TAP CH[ KHOA HQC XA HOI SO 9(169)-2012 TRIET HQC - CHINH TRJ HQC - L U A T HQC
KHUYNH HU^QNG BLfQC CHUYEN NGON N G O HOC VA KHAI NIEM NHAN THl>C TlfeN GIA OjNH TRONG
TRI^T HOC PHU'aNG TAY HIEN DAI
Dd KI^N TRUNG T6M TAT
Bai Viet trinh bay riQl dung ca ban cua khuynh buong bimc chuySn ngon ngCr hpc v&i mQt trong nhung khai niem trQng tarn la nh$n thuv tien gia Cinh. D$c Net li t$p trung phan tich tinh chat quan trgng nhat cua khuynh hircfng btroc chuyen ngon ngO hoc chinh 1^ vi$c chuyen hifong triet hoc vao nhung van 6e thiet thi/c va cu the cung nhw nhtwg chu de can ban mang tinh nhan van tren ca sa mol quan h§ gii>a triSt hoc va ngon ngO.
I.DATVAND^
KhCTi d§u tu- cac triet gia ti^ nhien Hy Lgp cho d§n Richard Rorty, triet hpc phu-ong l a y da va dang trai qua ba h$ mo hinh tu'cng u-ng vai ba dac trung v^ ijch su-, xa hoi cung nhu nhOng yeu cciu cua su* phat then n§n san xult loai ngu'd'i.
Trong hon 2.500 nam ton tai va phat trien, n§n triet hoc phu'cng Tay deu van hanh theo mot quy dgo on djnh cua cai goi la
"triit hoc truyen th6ng" (each dijng chi> cua trilt gia My duong dai Richard Rorty). Trilt hgc truyen thong xult phat tu- cac triet gia
£)6 Kien Trung. Thgc sT. Tru-i-ng Bgi hoc Kinh t6 Thanh ph6H6Ch(IVlinh,
Hy Lgp c6 dgi cho den cac tri^t gia c$n dgi Anh, Phap, DLCC (ti> the ky XVI din cu6i t h I ky XiX), da dat nhiem vg t6i thu-^ng cho hpc thuyet cua minh la truy nguyen cac CO" SO" cua nhan thi>c. de ly giai "cai t6n tai" - 6" ngoai tinh than - d l phan biet chu t h I va khach the, giu'a be ngoai kha giac va ban chat thiFc tai, va cung clip mpt n i n tang cho tn thijc chac chan tuy^t doi, Dgc diem noi bgt nay cua tnet hpc truyen thong phu-cng Tay c6 nhu-ng di^m tich cu-c song cung khong tranh khoi nhijng han c h l mang tinh tho-i dai ma cac nha triet hpc du-ang dai phai chF ra va vu'pl qua v6i nhu-ng dy phong hgp ly ho-n. Chung ta hay tim hilu dong chay trilt hpc truyin th6ng do da trai qua hai he mo hinh cc ban la ban th^ luan va nhan thCfc luan, 2. BA HE MO HiNH TRONG TRI^T HQC PHU'aNG T A Y
Ban the luan (Ontology - OvToAoyia, ti> Hy Lap CO do si^ ket hp-p giija ovro?: "t6n tai"
va A6yo<;: "hpc thuyet") la m^t khuynh hu'ang chu dao cua trilt hpc phu-cng Tay c6 dai, nghien cO-u cac khai ni^m v^ thi^
t^i va ban chat cua sij" ton tai, ban the luan hinh thanh nen co so* cua "si§u hinh hoc"
(metaphysics). Ban the luan tim each mo ta ph^m tru ton tai va cac moi quan h$ cua
eO KlfN TRUNG - KHUYNH HyONG BU&C CHUYEN NGON NGCT,.
phsm tru ton t?i de xac djnh nen si^ v$t va cac hinh thuc cua str v$l ben trong phgm vi cua t6n tai.
Nti&ng tioc trb cua tri^t gia Hy L?p c6 Aristotle la nhiJng ngu'd'i d^u tien sCf dung tff "sieu hinh hpc" (meta-physica, ben kia v$t ly) d l diSn dat nh&ng gi mi ang thiy Aristotle cua ho md ta la "khoa hQC v4 ton tai ben Ida t&n tai" (the science of beings qua beings), mS sau nay ta gpi la ban t h I lu$n. GiCTi \u "qua" (kwei) c6 nghTa "v6i tu"
each la" Do 6b bSn t h I lu^n doi hoi t6n tai phai nha ban thin chinh t i n t^i, ho?c t6n tai d i n miFC n6 hien h&u chLP khong lien quan den nhSng sy ki$n n6 thu nhat du-cc hoac lien quan den nhiVng moi quan h$ sa hu-u giOa Chung, Chi tiet ho'n, ban the lu?n xac djnh nh&ng phsm tru ton tai dong vai trb nen tang va doi hoi nh|n thCrc ve nhOng pham tru do di^o'o bleu hien la "ten tai".
Aristotle dya ra 4 chilu kich khac nhau cua ban t h I tinh. 1) Theo nhOng pham tru da dang hoac nhOng each am du ma sy ton tai dygc the hien. 2) Theo nhCrng sai l^m va Chan ly cua chinh ban than no. 3) Hoac la no t i n tgi trong chinh no hoac la no la sy di den don gian nhu- mpt nglu nhien. 4) Theo tinh muc dich cua no ma n6 ton tai.
Mpt so nha triet hpc khac, nhu" cac triet gia phai Plato, cho rang t^t ca cac danh tCr (bao gom ca danh tCr taru tyong) bieu hien cac thi/c t h I ton tai NhOng nha triet hpc khac cho rang tCr ngif khong luon luon bleu hien thyc t h I , nhyng de xuat mpt dang thyc the la tap hep nhOng doi tyang chu dao toan the de bieu dat nhirng doi tygng hole sy ki#n (Richard Rorty, 1979, tr 49).
Theo quan diem ban the luan hau ky vao
th*i trung c6, thI nhlic d i n t y duy IS d l cSp d i n mpt thye t h I , dung d l chl mpt t i p hpp cSe sy kien t h I chit dypc kinh nghi$m bd\
mot e l nhin; e6n xa hpi I I d l d p d i n mi>\
bO syu t i p cua nhyng con ngyfri c6 mOt s6 d|c tinh dyp'C chia se. Trong sy d l i l|p gifra thuyet duy danh v l duy thyc cung e6 nhilu eleh tilp c|n khic, nhyng bit ky ban t h I lu|n n i o cung phll cung d p m$t mieu ta trong d6 c6 c i c t y bilu hi^n ele thye t h I , trong do I I k i t qua cua nhii'ng phgm tru
Vai tro eua Ban t h I lu|n eo t h I dype khing dinh mpt elch toi quan trpng trong sy phat t h i n eua trilt hpc npi heng v l tri tue nhIn loai noi chung. V I o bull giao thoi eua ty duy t h i n thoai ton gilp v l t y duy khoa hpc, cac tnet gia da phong vypi tri tue d l ly giai vO tru blng cac lu|n glai v l
"Nyae" vol Thales, "Lya" vo"! Heraclitus,
"Nguyen ty" d l i vol Democritus,.,. no thI hi#n tinh than dpc lap tach khoi nhyng lu|n giai ton giao quy phuc tryde ty nhien, ma dyb'ng di d i n tri tue khpa hpe.
Han nya, khi hydng t i m m i t v l nhyng lu|n giai vu try lu|n, ban t h I lu|n, cIc trilt gia c6 muon tim chin ly trong tinh tn>u tygng v l khli quit nhit, tycng yng vffi trinh dp khpa hpc c6n mang tinh sa khai v l phong d o l n cua thai c6 d?i. Vj tri cua ban t h I lu|n, do do, kh6ng t h I bj phu nh|n trong lieh sy t y tyang nhIn lo?!.
Byac chuyin t y b i n t h I lu|n sang nh|n thyc lu|n diSn ra vao sau thai Phyc hyng, vao khoang t h I ky XVI-XIX, khi nhOng g i l tri tinh hoa nhIt cua triet hpc Hy U p dyp'C khoi phuc v l phat triln vai nhOng thanh qua nhan v i n sau han 1.000 n l m trung c l vai sy thong tri cua gilo ly Kito giap. Byac
eO KlfiN TRUNG - KHUYNH HU'dNG BUOC CHUYfiN NGON NGO"
chuyIn nay t h I hi$n doi hoi t i t y l u cua tho'i c|n dgi vai nhyng cupc each mang t y san, each mgng eong nghi$p, sy bOng n l cua khoa hpc, t i t ca doi hoi trilt hpc di s l u vao viec lu|n giai ban chit cua q u i trinh nhIn thye, vi dan gian I I tri thyc cua nhIn loai khong eon chip nh|n nhyng gilo dilu trifu tryyng chung chung v l ban t h I lu|n, v l vu tru, m l t i p trung vIo ban chit CM t h I eua tri thye, tye I I cai elch m l chu t h I nhan thCrc v l t h I giai.
Nh|n thyc lu|n hay Tri thyc lu|n (Epistemology eTTiairipoAoYia, g l c Hy Lsp kit hpp giya tTTim(]iir\: "tri thyc" v l Aoyo;: "hpc thuylt") I I khuynh hydng trilt hpc nghien eyu v l ban ehit, nguon glc, v l phsm vi cua qua trinh nhan thyc.
Trong lich SIT, nh|n thye luan da II mpt trong ele chu d l trilt hpc dyae nghiSn cCru va tranh lu|n nhieu nhlt. Phin Ian tranh luan tap trung vIo viec phan tich ban chat v l sy da dgng cua tri thyc cung nhy m i l quan he eua no vai ele khli niem tyang ty nhy Chan ly va niem tin. Cupe tranh luan nay lien quan nhieu d i n viee chyng minh.
Cu thI, cIc n h l nh|n thi>c lu|n phan tich cac tieu chuan eua viec chyng minh cho ele khang djnh tri thye, nghIa I I n i n tang m l ti> do ngyai ta eo t h I khang djnh rang minh bilt mot sy kien cu t h I n i p do. Noi mpt elch dan gian, no xem xet c l u hoi;
"Ban lim each nao dS biSt <TiSu m l ban biet7" (Hov^ to know what you know?) (RichardRorty, 1979, tr. 29).
Cleh chyng minh cho c I c khang djnh tri thyc thyang phg thupe vao each tilp c|n trilt hpc m l ngyai ta ung hp. Do do, cIc n h l triet hpc da phit triln mpt loat cIc ly thuyet nhan thyc lu|n de di kem ele quan dilm trilt hpe t i n g quan eua minh. CIc
nghien eiru g i n day da vilt 1^1 cIc thCra nhan e6 tCr each day hang t h I ky, v l nglnh nhan thCrc lu|n tilp tue v | n dpng mpt elch d l y sinh lye.
NhIn thye lu|n dyae phIn chia thinh hai khuynh hy^ng chu d^o dong vai tro nhy 2 thanh dyang ray xe lya d i n dyang cho c l doan t l u trilt hoc nhIn loai: do la ehu nghTa kinh nghi$m v l chu nghIa duy ly (hai khuynh hy^ng d l i lap nhau va khong bao gia g i p nhau, gilng nhy 2 thanh dyyng ray xe lya v|y).
Byac chuyin tilp theo tir nhan thCrc luan sang byac chuyen ngon ngy hpe la mpt khuynh hwtmg phIt tnen quan trpng trong trilt hpc phyang TSy t h I ky XX, tinh chat quan trpng nhat cua khuynh hyang nly chinh I I viec chuyen hyang trilt hpc vao nhOng vIn de thilt thyc v l cy t h I cung nhy nhyng chu de can ban mang tinh nhan van tren ea sa m l i quan he giya trilt hoe v l ngon ngy Thay vi m§i truy tim v l 1^
giai nhyng pham tru v l khai niem phong vyot eua ly tinh, cae trilt gia hien dai ha d i n eong viec cua trilt hpc xuong mge tieu khiem t i n han, do la kham p h i nIn tang cua y nghra ngon ngy coi ngon ngy I I doi tyyng dau tien, th|m chl la d l i tyyng nghien cyu duy nhat cua trilt hpc, nhyng van d l ca ban cua triet hpc d i u c6 t h I quy v l van de ngon ngy, tijc la tap tmng phIn tich ng6n ngu', lam sing to sy khIc bi$t giya ele t y ngy hole khli niem, llm ro nhilu logi chupc nang cua chung, t y do nh|n bilt npi dung phong phu cua ngon ngy hien thyc. CIc cau noi hay menh d l se ch[ dyac coi la eo y nghTa n l u chung tyang yng vai cac s y kien khich quan v l CO the kiem chyng. Vi du, khi chung ta noi ve "cai tot" hay "cai dep", "cai dung" ho|c
DO KieN TRUNG - KHUYNH HUOHG BUdC C H U Y E N N G 6 N NGIJ...
"Thypng dl",... thi ngin ngCf c l bllu hien
"cae sy kien" gl khong? N l u khIng c6 cIc sy kien nhy t h I thi trilt hoe khong t h I khing djnh chae chin bit ey dilu gi hay CO y nghIa v l m|t d?o dye hpc, my hpc, t6n gilo, e6ng ly, hay siSu hinh hoe.
C6 rit nhilu d l xult va d y phdng cua ele triet gia cho khuynh hydng nly. Mac du h l u hit cIc n h l nghien eyu d I u thya nhgn trilt gia d I u tien dya ra thual ngu" "Byde ehuyin ng6n ngO' hpe" la trilt gia t i n thyc dung My Richard Rorty (1931-2CC7) trong tuyen tap tilu luan "The Linguistic Turn"
nam 1967, trong elch dung cua Rorty,
"bydc chuyin ngon ngy hoe" dung theo y nghTa la trilt hoe, vdi tinh tryu tyang p h i quit nhat, chuyen hyang vIo trilt hpc ngIn ngy mang tinh eu t h I v l c l biet Nhyng chinh Rorty l^i khing djnh ring khli ni0m
"bydc chuyin ngon ngO hpc" b i t nguin s l u xa t y trilt gia ngydi Ao Gustav Bergman (1906-1987), Mpt s i chuyen khao khIc lai truy tim nguIn g l c cua khuynh hydng nay trong nhyng quan dilm cua tnlt gia Dye Gottlob Frege (1848-1925) trong tac phim The Foundations of Arithmetic nam 1884. trong do d i e biet la kham p h i cua Frege ve tinh ding nhlt cua tiln d l s i hpc. Trong khi dd, nhyng phIn tich v l nh&ng tien d l Ipgic v l m i l quan h | giOa nhOng tiln d l logic vdi nhyng du' ki$n thyc tien eua nd dyae lu|n gill r i t s l u s i c v l sau nay trong t i c phIm On Denoting cua tnlt gia phan tich ngyd'i Anh Bertrand Russell (1872-1970) - t r i l l gia ddng vai trb quan trong trong khuynh hydng bydc chuyin ngon ngy hpc" vai ly thuylt
•Nguyen l y logic" sa ky cua minh.
Trilt gia Ao Ludwig Wittgenstein (1889- 1951), mdt phu t l xult s i c cua Russell,
dyae Russell dInh g i l la mot vi du diln hinh cho mot thien I I I vdi d l y "dam me, s l u sic, minh li^t va vyyt tr|i", dyac xem nhy m|t trong nhO-ng trilt gia khdi xydng cho khuynh hydng "bydc chuyin ngdn ngO' hpc". Wittgenstein cho ring nhO-ng v i n d l nan giai m l tnlt hpc gap phai chinh II vi^c khing hilu t h i u d i e v l lu|n gill sai tinh logic v l vai trd cua ngIn ngO vIo giai dosin sa ky t y tydng v l phS phIn trd chai ngIn ngO' v I o giai doan h|u ky l y tydng.
Ty tydng cua Wittgenstein giai doan h|u ky b i t d I u tholt ly khoi nhO'ng nguyin ly ca b i n eua t r i l l hpe phIn tich v l d | l nhyng n I n mdng d i u trin cho khuynh hydng hau e l u true sau nly.
D i n Ihap men 1970, ele nglnh khoa hpc nhIn v I n d l nh|n ra t i m quan trpng cua ngIn ngy nhy mpt t i c nhIn c l u tnje. Sy khing djnh "bydc chuyin ngdn ngO hpc"
cdn dyac t h I hi|n ro net qua ele eong trinh cua thuylt cau tnjc (stnjcturalism) cua tnlt gia Thgy SI Ferdinand de Saussure (1857-1913) va sau nay la thuylt h|u e l u true t i c dOng mgnh me d i n cac trilt gia n i l b | l nhy Michel Feucault, Jacques Derrida.
CIc tnlt gia trpng h | m l hinh bydc chuyin ngdn ngO hpc hydng trpng lam vIo "nhung biSu hi$n ngdn ngO hoc' (nhy nhO'ng tCr ngO v l ciu), v l vIo "nhung phit ngdn" v l nhO'ng s y kiln xung quanh phIt ngdn dd.
VI du, mdt elu dan gian nhy: "Trcri dang nin^f. 6/ vl du nly, n l u ehi phan tich 10 gilc dd ngO' nghia thi se phIn tich c l u true tu' ngy v l c l u v l k i t lu|n v l ban t h i n clu tmc dd, dai leal nhy: day cd the la mpt ble d o v l tinh hinh thdi tilt, mdt khuyin d o ngim I I nIn mang theo du, ho|c cd t h I la
0(5 KieN TRUNG - KHUYNH HU'dNG BU-ClyC CHUYEN NGON NGO'., mpt lo-i noi doi (nlu thi/c te tro-i khong
n§ng). Nhu-ng nhCrng luan giai kilu nhu-the khong mang lai bJit ky gia trj hay Ip-i ich nao, ma chi den gian la mpt tro chai ngdn ngu- khi cac trilt gia mo xe nh&ng eong eg bieu hi0n cija ngon ngi>. Oieu quan trpng la khQng c^n thilt nhim vao vigc phan tich nhij-ng tinh chit cua chan ly ho^c nhii'ng tap hp-p den thuin nhCrng tu- ngO v^ bilu hien cua ngon ngO', ma tap trung vao thong tin va boi canh ma chu the ph^t ngon va nhung dieu ki^n n^o cho phep chu the t h I hi^n mOt menh d l hon la vi0c phan tich nhCrng bilu hi^n, ve mat c l u true thuin tuy, cua m^nh de do,
Cach tilp can nhu' vay thu-dng di vao ly giai nhu-ng muc tieu ma chu t h I c6 the dat du'p'c qua viec t h I hi$n nhOng phat ngon trong moi tu-ang quan vei boi canh, k l ca vi^c vi sao chu t h I lai t h I hien nhO'ng phat ngon nhu- t h I . Vi vay, y nghTa thyc si/ cua chu the khi noi mpt dilu gi do thu'O'ng du'p'c ly giai bang viec nhIn manh nhi>ng muc dich cua chu t h I . do la tilt Ip cho ngu-ai nghe dilu ma chu t h I mu6n ngu-ai nghe h6i dap theo mpt each ma chu t h I mong muon va thuc d l y ngu-cci nghe hoi dap dung each. Tuy nhien, vIn c6 nhOng tinh huong ma nhOng muc dich cua chu t h I khong t h I tac dpng den y nghTa cua cau. Khi chu the noi: "Troi 6ang mwa", vai muc dich la khuyen ngu'd'i nghe nen mang theo dCi, nhu'ng mye dich nay khong phai la y nghTa eua cau. Tu-cng t i / vay, chu the CO the noi; "Kenh thai tiet du- bao la trai s§
mwa vao tru^ nay, va\ muc dich tu'ang ty, nhu'ng dieu nay khong t h I doi hoi rang ea hai cSu tren mang y nghTa cCing mpt van de (CT cau thu* 2, eo the ngu-o-i nghe se hilu muc dich cua chu the la khong nen di an o ngoai vao tru'a nay).
Theo Richard Rorty, trilt hpe phSn tich mac dij 1^ tru'6'ng ph^i d i n d I u trong khuynh hu'6'ng bu-ac chuyin ngon ngO hpc nhu'ng trilt hpe phan tich khong du'a v^c trong c^c gia djnh cua trilt hpe mpt sy thay d l i dpt phat n^o. Th|m chi, Rorty c6n khing djnh ring trilt hpc phan tich khong phai la mOt dilu gi qud md'i la, md 1^ m$t sy biln t h I nhCrng gi ma Descartes va Kant da lam, do la cung c i p mpt nIn tang cho tri thCfc, Cai md'i trong triet hpc phcin tich 1^ nilm tin chic chin ring tri thu-c du'p'c bilu thj bing ng6n ngu' chu- khong phai bang tinh than Nhu'ng noi nhu' t h I cung khong lam thay doi gia djnh cua triet hpc rang con ngu'di chung ta ty ban chit CO mpt khung hoat dpng cho viec tim hilu.
Trong tnlt hpc phan tich, chung ta vIn eo.
1) Chu t h I nhan thLrc. 2) Thye tai ben ngoai. 3) Mpt ly thuyet dai dien nham mo ta each thLPC ma thu-c tai du'p'c trinh bay cho chu the nhan thu-c. L 6 I ly giai cu v l each chung ta nhan thirc vIn giong nhu" tru'O'c, nghTa la, tu' duy gilng nhu' mpt t i m guong Ian ehu'a cae hinh anh cua tu" nhien, mpt s6 hinh anh chinh xac, mot s6 hinh anh khong chinh xac, va chung ta nghien cCfu cac hinh anh nay bang cac phu-ang phap thuIn ly. Trilt hpc phan tich khong loai bo gia thilt rang tu' duy gilng nhu- tam gu'ang.
No ehi c6 gang gia tang sy chinh xac eua cac bieu tu'p'ng ma tu' duy thu nhan du'p'c bang each kiem tra, sua chua va danh bong gu-ang.
Ban ehat cua tri thuc, theo Rorty, la khong nham tai mpt thyc tai I n dang sau mot khai ni?m nao v l trat ty t y nhien theo kilu toan hpc hay mpt dIu v l t nao ve "cai vTnh euu" nhu eua Plato. Khong c6 "cai dup'c cho san" trong t h I giai. Trilt hoc se khong
eO KieN TRUNG - KHUYNH HUClfiG BWOC C H U Y £ N NGON NGCT..
con nghifen euu v l cde nguIn g l c tuy$t d l i v^ cai cull cung tuy^t d l i nhu trong y ni$m v l t y do cua Hegel. Trilt hpe se khfing c6n tim each chipng minh rang d6i sing eua Chung ta t i t y l u phai c6 m$t s i d$c tinh hay gi^ trj nhu kit qua eua mOt nguySn nh^n c6 trudc, nhu vi^c s^ng c h l hay m|t mye tieu chuyen bi^t nao. Theo quan dilm nay, t h I giai khong dup'c m6 ta nhu m0t sy phan ^nh mOt khuon mlu vTnh euu, truu tup'ng va bit biln.
Thay vao d6, t u duy trilt hpc se bit d I u vdi c^c kinh nghi$m trye tilp va cy t h I cua Chung ta v l dai sing. Dai sing con ngub-i se dup'c quan ni0m, it ra la v l mpt phyang dien, Id mac diJ chCing ta Id mpt phIn cua t y nhien va hanh dOng mpt each may m6c nhu khoa hpc mo ta, chung ta vIn la
"nguai". Va mac du chung ta chia se cung mpt s i net dac trung nhu cac loai vgt khac, chung ta vIn la doe nhlt v6 nhj. Cai lam chung ta dpc nhat v6 nhj chinh la vi chung ta y thue dup'c cac qud trinh cua t y nhien va chung ta c6 t h I bilt minh hoat dong nhu t h I nao. Chung ta biet m|t so hinh thai cua hdnh vi se d i n d i n ddu, chung ta giup hay pha va cae gia trj hay cac mye dich nao, Kinh nghi^m noi cho chung ta biet cde sy vat "ein thilt cho" cdi gi, hay "tit han cho" hole "xlu han cho"
cac sy vat khac. Chung ta c6 t h I ddnh gid cae sy v|t khong theo mpt tiSu chuin tryu tyc^ng xa xdi ndo, ma Id theo cac tlSu chuan ro rang dup'c dat trong chinh cde ehue nang t y nhidn cua ea t h I chung ta.
B&\ sing eon nguai theo quan dilm ndy cho thiy m l i quan h0 m^t thilt giua cdc chue nang cua ban chit con ngu^i vd dong thd'i la cac chCpc ndng khdc cua m6i truang t y nhien rpng Ian han, la m6i
trub-ng cung c^p cho chung ta nhilu chpn lya khdc nhau v l cdc mye dich vd gia trj.
3. K H A I N I E M T I ^ N G I A DjNH TRONG N G O N NGCI'
O l lu$n giai sau han v l Bub-c ehuyin Ng6n ngO' hpc, nh&ng trilt gia thu$c khuynh hu6ng ndy dd dua ra khai ni§m tiSn gia djnh nhu m|t cdch t i l p can m6i cho nhD-ng vIn d l tnlt hpc (d$c bi^t la trilt hpeng6n ngO).
Trong e l u true ngon ngO* hpc, mpt phat ngdn cua chu t h I phai nhlm d i n vi^c ngub-i nghe t i l p nh^n va thIu hilu nhung y nghTa khong phy thu|c vao y nghia n|i dung cau chO* dan thuln. Nhi>ng mye dich thanh eong e6 t h I Idm nguai nghe nh|n ra y nghTa hi#n thyc cua mye dich do. tue la nhO'ng mi^c dich ngon ngU con nhijng mye dich thanh eong c6 t h I lam cho nguai nghe thyc hi#n mpt dieu gi do (vupl \hr\
tren s y hilu bilt n|i dung ngu nghTa dan thuln cua phat ngon), gpi Id nhimg mijc dich thuyet phtjc. Nhijng mye dich thuylt phyc phai dup'c thyc hien thong qua nhung mye dich ng6n ngu. vi dy, phdt ng6n cua chu t h I : 'Trai dang mua" lam cho ngub"! nghe nhan thuc dup-c Id c6 vIn d l gi d6 thupe v l thb-i tilt vd thuc dly nguai nghe suy nghT d i n cay du vd mang n6 theo.
C l u true cua mpt "hdnh vi-ng6n ngu" c6 t h I dup'c chia lam 4 phan nhu sau: 1) Nhung hdnh vi phat ngdn, nghe vd ghi nha cac t u ngi> vd edu. 2) Nhung hanh vi m^nh d l , d l e^p d i n nhO'ng s y v^t vd xac djnh nhi>ng tinh chit vd moi quan h$ giu'a chOng. 3) NhO'ng hdnh vi ngdn ngO-, Id cdi md chu t h I tuang tde vd-i chu t h I khdc va nhO'ng hoat ddng c l u thdnh nhOng phat
eO KISN TRUNG - KHUYNH HUCyNG BU'O'C CHUY£N NGCN NGQ..
ngdn trong tuang tde do, vi dy nhu nhO'ng Id'i hu-a hay nhO'ng mdnh l^nh. 4) NhO'ng hdnh vi thuylt phyc, Id cai ma chu t h i mang lai hogc dat dup'c t u chu t h I khac qua each ma chu t h I diln dat, vi dy nhu vi?c thuylt phyc dup'c mpt ai dd, Mpt s i trilt gia sau ndy eon them vao elu true ndy "mye dich y nghTa" va "mye dich giao tilp" d l nhIn manh sy hilu bilt chung v l nhO'ng 9 nghTa quy udc dup-c dinh kem cac tu' ngu va "tinh lidn tyc ehu quan" eua nhu'ng hanh vi ngdn ngCr NhO'ng pham tru dup'c phdn tich tren day cung da ngy y rang qua trinh thye hi#n ngdn ngu-. theo each phan tich dup'c thyc dyng hda, da d l cap k i t hp'p them rit nhilu tinh chit dam thoai cua dien ngdn va cae khia canh xa hpi cua giao tilp han so vdi cae each phan tich dan thuan eua eac trilt gia phan tich trudc day. Vi vay, huang di nay cung d p mdt phuang phap kha dT nham k i t nil giij'a nhO'ng mieu ta ngCr nghTa phuc tgp vd nghien euu thuc nghiem trong cae ngdnh khoa hpc xa hpi va nhan van.
Luan giai nay eon d l xult vi^c trilt hpc phai xem xet nhijng each ma chu t h I ngdn ngu' vupt ra khoi nhO-ng phat ngdn chat Che, kha gide va dan thuan npi dung, ma phai xem xet nhO'ng phat ngdn eua ehu t h I dat trong boi canh tuang quan vdi phat ngdn vd chu t h I . Bing each noi "ngy y"
(implicated), ehu the cd t h I dua d i n cho ngudi nghe mpt each hilu vd k i t luan ma each hilu va k i t luan dd khdng lien quan mpt each logic chat che d i n y nghTa quy ude trong npi dung phat ngdn. Triet gia ngdn ngu- nguai Anh Paul Grice (1913- 1988) chia tinh chat cua nhO'ng "ham ngdn"
(implieatures)'^* thdnh hai pham trij Id'n:
nhOng ham ngdn quy u^c (conventional Implieatures) vd nhung ham ngdn dam tho^i (conversational implieatures).
NhO'ng hdm ngdn quy udc la nhu'ng quy djnh cua phdt ngdn dya tren nhO'ng y nghTa thdng thudng, quy ud-c cua each su dyng tu ngu'.
Vidy.
Cau 1: Huang Id mdt ngudi rat thieh dn biin cha nhung cd l y khdng sing d Hd Npi,
C3u 2: Huang la mpt ngudi rit thich an bun cha va ed l y khdng song d Ha Npi
Ciu 3: That bat ngd Id Huang thich an bun cha ma lai khdng song d Ha Noi.
Chung ta cd t h I nhan ra ring cau 3 Id ngu y eua cau 1 ehu khdng phai cau 2 Van de Id khdng phai cau 1 hoac cau 2 sai, khdng cd cau nao la sai hay dung d day, cau true va chuc nang ngu- nghTa hoan toan cho phep chu t h I dua ra ca hai cau 1 va 2 Van de Id d nhO'ng t u nhu "va", "nhung", trong dd t u "va" la lien ti> ndi hai menh de eua cau 2 vdi y nghTa tuang duang, edn tu'
"nhung" ddng vai trd lien tu ddi lap hai menh de cua cau 1, tu-c la mac du nhu t h I nay "nhung" lai nhu the kia (Paul Once, 1989, tr. 23).
NhO'ng ham ngdn dam thoai dup'c quy djnh dya tren mpt loat cac each ngdn va cac gia dinh ma theo dd chu t h I su dyng trong ddm thoai hp'p tac vdi chu t h I khac.
NhO'ng each ngdn cd nhilu loai nhu. v l lup'ng (ddng gdp thdng tin vao phat ngdn cua ehu thI), v l chit (ddng gdp tinh dung dan vao phat ngdn cua chu thI), v l moi quan he (tinh tuang quan trong thdng tin), vd v l thai do (Idm ngudi nghe chip nhan).
B O KIEN TRUNG - KHUYNH HUONG BUOC CHUYSN NGON NGCf.,, VI du
CSu 4: Hung dydng nhy khdng ed mli tinh nIo c l trong thdi gian nly,
C l u 5; G i n dly, Hiing t i n r i t nhilu tiln d l di di v l v l giQ'a S l i Gdn v l H I Npi Nlu ed hai ngydi cung nhau d l i thoai, ngydi A ndi c l u 4 v l ngydi B ndi c l u 5.
Rd ring I I ngydi B ngu y I I Hung cd t h I dang cd ban g l i d H I Ndi vdi gia dinh I I B tiep noi each ngdn d tren. Tyc I I nhO'ng elch ngdn nly phai dyyc d|t liln tilp trong m l i tyyng quan vdi nhau v l thiu hilu ngu y eua nhau, n l u khdng, elu ndi cua B hoan toln khdng cd y nghTa v l g i l tri ma B dang muln ngu y, va q u i trinh giao tilp se do vd (Paul Griee, 1989, tr.
23). Grice lu|n gili ring nhu'ng him ngdn dam thoai cd the dyae tinh toln v l eIn nhic dung d i n phan nao dya vIo boi canh v l thdng tin nIn tang, cung vdi y nghTa ngdn ngO cua nhyng gl dypc ndi ra va chu the luan thu nhyng cham ngdn hap t i e dyac md t l trong vi dy d tren
Nhu'ng pham trIJ nhy muc dich ngon ngu'.
muc dich thuyet phuc, ham ngon quy ir6c, ham ngon dam thoai da dat mpt diem nhin quan trong trong "bydc ehuyin ngon ngO' hpe", dac bijt II van de "tiln g i l dinh" (pre- supposition) trong nhu'ng luan gill nhan IhCre v l ty duy. Tiln gia djnh trong t y duy doi hoi nhu'ng quy yde chung nhim dya d l i thoai ngdn ngy d i n sy Ihlu hilu Chung. Khi thye hien p h l l ngdn, chu t h I p h l l ngon gia dinh cd nhu'ng thdng tin m l chu the tilp nh|n d l bilt, Vi coi dd I I thdng tin da b i l l nen ndi chung nhCfng thdng tin nhy t h I khdng dyac ndi ra, nhiing thdng tin nhy v|y I I thdng tin tiln gia djnh. Thdng tin tien g i l djnh la thdng tin
dyae ehu I h l phIt ngdn m|c nhien chip nh|n II dung v l oho ring ngydi nghe chip nh|n II dung khi phIt ngdn dyac dya ra.
Tiln gia djnh khdng mang g i l In thdng bao nhyng II d i nIn, lao dilu kien d l thdng bio cd y nghTa v l dyae eu I h l hda. Tyang ty nhy mdt ngydi hdi ngydi kia II 'Anh di chSm dut viec i<inh doanh bat d0ng sin chua?" vdi tiln gia djnh la ngydi kia da lyng kinh doanh bit dpng s i n chy khdng nIn hilu la ngydi kia da tyng hpc trydng y khoa. Hai dang ngy y nhy trin t h I hi|n tinh da dang cua d e tiln gia djnh, quay (gi vl dp c l u 1, vdi t y "nhyng" dyac nen ra nhim vIo mdt tiln gia dinh la ngydi thich an bun c h l phai la ngydi d H I Ndi Nhy v|y, bydc ehuyin ngdn ngu' hpc se di tilp vIo viec p h l l tnin elch loai hinh tiln gia dinh. Muln nhy v|y, phai Ira Idi hai van d l nan giai sau day mgl li, lam t h I nIo de dya mdt tiln gil dinh vIo trong d u v l nhu'ng d i u hipu de nd ddng dyyc vai trd dung din?: hai la, lam I h l nip nhCfng tiln g i l dinh dyyc dy kiln se xult hien v l xult hien vdi vj tri nIo trong c l u true elu, k l c l nhu'ng thInh to d u tmc cao han ve y nghia?
Nhyng ngdn ngu' khdng mang tinh c l djnh v l tien nghiSm, Rorty khing dinh, m l lien tue biln d l i theo ddng chay khdng ngimg nghi eua chu t h I v l mdi tardng tiln hda.
Vay khdng the cd n I n t i n g ehc nhu'ng d c h ngdn, nhyng nhy t h I lai m l u thuln vdi nhu'ng lu|n giai eua Griee. V i n d l lieu ed t i n tai mpt nen tang chuin mye chung hay khdng v i n chya dyac gili quylt thiu dao ngay c l trong bydc chuyin ngdn ngu' hpc.
KfeT LUAN
Nhy v|y, mac du da cd nhu'ng n l lye rit d i n g quy trong vipe holn thipn hydng di
DO KISN T R U N G - KHUYNH H U O N G B U O C CHUYEN N G O N t
mdi me trong hp mo hinh thu' ba - Bydc ehuyin ngdn ngu- hpc - nhyng ele trilt gia phyang Tay dyang dai van chya I h l xae (Inh dyac npi dung c i t Idi trong chinh khuynh hydng nly, NhCmg dy phdng t i p bao nhy tren thuan tuy mang tinh d nhIn v l khu biet, chya I h l I I d?l dipn chp toln t h i khuynh hydng cua trilt hoc phyang Tay dyang dai, von v i n dang miy md tim kilm con dydng di eua neng minh, • CHIJ THiCH
'" HAm ngdn (Implicature) \i mpt thult ngD' dirco triet gia Paul Grice dya ra de phan tich nhUng gl "ducjc Sk xult" trong mdt phit ngdn, m|c du c6 the dieu dd khdng dypc bilu hi$n cung nhy khdng di/pc ngy y theo quy tic suy luan ke thCra chit che mdt c4ch logic trong phat ngdn dd VI du; "Chj Mai da cd mdt con vS ket hon" vdi d l xuat ring chi Mai da cd mdt con trirdc khi ket hon nhu'ng xdt ve mpt logic dung din thi cau tren van dung vdi trudng hpp chi Mai cd con sau khi kit hdn ViSc suy luan tilp noi nhu the chi bi loai bd neu ta dua ra mdt quy dinh la "khdng can thiet hieu phat ngdn theo thu ty va each dd", thi nhy thi cau phat ngdn gdc se khdng thay doi y nghia Nhyng trong giao tilp thi nhCrng suy luan kieu ham ngdn khdng ICic nao khdng xult hi0n "Ham ngdn" la mdt sy thay the cho "ngu y" trong dd nhung y nghTa dupe bo sung cho ngdn ngy giao tiep logic va than mat
TAI Lieu THAM KHAO
1, Goodman B, Russell. 1995. Pragmatism A Contemporary Reader Routledge, New York.
2 Griee, Paul. 1989. Logic and Conversation.
Studies in the Way of Words. Cambridge, MA: Han/ard University Press.
3, Haack Susan, 2006, Pragmatism Old and New. Prometheus Books, New York, 4, Nguyin Thj My Phyyng, Nguyen Thi Hing Nhan O l xuSt mit huvng khio sit cic diu hieu tiin gii dinh va him ngdn trong cic phit ngdn ti4ng Anh - A Suggested Appmach to Means of Signalling presuppositions and Implieatures in English Utterances. Trydng Oai hoc Ngoai ngy - Dai hpc Da Ning (Tham luln khoa hoc),
5, Rorty Richard. 1979. Philosophy and the Minor of Nature. Princeton, NJ' Princeton University Press.
6 Stumpf Enoch Samuel 1999 Socrates to Sartre, A history of Philosophy, Sixth edition.
Mc Graw - Hill Inc.
7. Wesley Robbins. 1997. Religious Naturalism: Humanistic versus Theistic. In Pragmatism, Neo-Pragmatism, and Religion:
Conversations with Richard Rorty. Edited by Chariey D. Hardwick and Donald A. Crosby.
New York: Peter Lang.
(Tiip theo trang 43) TAI Lieu THAM KHAO
1. Bill Thj Xuan Mai. 2010. Nhap mdn cdng tic xa hdi. Ha Npi' Nxb. Lao dpng Xa hpi.
2. ChlSn luoc phit then kinh t4-xi hdi 2011- 2020. 2011. Ha Ndi: Nxb. Chinh trj Qudegia.
3. Encyclopedia of Social Work. 1971. Vol. II.
New York.
4. Mac Van Tiln. An sinh xi hdi trong chien luuc phit then kinh te xa hdi 2011-2020.
5. Wilerity, Harold L. and Charles N.
Lebeaux. 1958. Industrial Society and Social
Welfare. New York: The Free Press.
6. Jansson, S. Bruce. 1990. Social Welfare Policy: From Theory to Practice. Wadsworth.
7. Zastrow, Charies. 1985. Practice of Social Work. Dorsey Press.
8. Van kien Dai hdi dai bleu toin qudc Ian thCrXI. 2011. Hd Npi: Nxb. Chinh tri Qudc gia 9. Werner, W. Boehm. 1959. Objective of the Social Work Cumculum of the Future.
Curriculum Study I - New York: Council on Social Work Education.