 1 = thie'u viec Idm va 0 = khdng thie'u vide lam; K la bid'n gia cho bid't cd anh hifdng cua dieu kien ttf

Cdn nguyen gia tri trong dieu kien cua cuoc each mang khoa hoc - cdng nghe Ngay nay, CNTB ducmg dai tuy da cd nhung budc phat trien mdi, cd sy dieu chinh d miic dp nao do ve che dp sd

Phin tich ma ti^ SWOT CffhOi 0 - Nhu clu thi trudng gia tang - Dieu kidn tu nhidn thuan loi - Chinh sich hd frg, bao vd ngudn Igi ven biln cua Chinh phu - Dieu kien frao doi thdng tin,

sftc CO bftp cfta tim, giim rajt dp vi mjch tai FT4, tuong quan nghich co y nghia p < 6,05 voi nftng dp TSH; - Sau dieu tri gia tri trung binh cfta MBF, PSV, EDV thupc nhom bfnh nhin

Mdt sd tac gia chu truong cat tui mat ndi soi cap ciiu de dieu tri viem tiii mat cap [l,2,3,4,5,6,7];trong khi mot sd tac gia khac cho rang viem tiii mat cap la mot chong chi dinh cua

D^nh gia sir thanh thuc cua trirng de Tning sau then gian nuoi thanh thyc a cac dieu kien noi tren dugc ehuyen sang moi truong TCM- 199 Hepes CO bo sung enzym Hyaluromdase Sigma a nong