• Tidak ada hasil yang ditemukan

Statistical Analysis And Optimization Of 5.8 Ghz RF Amplifier.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Statistical Analysis And Optimization Of 5.8 Ghz RF Amplifier."

Copied!
24
0
0

Teks penuh

(1)

i

STATISTICAL ANALYSIS AND OPTIMIZATION OF 5.8 GHz RF AMPLIFIER

KASRIDONA BIN RULLY

This report is submitted in partial fulfilment of the requirements for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) With Honours

Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

(2)

ii

UNIVERSTI TEKNIKAL MALAYSIA MELAKA

FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek : STATISTICAL ANALYSIS AND OPTIMIZATION OF 5.8GHz RF AMPLIFIER

Sesi

Pengajian : 2008/2009

Saya ………...KASRIDONA BIN RULLY……….. (HURUF BESAR)

mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi

pengajian tinggi.

4. Sila tandakan ( √ ) :

SULIT*

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD* (Mengandungi maklumat terhad yang telah ditentukan oleh

organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

__________________________ ___________________________________

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Alamat Tetap: Lot 217A Lorong 6, Kg. Pasir Putih Sabah Baru,Jalan Sin San, 91000 Tawau

Sabah.

(3)

iii

“I hereby declare that this report is the result of my own work except for quotes as cited in the references”

Signature :……….

(4)

iv

“I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering

(Telecommunication Electronics) With Honours.”

Signature :……….

(5)

v

(6)

vi

ACKNOWLEDGEMENT

(7)

vii

ABSTRACT

(8)

viii

ABSTRAK

(9)

ix

CONTENTS

CHAPTER TITLE PAGE

PROJECT TITLE i

DECLARATION iii

DEDICATION v

ACKNOWLEDGEMENT vi

ABSTRACT vii

ABSTRAK viii

CONTENTS ix

LIST OF TABLES xiii

LIST OF FIGURES xiv

LIST OF ABBREVIATIONS xvi

LIST OF APPENDICES xviii

I INTRODUCTION

1.1 Project Background 1

1.2 Project Objectives 2

1.3 Problem Statements 2

1.4 Scope of work 2

1.5 Project Methodology 3

(10)

x

II LITERATURE REVIEW

2.1 Introduction 5

2.2 RF Amplifier 5

7

2.2.1 Review of RF amplifiers 7

2.2.2 Design of microwave transistor amplifier 11 using s-parameter

2.2.3 Review of transmission lines 11 2.2.4 Review of scattering matrix 12

2.3 Stability 14

2.3.1 Stability analysis 16

2.4 Gains 16

2.5 Noise In Amplifiers 18

2.6 Voltage Standing Wave Ratio (VSWR) 20

2.7 Input And Output Matching 20

2.7.1 Impedance transformation and matching 22

2.8 Attenuator 24

III RESEARCH METHODOLOGY

3.1 Introduction 26

3.2 RF Amplifier Overview 27

3.3 Transistor Selection 27

3.4 Theoretical Analysis of RF Amplifier 28 3.4.1 Scattering parameter (S-parameter) 28

3.4.2 Stability analysis 29

3.4.3 Overall gains 31

(11)

xi

3.4.5 Voltage standing wave ratio (VSWR) 33

3.4.6 Noise figure 33

3.5 Circuit Design 34

3.5.1 Stability analysis 34

3.5.2 Impedance matching 35

3.5.2.1 Input impedance matching 36 3.5.2.2 Output impedance matching 37

3.5.3 Transmission line 38

3.6 Simulate And Optimize The Designed RF 41 Amplifier

3.7 Compare of Result Based On Theoretical And 41 Simulation

IV RESULT, ANALYSIS AND DISCUSSION

4.1 Introduction

42

4.2 Theoretical Analysis Results 42

4.2.1 Scattering parameter (S-parameter) 43 4.2.2 Stability analysis results 43

4.2.3 Overall gains 44

4.2.4 Input and output impedance 45 4.2.5 Voltage standing wave ratio (VSWR) 46

4.2.6 Noise figure 46

4.3 Circuit Design 46

4.3.1 Impedance matching 47

4.3.1.1 Input impedance matching 47 4.3.1.2 Output impedance matching 48

4.3.2 Designed circuit 49

(12)

xii

4.4.1 Stability 50

4.4.2 S-parameter 50

4.4.3 Voltage standing wave ratio (VSWR) 53

4.4.4 Noise figure 54

4.5 Optimization 55

4.6 Result Comparison 59

V CONCLUSION

5.1 Introduction

60

5.2 Summary 60

5.3 Conclusion 61

VI REFERENCES 63

(13)

xiii

LIST OF TABLES

NO TITLE PAGE

2.1 Summary of RF amplifiers 10

2.2 π type and T type attenuator formula 25

3.1 S-parameter for FET EPA018A-70 at 5.8 GHz 29

3.2 Stability circle formula 30

4.1 S-parameter for FET EPA018A-70 at 5.8 GHz 43

4.2 Circuit elements value 49

4.3 Optimized circuit elements value 59

(14)

xiv

LIST OF FIGURES

NO TITLE PAGE

2.1 RF amplifier in communication system blocks 6

2.2 Circuit layout 7

2.3 Stability circle 15

2.4 Typical amplifier systems 17

2.5 Matching network to load 21

2.6 Single lumped element 22

2.7 Dual lumped elements 22

2.8 Triple lumped elements 23

2.9 Distributed elements 23

2.10 Hybrid 23

2.11 π type and T type attenuator 24

3.1 Typical amplifier systems 27

3.2 Input stability circles 30

3.3 Output stability circles 31

3.4 Input and output stability circles 35

3.5 Input impedance matching 36

3.6 Output impedance matching 37

3.7 Sample calculations for transmission line using MathCAD 39

(15)

xv

4.2 Output impedance matching 48

4.3 Designed RF amplifier circuit 49

4.4 Simulation stability 50

4.5 S11 plot 51

4.6 S22 plot 51

4.7 S21 and maximum gain plot 52

4.8 VSWRin plot 53

4.9 VSWRout plot 53

4.10 Simulation NFmin 54

4.11 Noise and available gain circles 54

4.12 Optimized stability 55

4.13 Optimized gain 56

4.14 Optimized VSWRin 57

4.15 Optimized VSWRout 57

4.16 Optimized noise figure 58

(16)

xvi

LIST OF ABBREVIATIONS

ADS - Advanced Design System

AlN - Aluminium Nitrate

AlGaN/GaN - Aluminum Gallium Nitride / Gallium Nitride BJT - Bipolar Junction Transistor

BPF - Band Pass Filter

CMOS - Complementary Metal Oxide Semiconductor

dB - Decibel

DC - Direct Current

FET - Field Effect Transistor

FSK - Frequency Shift Keying

GaAs - Gallium Arsenide

HBT - Heterojunction Bipolar Transistor HEMT - High Electron Mobility Transistor

IEEE - Institute of Electrical and Electronic Engineering InGaAs - Indium Gallium Arsenide

LNA - Low Noise Amplifier

MESFET - MEtal Semiconductor Field Effect Transistor MMIC - Monolithic Microwave Integrated Circuits

PA - Power Amplifier

PAE - Power Added Efficiency

RF - Radio Frequency

(17)

xvii

TL - Transmission Line

TWPA - Travelling-Wave Power Amplifier

UWB - Ultra Wide Band

(18)

xviii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Exelics EPA018A-70 data sheet 65

B Calculation of theoretical measurements 67

(19)

1

CHAPTER I

INTRODUCTION

1.1Project background

Radio Frequency (RF) means any frequency within the electromagnetic spectrum associated with radio wave propagation. When an RF current is supplied to an antenna, an electromagnetic field is created that then is able to propagate through space [1].

(20)

2

1.2Project objectives

The main objective of this project is to study the background of a RF amplifier and proposed a suitable RF amplifier unit and optimizes the circuit with overall gain of 20dB with noise figure less than 3dB.

1.3Problem statements

As we know, the main function of RF amplifier is to amplify the received signal to a certain level of gain. RF amplifier is needed in the communication system because of its function which is to amplify the received signal. The received signal in the receiver antenna is lower than the transmitted signal due to the attenuation and noise in the channel. The RF amplifier used to amplify the information signal in order to have a clearer signal.

The major problem in this project is to design the suitable RF amplifier for the specified requirements. The method used in designing the RF amplifier and matching network also are the crucial part in designing the RF amplifier.

1.4Scope of work

The scopes of work for this project are limited to the following aspects:

1. Types of amplifier.

(21)

3

2. Types of transistor.

Types of transistor used in most RF amplifier viewed and its characteristic studied.

3. Matching technique.

Types of matching technique studied the advantages and disadvantages for every matching technique observed.

4. Specification for circuit and testing.

The specification for circuit and testing are set based on previous achievement of RF amplifier design.

1.5Project methodology

Phase 1:

Transistor selection.

Phase 2:

Theoretical analysis of RF amplifier.

Phase 3:

Circuit design and analysis.

Phase 4:

Simulate and optimize the designed RF amplifier

Phase 5:

(22)

4

1.6Report structure

This report divided into 5 chapters. The first chapter gives a brief explanation about RF amplifier and its function in communication systems. It also gives brief explanations about the overall process of project.

The second chapter is about the literature review of the project. Background knowledge of RF amplifier studied in order to understand the basic in RF amplifier design. Other parameter used in the design such as stability, gains, and matching technique are also studied.

The third chapter is about research methodology which explained about method used and process involved in the project.

The fourth chapter is about the result, analysis and discussion. All the data and results that obtained at the end of this project will be documented in this chapter.

(23)

5

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This chapter reviews about the information obtained from findings and any useful sources. Information from the literature is very important as the background of RF amplifier design. Basic principles used in the analysis and design of RF amplifier developed in this chapter.

2.2 RF Amplifier

The power amplifier is the most important and expensive device in the RF block of Wireless LAN system [2]. The design of RF amplifiers involves less emphasis on noise parameters and more emphasis on linearity and inter-modulation, as well as efficiency and thermal considerations. To design a RF amplifier, one must use large-signal S-parameters and be aware of nonlinear effects.

(24)

6

optimizing the output matching network. There are, however, special problems associated with the very low input impedance that can be found in FET power devices, which require special treatment in the input matching network if wideband operation is to be achieved [3].

[image:24.612.120.543.375.550.2]

A key issue for multi-stage amplifiers is the ability to cascade individually designed stages without a requirement for retuning or redesign to account for the characteristic of the driving or following stages. In many cases, the use of balanced amplifiers permits the benefit of 3 dB coupler inter-stages, which direct reflected power to the isolated port rather than the driving stage. As we will see in later, there are special problems of nonlinear oscillations arising from interaction between signal harmonics and modes of the output matching structure [3]. Figure 2.1 below shows the block diagram of an amplifier circuit:

Figure 2.1 RF amplifier in communication system blocks.

RF Amp

BPF

5.85GHz Detector

Gambar

Figure 2.1 RF amplifier in communication system blocks.

Referensi

Dokumen terkait

RAHMAWAN

penambahan serbuk sabut kelapa dengan dosis yang berbeda pada media tanam jamur tiram antara serbuk gergaji kayu sengon dan bekatul berpengaruh terhadap meselium

Selalu membantu, dan bertukar pikiran dengan kelompok lain dalam menyelesaikan tugas. Sering membantu, dan bertukar pikiran dengan kelompok lain dalam

Dalam hal perangkat hukumnya, yang menjadi pertanyaan dilematis adalah, “apakah infrastruktur hukum yang melandasi operasional pendidikan di Indonesia cukup memadai

Nilai rerata keaktifan siswa dalam proses pembelajaran pada prasiklus adalah 43,88 dengan kriteria cukup tetapi belum optimal; pada siklus I adalah 72,22 dengan

Kemudian Sahertian (1990:54) mengemukakan ada empat teknik pendekatan dalam melakukan supervisi yaitu : pendekatan yang bersifat konpensional, pendekatan yang

plantlet harus dibersihkan dengan hati-hati dari medium yang mengandung gula sebelum dipindah ke kondisi ex vitro. Dalam mikropropagasi fotoautotrofik, plantlet bersama

[r]