• Tidak ada hasil yang ditemukan

H CAP BAC Ll/ONGVA PHAP

N/A
N/A
Protected

Academic year: 2024

Membagikan "H CAP BAC Ll/ONGVA PHAP"

Copied!
5
0
0

Teks penuh

(1)

DOI SANH KET QUA PHUONG PHAP MA TRAN DINH Ll/ONGVA PHUONG PHAP QUYTRINH HE

THONG CAP BAC AHP

ABSTRACT

At present on the world, there are many methods to evaluate, forecast and do zoning of landslide procedures on taluys and slopes, there are also a lots of researchers and scientists who pay attention to the quantitative ma- trix method (or multi-variate analysis

method) and AHP hierarchy system procedures method.

This article mentions the comparison between the results of quantitative matrix method and the AHPA hierar- chy system procedure method, so that to suggest the selection of the optimal application method.

Th.S Nguyen Dure Ly Pho giam doc Sd Khoa hoc va Cong nghe tinh Quang Binh 17A - Quang Trung - TP. Dong Hcii - tinh Quang Binh Dl dong: 0913.295.246 GS. TSKH Nguyen Thanh 11A-Phan Boi Chau-TP Hue Dien thoai: 054.3822410

H

ien nay, tren the gidi cd rat nhieu phuong phap 6iiac sd dung de danh gia, d u b a o , phan vCing qua trinh trupt Id dat da tren sUdn doe, mai ddc; ed nhieu tac gia, nha nghien edu quan tam den phupng phap ma tran djnh lupng (hay phUPng phap phan tich da ehi tieu) va phuong phap quy trinh he thdng cap bae AHP.

Bai bao nay de cap den viee ddi sanh ket qua phuong phap ma tran djnh lupng va phupng phap quy trinh he thdng cap bae AHP, tren cP sd dd de xuat lUa chpn phuong phap dng dung tdi Uu.

1. Oat van de

Qua trinh trdpt Id dat da tren sddn doe, mai ddc dddng giao thdng mien nui (gpi tat la QTTLDO), trong qua trinh phat sinh va phat trien deu bi chi phdi bdi hang loat eac nguyen nhan va dieu kien cd ngudn gdc t d nhien hoac nhan sinh cung tdn tai, van dpng va tac ddng tddng hd lan nhau trong Dja he tU nhien - ky thuat phde tap dien ra trong khdng gian va theo thdi gian nhat djnh. Vi vay, viee danh gia, d u bao, phan vung chinh xac QTTLBO tren sUdn ddc, mai ddc la van de khdng ddn gian.

Nham de xuat eac giai phap phdng chdng, xd ly dam bao tinh khoa hpc, thuc tien va cd hieu qua thi trude het can so sanh, lua chpn phuong phap phu hpp va tuong ddi tdi Uu de danh gia, d u bao, phan viing qua trinh trUpt Id dat da tren sddn ddc, mai doc.

2. Phuorng phap ma tran djnh iifcfng danh gia ciTdng do tac dong tucng ho cac yeu td anh hudng den qua trinh trUqrt Icr dat da tren sildn ddc, mai doc mien nui

Theo phdong phap ma tran dinh lupng, eudng dp tac ddng tdPng hd K cua eac yeu td anh hudng thude eac quyen khac nhau den QTTLDO the hien d bieu thdc dudi day:

Nguyen DiifcLy NguyinThanh

K = 100% M

M = Z I. A . = I A i + l2A,2 + IjA,,-^.... + l„A,„

Mma«=ZliAj„,„

^ ^ l , * A , +l^*A„+...-H„''Aj, ( l , + l 2 + l 3 + - - U * A j _ Trong do:

n - Tong sd yeu t d tac ddng (nguyen nhan, dieu kien) dUa vao danh gia;

i -Yeu t d t h d i ;

I, - He sd tam quan trpng eua yeu td t h d i ;

A - He sd cap dp tac ddng eua yeu td t h d i .

M -Tdng dai sd tac dpng tdong ho eua eac yeu t d (i) dUa vao danh gia d cap dp tac ddng a. hien tai eua QTDBLCT.

'^max" Tong dai sd tac ddng tddng ho Idn nhat cua cac yeu td (i) dda vao danh gia d cap dp tac ddng Idn nhat aji max eCia QTDDLCT.

K = Cddng dp tac ddng tdng hpp tUPng ho eua tat ea cae yeu t d (i) dUa vao danh gia (%)

Phuong phap ma tran djnh lupng danh gia cUdng dp tac ddng tUdng ho cae yeu t d anh hudng den QTTLDO 6iJac tien hanh theo eac trinh tU sau:

Thd nhat, can xac dinh danh mue eac yeu t d anh hudng quan trpng can dda vao ma tran danh gia;

Thd hai, thue hien phan tich, danh gia va lua chpn he sd tam quan trpng 1, eua tdng yeu t d (i);

Thd ba, xac djnh cap d d tac ddng A eua tdng yeu to (i), tdc la A tren c P s d so lieu ve hien trang Oja he t u nhien - ky thuat khu VUe nghien edu;

T h U t d xac lap thang bae eudng dp tac

80^'^^lK'H^^ 7.2010

(2)

Bang 1: Bang phan cap he so tam quan trpng cua cac yeu t d anh hudng Cap dp he sd tam quan trpng cua

y e u t d t a c d d n q ( l i ) C a p l

Cap 2 Cap 3 Cap 4 Caps

1 3 5 7 9

Tieu chi danh gia mdc dp quan trpng eua yeu t d tac ddng Yeu t d rat It quan trpng

Yeu t d it quan trong Yeu t d quan trpng trung binh ' Yeu t d quan trong

Yeu t d rat quan trpng Bang 2: Bang phan cap cudng dp tac ddng cua cac yeu t d

Cap dp tac ddng cua cac yeu t o '(Ail)

C a p l Cap 2 Cap 3 Cap 4 Caps

1 3 5 7 9

Tieu chi danh gia cUdng dp tac ddng cua cac yeu t d

Tac ddng rat yeu Tac dpng yeu Tac dpng trung binh

Tac dpng manh Tac ddng rat manh Bang 3: Bang danh gia cUdng dp tac dpng tUPng ho cua cac yeu t d TT

1 2 3 4 5

Cudng dp hoat ddng K < 20 % 20 < K < 40 % 40 < K < 60 % 60 < K < 80 %

K > 80 %

Danh gia cUdng dp truot Id Cudng dp trupt Id rat yeu

Cudng dp trupt Id yeu Cudng dp trdpt Id trung binh

Cudng dp trdpt Id manh Cudng dp trupt Id rat manh

ddng tdng hop cua cac yeu td anh hUdng;

Thd nam, thiet lap ma tran djnh lupng vdi cac hang la cac yeu t d anh hudng va cae cot la he sd tam quan trpng va cap dp tac ddng eua tdng yeu t d va ket qua phep tinh trung gian I.A; I.A ;

-* ^ I jl I (I max

Thdsau, tinh toan M , M , K theo cdng

' max' ' ^

thdc{3), { 2 ) v a ( 1 ) n d i t r e n ;

Thd bay, danh gia QTTL€)D theo gia trj eudng dp tac dpng tong hpp cua tat ea cae yeu t d anh hUdng theo thang bae cudng dp tac ddng tong hpp da xay ddng.

Oe nang cao tinh khach quan djnh lupng trong qua trinh danh gia eudng dp tac ddng tong hpp cua cac yeu to ddi vdi QTTLDO theo phUPng phap ma tran djnh lupng, nhat thiet thang bae diem phai dupc thiet lap mdt each khoa hpc, he sd tam quan trpng I. cua tdng yeu to 6\Jac xac djnh tUPng ddi chinh xac tren co sd vai trd va dpng lUc tac ddng cua ehung, he sd mdc dp tac dpng A. cua ti^ng yeu t d khdng 6ugc the hien djnh tinh theo chu quan cua ngudi danh gia ma phai tren co sd cac so lieu quan trae, t h i nghiem chinh xac ve dac diem Dja he t u nhien - ky thuat khu vUe nghien cdu doi vdi QTTLDO cu the.

Ve xac djnh he so tam quan trpng cua cac yeu t d L:

He so tam quan trpng (1.) bieu thj vai trd cua yeu t d tac ddng t h d i va dupe xac lap tren eP sd phan tich, danh gia sU anh

hudng cua ehung den QTTLDO. Can edvao ban chat cua cac nguyen nhan, dieu kien lam phat sinh, phat trien QTJLDD, he sd tam quan trpng (I.) 6iJac phan thanh 5 cap (bang 1):

Ve cap dp (mdc dp) tac dpng cua cac yeu t d A,.:

Can e d v a o ddng ldc tac ddng cua cac yeu td, cap dp tac dpng A. cua cac nguyen nhan, dieu kien i (A.) 6uac xac lap thanh 5 cap (bang 2)

Trong ciing mot so nguyen nhan, dieu kien, neu ed nhieu cap dp tac ddng khac nhau thi phai xac djnh cap dp tac dpng trung b'inh eua nguyen nhan hay dieu kien do.

Thang bae danh gia cddng dp tac dpng tdpng ho cua eac yeu t d anh hudng (K) ddpc xay dung va de xuat trong bang 3 3. PhUtfng phap quy trinh phan tich he thong cap bae (AHP - Analytic Hierar- chy Process) cua Thomas Saaty

Phuong phap quy trinh phan tich he thdng cap bae AHP ddpc dng dung pho bien trong nhieu ITnh vUe kinh te, xa hdi va khoa hpc t u nhien. PhUPng phap AHP dac biet phu hpp vdi cac van de lien quan den viec so sanh hang loat eac yeu to ma chung khd djnh lupng. Npi dung ep ban cua phuang phap la xay dung he thdng cae yeu t d hinh thanh va phat trien tai bien, so sanh cap ddi tam quan trpng cua eac yeu t d dua tren tieu chuan so sanh cua Thomas

Saaty trong mdt ma tran tuong dng (xem bang 4), sau dd tinh toan ty trpng tdPng ddi cua mdi yeu to trong hang loat cae yeu t d dat ra theo edng thdc tinh toan tdong dng.

Mac du, tinh Idgie va he thdng eho mdt thang bae phan cap da ddpc nha toan hpc ngudi My T.L. Saaty (University of Pittsburgh) de cap trong edng trinh

"Fundamentals of the Analytic Hierarchy Process" (2000) [8], mot sd tac gia tren the gidi eung n h u d Viet Nam da sd dung phuang phap nay de tinh toan trpng sd.

Tuy vay, ngoai viee dng phan chia eudng dp tac dpng (j) thanh 5 cap dp, thi ngay t d ban dau khi dUa ra thang ty le so sanh tam quan trpng cua cac yeu t d tac dpng, Saaty cung da dung phUdng phap chuyen gia de so sanh han theo 5 cap dp (1, 3, 5, 7,9) va so sanh thua theo 5 cap dp (1,1/3, 1/5,1/7,1/9) tren mot ma tran vudng cap n (n la so yeu to so sanh), vdi dudng cheo chinh cd gia trj bang 1. Ma tran nay ehi ra rang, neu ehi sd quan trpng cua yeu t d A so vdi B la n thi ngUpc lai ti sd quan trpng cua 8 so vdi A la 1/n.

Ma tran phan cap he so tam quan trpng eua Saaty van mang tinh chu quan, nd dupe xac lap chi de khong che va phan djnh trj so tam quan trpng cua eac yeu td tac ddng trong khoang 0 - 1. Vi the, viec ap dung ly thuyet nay de xay dung mot thang phan cap ehung ve cudng dp tac ddng ddi vdi mot qua trinh dja chat dpng luc nao do la khdng ddn gian va edn nhieu van de, bdi cac yeu t d tac dpng cung nhu eudng dp tac dpng trong moi qua trinh khdng giong nhau nen khd ed the phan djnh mdt each tudng minh va chi tiet ve mdc dp quan trpng eua tdng yeu t d doi vdi mdi tac gia.

PhUdng phap AHP dupe tien hanh theo eac trinh t u sau:

Thd nhat, can xac djnh danh muc cac yeu t d anh hudng (a.) quan trpng can dua vao ma tran danh gia;

Thd hai, thue hien phan ti'ch, danh gia, xac djnh tam quan trpng cua tdng yeu t d va so sanh cap ddi yeu t d (a,) (bang 5);

Thd ba, xac djnh gia trj trung binh nhan eua tdng hang (m.);

Thd t u , xac djnh trpng sd (ty trpng tUPng ddi) eua eac yeu t d id)

Thd nam, thiet lap thang diem sd mdc dp, cddng dp tac ddng cua cae yeu t d (bang 6):

Thd sau, tinh toan ehi sd tich hop eua eac yeu t d tac ddng (S);

Thd bay, thiet lap thang bae danh gia tong hpp ehi sd tieh hpp eua cac yeu td tac ddng (bang 3);

7.201 O^IDSIinSSl I g t

(3)

Bang 4: Thang ty le so sanh cap ddi tam quan trpng cac yeu td tac ddng theo Saaty

Yeu to tac ddng (Ldp thanh phan)

Quan trpng nhunhau

<<< Quan trpng thua Quan trpng

thua it Quan trpng

thua vda Quan trpng thua nhieu Quan trpng thua rat nhieu

Quan trpng nhunhau

1 1/3 1/5 1/7 1/9

Quan trpng hpn > » Quan trpng

hon it 3 1

1/3

1/5

1/7

Quan trpng hPn vda

5

3

1

1/3

1/5

Quan trpng hon nhieu

7

5

3

1

1/3

Quan trpng hpn rat nhieu

9

7

5

3

1 Khoang trung gian gida eac mdc dp tren cd the sd dung la: 2 , 4 , 6 , 8 .

Thd tam, danh gia QTTLOO theo gia trj chi sd tieh hpp eua cac yeu td tac ddng va thang bae danh gia tong hpp chi sd tich hop da ddpc xac djnh.

Ghi chu:

a^ (a,, a^..., a j la cae yeu t d tac dpng a.j la ket qua so sanh cap ddi tam quan trpng gida yeu t d a, va a, tdc la a, = a, /a

Trpng so (ty trpng tuong doi) cua cae yeu t d (di) dupe tinh theo cdng thdc sau:

m,

(5)

d =

• Z > i

Trong do:

6^ la trpng sd (ty trpng tuang doi) eua yeu to tac ddng a,

m. la gia trj trung binh nhan cua hang t h d i

n, =;yi*a,2»a,.

=Vv^

- °2n-1 *^2n

-fa n

Theo phupng phap quy trinh phan tieh he thdng cap bae AHP cua Thomas Saaty, kha nang phat sinh, phat trien tai bien trupt Id dat da tai bat ky mdt diem nao trong vung nghien cdu dupe d u bao theo ehi sd tieh hpp cua cac yeu t d tac dpng va dupc tinh theo edng thdc:

s=z:,d,*x,

Trong do:

(6)

S - Chi sd tich hpp eua cae yeu t d tac ddng;

X. - Diem sd the hien mdc dp, eudng dp tac ddng cua yeu td a^ ddpc xac dinh theo bang 5.

N la sd t d nhien khae 0; Viee chpn

Bang 5: Ma tran so sanh cap ddi tam quan trpng gida eac yeu t d tac ddng

ai 32 33

an-1 an

ai 1 asi a3i

a„.ii ani

a2 ai2 1 a32

a„-t2 a„2

33

a i 3 a23 1

an-1 3 an 3

an-1 ain-1 a2n-l a3n-1

1 ann-1

an a i n a j n a3n

a„-i„

1 Bang 6:Thang diem danh gia bang diem sd mdc dp, cddng dp tac ddng cda cae yeu to

STT 1 2 3 4 5

Mdc dp, eudng dp anh hudng cua cae yeu t d tac ddng

Khdng thuan Ipi it thuan Ipi Thuan Ipi

Tuong ddi thuan Ipi Rat thuan loi

Oiem sd 1/9 hoac 1/9 *N 3/9 hoac 3/9 *N 5/9 hoac 5/9 *N 7/9 hoac 7/9 *N 9/9 hoac 9/9 *N N la sd t u nhien khac 0; Viee chpn thang diem ndi tren nham thdng nhat vdi phuong phap ma tran djnh lupng va tUPng thich khi ddi sanh gida 2 phUPng phap.

thang diem ndi tren nham thdng nhat vdi phuang phap ma tran djnh lupng va tUPng thich khi ddi sanh gida 2 phuong phap.

4. Doi sanh hai phuorng phap ma tran djnh iuong va quy trinh phan tich he thong cap bae AHP

4.1. Ket qud tinh todn theo phuang phdp ma trdn dinh luang

Do cung thdng nhat mot thang bae ve cudng dp tac ddng eua cae yeu t d nen Ai j max cua cae yeu t d thUe chat la gidng nhau va la gia trj Idn nhat trong thang bae dd, nen ket qua K theo edng thdc (4) la:

trinh phdn tich he thong cdp bgc AHP Neu phuong phap phan tich, danh gia, xep loai gidng nhau hoac tuong dUPng nhau, thi thUe chat gia trj so sanh cap ddi tam quan trpng (1.) gida cac yeu to (a,) theo bang 5 la:

(8) Tdc la:

K = - * A , +I2 'Ai,-hi * A „ • + I „ * A , . {l1+l,-^l3-^....g»A„, (7) 4.2. Ket qud theo phuang phdp quy

a,i = I A a,3 = I A - a2, = l2/li a,3 = l/l3...

a„, = lyi,

an3 = l n / l 3 -

ai2 = I A a i n = I A

322 = 12/12

32„ = I A

an^ = l„/l

^nn = 1 / I

82^l^ifiEKlSil 7.2010

(4)

D i O d l j T

I'l '2 I3 ' l„ ' V l i * l 2 * l 3 * . . . * l „

m, = n i * i * - k » . k . ' 1

*— =Nn|

/'1 I2 I3 ' l„ ' V l , * l 2 * l 3 * . . . * l „

k A » k * Jn

- ^ = L n ,

I 1 1 1 " V l * l * l * * l

' 1 ' 2 ' 3 ' n V ' l '2 '3 - 'n

Trpng sd (ty trpng t u p n g ddi) eua cac yeu t d (d|) ddpc cu the n h u sau:

l,n|

( I l + l 2 + l 3 + - + ln)*f, ll

•(l,-l-|,-H3-|-...-hl„)

1 I * l * l * *1

1, I j I3 ... I„

l,n.

d , = -

1 I *l *1 * *l

1, 12 13 ... i „

1 I • I »l » *|

I, i j ij ... i„

I, (l,-Hl2-t-l3-^...-H„

Lr, 1 I *1 *1 * *1

'1 ' 2 '3 ••• ' n

1

In (l,-H,-H3-^...-H„)

TU edng thdc (6), chi sd tich hop eua cac yeu t d tac ddng se la:

^ *X,-i-

X, ( I l + l 2 + l 3 + - + l n ) '

I,

(9)

+ != *x„

{l,+l,-H3-H...-H„)

Mat khac, thdc chat gia trj diem so the hien mdc dp, cddng dp tac ddng cua cac yeu td (X.) la:

Y _ ji V

Ai - T neu chpn thang diem cd gia

jimax

trjXi < 1,hoac (10)

X = — L » | M neu chpn thang diem cd ' A

gia trj Xi > 1 (11)

(N la so t u nhien bat ky khac 0, phu hpp vdi thang chpn va tUPng thich vdi tdng loai hinh dja ddng lUe va tai bien dja chat)

Tdcae cdng thdc 9,10, 11 , ta cd:

S = ^ * ^ ^ . (l,-|-lJ-^l3-|-...-|-l„) /\-^;„,„

+ h *^^+ + (l^+l^+l^+... + l j Aji„3, (12)

L . A,„

( l , + l , + l 3 + . . . + l„) A,^^

neu chpn thang diem cd gia trj X, < 1, hoac

^ _ I / A „ + l 2 * A , , + . . . + l„*A^„

H,+h+h+•••V*^.,. (13) neu chpn thang diem ed gia tri X. > 1

So sanh cdng thdc 4 vdi edng thdc 12 va 13, thay rang K va S deu eung nhan mot gia trj n h u nhau K = S neu chpn thang diem ed gia trj X. < 1, hoac tuyen tinh ty le S = K*N neu chpn thang diem cd gia tri X , > 1 .

So sanh hai phuong phap ndi tren, thay rang phuong phap ma tran djnh lupng tinh toan dPn gian hon nhieu so vdi phuang phap quy trinh phan tich he t h o n g cap bae AHP cua Thomas Saaty nen ddpc khuyen cao sd dung.

Qua trinh trUOt Id dat da tren sUdn doc la tai bien dja chat phde tap can phai dupc phan tieh danh gia t d n g hpp tac d d n g tdPng ho gida eac yeu t d anh hudng (nguyen nhan va dieu kien) trong mdi quan he tong hoa gida t d nhien va nhan sinh, trong mdi quan he tac ddng bien chdng qua lai gida cac yeu t d ed lien quan hdu ed. Chinh vi vay can phai xac dinh dung, du cae yeu t d anh hudng quan trpng nhat, dac trUng va dai dien eao ke ca eho mdt sd yeu t d tac dpng true tiep hoac gian tiep khac, nhat la he sd tam quan trpng eua eac yeu t d anh hudng va thang bae danh gia tong hpp phai dupe xac djnh tren cP sd khoa hpc va phu hop vdi ban chat, nguyen ly ddng ldc cua cac qua trinh t r u p t Id dat da tren sUdn ddc, mai doe vung mien nui.

Cudng dp tac dpng tdPng ho cua cae yeu t d anh hudng den qua trinh trupt Id dat da tren sUdn doe, mai ddc vung mien nui theo phuong phap, thang bae da 6uac xac djnh va de xuat n h u tren can 6uac djnh lupng chinh xac tren co sd sd lieu ve cap dp tac ddng cua cac yeu to thudc dia he Tu nhien - Ky thuat khu vUc nghien cdu.

Viec lua chpn phupng phap ma tran djnh lupng de danh gia cudng dp tac ddng t u o n g ho cae yeu t d anh hudng den cac qua trinh dja ddng lue va tai bien dja chat ndi chung va qua trinh trUpt Id dat da tren sUdn doe, mai ddc dudng giao t h d n g mien nui ndi rieng la hoan toan phu hpp va tien ich.

TAI LIEU THAM KHAO

1. Le Thac Can va nnk, Banh gia tac dong moi trifdng - Phaong phap luan va kinh nghiem thtfc tien. Hue, 1997.

2. Cue Moi trirdng, Banh gia tac dpng moi tracing (Phong theo ban tieng Anh cua ALAN GIFPIN), Ha Npi, 1995.

3. Nguyen BiJc Ly. Nguyen nhan, dieu kien lam phat sinh va phat trien cac djch chuyen trpng lUc dat da tren suon doc. Tap chi thong tin khoa hpc va cong nghe Quang Binh so 01/2008.

4. Tran Manh Lieu. Mot vai phi/ong phap danh gia djnh tinh va djnh lUpng vai tro cua cac yeu to hinh thanh va phat trien tai bien dja chat. Tuyen tap bao cao hoi nghj khoa hpc lan thi) 18 -Tri/dng Bai hpc M6-fija chat, 2008.

5. Nguyen Thanh. Tap bai giang danh cho hpc vien cao hpc chuyen nganh dja chat, Truong Bai hpc Khoa hpc Hue, 2007.

6. B.Nilsen. New trends in rock slope stability analyses.

Bulletin of Engineering Geology and the Environment, Springer Berlin / Heidelberg-France 4/2000,2000.

7. Saaty T.L. Fundamentals of the Analytic Hierarchy Process, RWS Publications, 4922 Ellsworth Avenue, Pitts- burgh, PA 15413,2000.

7.201 o i s s n i d s i 8 3

(5)

T I N X A Y D I J N G TIN XAY DUNG T I N X A Y D l / N G TIN X.

VAN BAN QPPL DA Dl/OC BAN HANH

1. Quyet djnh s6l065/QD-TTg ngay 09/7/2010 cua Thu tudng Chinh phu ve phe duyet dieu chinh, bo sung quy hoach tham do, khai thac va sCr dung khoang san lam xi mang 6 Viet Nam den nam 2020.

2. Quyet dinh so 1050/QO-TTg ngay 08/7/2010 cua Thu tadng Chinh phu ve viec phe duyet dieu chinh quy hoach chung xay dung KKT cCfa khau Dong Dang - Lang Son den nam 2030.

3. Quyet dinh so 1054 QD-TTg ngay 08/7/2010 cua Thu tudng Chinh phu ve viec phe duyet dieu chinh quy hoach chung xay diJng KKT cCfa khau Thanh Thuy tinh Ha Giang den nam 2030.

VAN BAN QPPL BAN HANH THEO THAM QUYEN

Thong tU so 08/2010/TT-BXD ngay 29/7/2010 ve hudng dan dieu chinh gia hop dong xay dung (hudng dan Nghj djnh so 48/2010/ND-CP ve Hop dong trong hoat dong xay diJng).

TINH HINH SAN XUAT KINH DOANH

Tmh hinh san xuat kinh doanh cua cac don vj thuoc Bp trong thang 7 va 7 thang dau nam 2010 nhin chung deu co mUc tang trudng so vdi cung ky nam 2009

Gia tri san xuat kinh doanh Udc thUc hien thang 7 dat n .904,7 ty dong, 7 thang nam 2010 Udc dat 81.087 ty dong, bang 58% ke hoach nam bang 125,8 % so vdi cung ky nam 2009

Mot so don vj CO gia trj san xuat kinh doanh 7 thang nam 2010 tang cao so vdi ciJng ky 2009 la:

TCty Lap may VN dat 11.363,6 ty dong, tang 31,9%

so vdi cung ky, TCty CP dau tU phat trien xay dung dat 3.383,5 ty dong, tang 59,6 % so vdi cung ky.

TCty Thuy tinh va Gom xay dUng dat 4.266,9 ty dong, tang 62,5% so cung ky nam 2009.

Xay l^p

Gia trj xay lap cua cac don vj thuoc Bo Udc thUc hien thang 7 dat 5.231 ty dong, 7 thang nam 2010 dat 35.961 ty dong, bang 60,6% ke hoach nam, bang 127,7% so vdi cung ky nam 2009.

Sdn xuat cong nghiep va VLXD

Gia trj sSn xuat cong nghiep va VLXD cua cac don vi thuoc Bp (ke ca TCty Cong nghiep xi mang Viet Nam) Udc thUc hien thang 7 dat 4.293,6 ty dong, 7 thang nam 2010 dat 28.386,4 ty dong, bang 52.8% ke hoach nam, bang 128,1% so vdi cung ky nam 2009

Nam 2009 toan nganh cong nghiep xi mang da san xuat va tieu thu 45,5 trieu tan xi mang, tang 11,4% so vdi nam 2008, nhap khau 3,4 trieu tan clinker.

Nam 2010, Bp Xay dUng da tinh toan nhu cau xi mang khoang 50,0 - 51,5 trieu tan, tang 11 % so vdi nam 2009 va djnh hudng ke hoach san xuat, tieu thu cho khoang 18-18,5 trieu tan, cac cong ty lien doanh 15 -15,5 trieu tan, xi mang 16 diJng va cac tram nghien 17 - 17,5 trieu tan.

Xi mang toan nganh: Lfdc thuc hien thang 7 dat 4,16 trieu tan, 7 thang nam 2010 dat 28,9 trieu tan, bang 57,8% ke hoach nam 2010. Thang 7, luong xi mang tieu thu giam manh, nguyen nhan thdi tiet thang 7 c6 nhieu ngay mUa bao khong thuan tien cho viec thi cong xay dung, udc san luong xi mang tieu thu thang 7 dat 3,72 trieu tan, 7 thang nam 2010 tieu thu dat khoang 27,92 trieu tan, bang 55,8% ke hoach nam 2010.Thang 7 Udc nhap khau 180 nghin tan clinker, Udc 7 thang toan nganh nhap khau khoang 1,62 trieu tan clinker.

Xuat nhap khau

Udc thuc hien nhap khau thang 7 dat khoang 21,3 trieu tan USD, 7 thang nam 2010 dat 182 trieu USD, bang 59,9 % ke hoach nam.

U'dc thuc hien xuat khau thang 7 dat khoang 16,1 trieu USD, 7 thang nam 2010 dat 84 trieu USD, bang 43,4 % ke hoach nam.

8 4 B^l^kfitil^l 7.2010

Referensi

Dokumen terkait

Tang cUdng cong tac dam bao ATGT -Trang bj day dii he thdng eac bien bao hieu dudng bg, vach son ke mat dudng; -Tuyen truyen, nang cao y thifc cua ngUcfl tham gia giao thdng, ddng

Tac dong cua chu nghTa yeu nudc, vj chung tieu dung, danh gia chdt lupng san phdnn va suthd d trong mo htnh hanh vi tdy chay cua ngudi tieu dung CAO QUOC VIET VO THIQUY ^ ^ ghien

So sinh kit qui do vong l&n nhit v&i kit qua cua Phwang [7] D l ddnh gia higu qua ciia sudn tang cudng tdl dp vdng cua kit cau dudi tac dyng cua tal trpng phdn bo deu^Q, bai bao se

Tren ca sd phan tfch cac han che trong cac phuang phap thdng ke, xac xuat, phan tfch che dp chuyen ddng cua phuang tien giao thdng tren cac doan danh gia, ngudi ta da chi ra sucan

Du an se thue hien ho trp trong viec danh gia tai lupng VtiEP H6I THAO ^ m tii m Miii nlu ^i tec BM VAO BIEN VIET WORKSHOP] l»nilSSSllE|JT{Fl«||.||Sai ntia pM Tong cue trwang

Bk giam bdt hien tupng suy giam tru lupng NDD, eae co quan chiic nang cua Gia Lai can phai thuc Men ddng bd mpt sd cdng tac sau: Dua ra luu lugng tdi thieu cua sdng Ba bat budc thuy

* Mgt so de xuat bien phap giam thieu: Qua eae danh gid eae tae ddng tich eye va tieu eye cua viec xay dyng va van hdnh cdng trinh thuy difn den eac yeu td mdi tmdng eho thay can cd

Tuy nhien, viec dinh gia djnh lugng nhung tac ddng nay ggp nhieu khd khan, ddi hdi chudi sd lieu ve ddt tuong g i y t i e ddng v i ddi tuprng bi t i c dpng phii cd du dp dai thdng ke