• Tidak ada hasil yang ditemukan

BAB 2 TINJAUAN PUSTAKA 2.1 Model Untuk Pembuatan Gigitiruan - Pengaruh Penambahan NaCl dan Garam Dapur terhadap Perubahan Dimensi Gips Tipe III pada Pembuatan Model Kerja Gigitiruan

N/A
N/A
Protected

Academic year: 2019

Membagikan "BAB 2 TINJAUAN PUSTAKA 2.1 Model Untuk Pembuatan Gigitiruan - Pengaruh Penambahan NaCl dan Garam Dapur terhadap Perubahan Dimensi Gips Tipe III pada Pembuatan Model Kerja Gigitiruan"

Copied!
17
0
0

Teks penuh

(1)

BAB 2

TINJAUAN PUSTAKA

2.1 Model Untuk Pembuatan Gigitiruan

Model gigitiruan merupakan replika jaringan keras dan jaringan lunak rongga mulut pasien yang digunakan sebagai media untuk menentukan diagnosis, menjelaskan rencana perawatan dan proses perawatan kepada pasien, serta media pembuatan gigitiruan sehingga model gigitiruan merupakan media yang menghubungkan prosedur klinis yang dilakukan dokter gigi dan prosedur laboratoris yang dilakukan oleh dokter gigi atau laboran.3

2.2 Jenis Model Untuk Pembuatan Gigitiruan 2.2.1 Model Studi

Model studi merupakan replika jaringan rongga mulut pasien yang digunakan oleh dokter gigi untuk mengamati dan mempelajari keadaan rongga mulut pasien sehingga model studi harus dapat mencakup beberapa hal penting, yaitu:2,3,19

a. Lokasi gigi, kontur, dan hubungan dataran oklusal

b. Kontur linggir yang tersisa, ukuran, dan konsistensi mukosa

c. Anatomi rongga mulut yang berguna untuk perluasan basis gigitiruan (vestibulum, trigonum retromolar, pterigomaxillary notch, palatum keras dan palatum lunak, dasar mulut, dan frenulum).

Kegunaan model studi yaitu:3,19

a. Memberikan gambaran keadaan jaringan keras dan lunak rongga mulut pasien dalam bentuk tiga dimensi.

b. Media untuk mempelajari hubungan oklusal dari lengkung rahang pasien. c. Media untuk mempelajari ukuran gigi, posisi gigi, bentuk gigi, dan hubungan rahang pasien.

(2)

e. Media untuk membandingkan keadaan rongga mulut pasien sebelum dilakukan perawatan dan setelah dilakukan perawatan.

f. Media untuk menjelaskan keadaan pasien.

g. Rekam medis legal mengenai keadaan lengkung rahang pasien untuk keperluan asuransi, gugatan hukum, dan forensik.

Gips tipe II umumnya digunakan sebagai bahan membuat model studi.

2.2.2 Model Kerja

Model kerja umumnya terbuat dari dental stone atau gips tipe III yang memiliki kekuatan yang cukup untuk menahan tekanan selama prosedur laboratoris karena digunakan sebagai media pembuatan gigitiruan.3,7

2.3 Gips

Gips merupakan mineral yang terdapat di alam yang digunakan sebagai bahan cetak sejak tahun 1844 dan sebagai bahan model sejak tahun 1756.3 Alasan utama penggunaan gips pada bidang kedokteran gigi yaitu karena gips merupakan bahan yang mudah dimodifikasi secara kemis atau fisis untuk tujuan yang berbeda. Gips yang digunakan pada kedokteran gigi merupakan gips yang mengandung kalsium sulfat dihidrat (CaSO4H2O) kemudian dipanaskan pada temperatur 110o-120oC (230o -250oF) untuk mengeluarkan air dari kristalisasi sehingga menghasilkan kalsium sulfat hemihidrat (CaSO4½H2O) dalam bentuk bubuk, dan saat bubuk gips (kalsium sulfat hemihidrat) dicampur dengan air, terjadi reaksi balik secara kimia yaitu kalsium sulfat hemihidrat berubah kembali menjadi kalsium sulfat dihidrat.3,5,20 Terdapat dua

metode pengapuran gips, yaitu untuk menghasilkan α-hemihidrat dan β-hemihidrat. Pengapuran gips pada temperatur 125oC akan menghasilkan kristal yang padat,

kurang berporus, dan kristal dengan bentuk prismatik, yang disebut dengan α-kalsium sulfat hemihidrat yang digunakan sebagai bahan pembuatan model kerja.2,3,5 Pengapuran gips pada temperatur 115oC akan menghasilkan hemihidrat yang

(3)

Gips diproduksi menjadi beberapa jenis, yaitu plaster, stone, high-strength stone, dan bahan tanam berdasarkan sifat fisiknya. Perbedaan utama pada sifat fisik gips yaitu tergantung pada variasi ukuran, bentuk, dan porositas bubuk gips yang dihasilkan dari proses pengapuran yang berbeda.3

2.3.1 Tipe – tipe Gips

Berdasarkan spesifikasi ADA (American Dental Association) No. 25, gips dapat diklasifikasikan menjadi:

1. Tipe I (Impression Plaster)

Digunakan untuk mencetak daerah edentulous dan perbaikan gigitiruan. Gips tipe ini memiliki konsistensi yang lebih kental sehingga gips sulit mengalir keluar dari sendok cetak saat dimasukkan kedalam mulut.8 Plaster cetak jarang digunakan lagi sebagai bahan cetak dalam kedokteran gigi karena telah digantikan oleh bahan yang kurang kaku seperti hidrokoloid dan elastomer.3,5

2. Tipe II (Model Plaster)

Gips tipe II umunya digunakan sebagai bahan membuat model studi dan bahan tanam untuk mengisi kuvet dalam pembuatan gigitiruan.3,5 Gips tipe II dihasilkan dari gips yang dipanaskan pada suhu 110ºC-120ºC sehingga menghasilkan senyawa β -hemihidrat yang porus, mempunyai bentuk yang sangat tidak teratur dan jarak antar partikel yang besar yang menyebabkan reaksi pengerasan memerlukan banyak air.8

3. Tipe III (Dental Stone)

Gips tipe III dihasilkan dari gips yang dipanaskan pada temperatur 125ºC dibawah tekanan atmosfer sehingga mengalami dehidrasi dan kandungan airnya akan berkurang, setelah melalui proses dehidrasi, maka akan dihasilkan senyawa α -hemihidrat yang lebih padat, bentuknya teratur, kurang porus, dan kristal dengan

(4)

kekuningan atau warna kapur lainnya, namun perlu diketahui bahwa pemberian warna pada gips tidak menentukan kualitas gips. Berdasarkan spesifikasi ADA No.25, setting ekspansi gips tipe III setelah 2 jam pengerasan yaitu sebesar 0,00% - 0,20% dan besar rasio W/P, yaitu sebesar 28-30 ml air/100 gr gips.3,5

4. Tipe IV (Dental Stone, High Strength)

Gips tipe IV digunakan sebagai bahan pembuatan die stone, terdiri dari partikel

α-hemihidrat jenis Densite yang berbentuk kuboidal serta daerah permukaan yang lebih kecil dibandingkan gips tipe III. Pada pencampuran gips tipe IV ini penggunaan air lebih sedikit dibandingkan dengan gips tipe III sehingga memiliki kekuatan dan kekerasan yang cukup untuk tahan terhadap daya abrasi saat penggunaan instrumen yang tajam serta memiliki setting ekspansi yang minimal. 3,5

5. Tipe V (Dental Stone, High Strength, High Expansion)

(5)

Tabel 1. Tipe-tipe Gips4,5

Kekuatan gips umumnya dinyatakan dengan istilah kekuatan kompresi, yang diartikan sebagai kemampuan gips untuk menahan tekanan hingga fraktur.5 Kekuatan gips dipengaruhi oleh bentuk kristal, porositas kristal, dan rasio W/P.3 Peningkatan porositas pada partikel mengakibatkan penggunaan air menjadi lebih banyak untuk mengubah hemihidrat menjadi dihidrat sehingga produk gips yang dihasilkan akan semakin lemah kekuatannya.3,5

b. Setting time

Waktu pengerasan gips dapat dikelompokkan menjadi dua, yaitu initial setting time dan final setting time. Initial setting time merupakan interval antara waktu pencampuran gips dan waktu ketika adonan tidak dapat lagi dituangkan ke dalam master mold sehingga initial setting time identik dengan waktu kerja dari gips. Secara

(6)

ini terjadi karena reaksi kimia dari hemihidrat yang bergabung dengan air menyebabkan partikel hemihidrat menarik permukaan air. Initial setting time berkisar diantara 8 – 16 menit dari waktu pencampuran air dan bubuk gips sesuai dengan spesifikasi ADA No. 25. Final setting time dapat didefinisikan sebagai waktu konversi hemihidrat menjadi dihidrat secara sempurna atau secara klinis produk gips dapat dikeluarkan dari master mold dan dapat dimanipulasi tanpa terjadi distorsi atau fraktur.2,3

c. Setting ekspansi

Selama proses pengerasan gips, seluruh tipe gips secara alamiah akan mengalami ekspansi, namun hal ini harus dihindari semaksimal mungkin dalam pembuatan model karena dapat mempengaruhi perubahan dimensi model gips. Cara yang paling efektif dalam mengontrol setting ekspansi adalah dengan penambahan bahan kimia, ekspansi dapat dikurangi dengan menambahkan K2SO4, NaCl atau boraks. Menurut Noort (2007) penambahan NaCl mempunyai pengaruh menurunkan setting ekspansi dengan menyediakan lokasi tambahan untuk pertumbuhan kristal.20

d. Perubahan dimensi

Perubahan dimensi pada gips merupakan hasil dari proses ekspansi selama pengerasan gips yang disebabkan oleh hasil dari pertumbuhan kristal gips yang saling mendorong keluar.20,21 Gips mengalami ekspansi selama proses pengerasannya, hal ini dapat diartikan bahwa model akan berukuran sedikit lebih besar dari hasil cetakan dan hal ini mempengaruhi perubahan dimensi dari model gips.

2.4 Perubahan Dimensi Gips

perubahan dimensi model gips merupakan perubahan ukuran pada model gips selama proses pengerasannya, biasanya dinyatakan sebagai persentase dari panjang semula atau volume.2 Ekspansi massa gips dapat dideteksi selama perubahan dari partikel hemihidrat menjadi partikel dihidrat. Perubahan dimensi dipengaruhi oleh setting ekspansi dan ekspansi higroskopis. Setting ekspansi dapat dijelaskan

(7)

Kristal gips yang terbentuk selama proses pengerasan yaitu berbentuk sperulitik, kristal ini saling menimpa satu sama lain dan mencoba untuk mendorong kristal yang lain agar terpisah sehingga terjadi ekspansi selama proses pengerasan yang dapat menyebabkan perubahan dimensi pada gips.20

Dimensi merupakan parameter atau pengukuran yang dibutuhkan untuk mendefenisikan sifat-sifat suatu objek, yaitu ukuran seperti panjang, lebar, dan tinggi, serta bentuk. Perubahan dimensi dapat diukur secara volumetrik dan linear yang biasanya dinyatakan dalam presentase panjang atau volume akhir dibandingkan dengan panjang atau volume-volume dari suatu objek. Perubahan dimensi linear lebih mudah dan sederhana untuk diukur dibandingkan dengan perubahan dimensi volumetrik.2

Pengukuran perubahan dimensi menggunakan travelling microscope. Setiap sampel dilakukan tiga pengukuran, yaitu pengukuran panjang garis cd-c’d’ pada garis A, pengukuran panjang garis c’d’ pada garis B, dan pengukuran panjang garis cd-c’d’ pada garis C.

Gambar 1. Garis pada ruled block

Hasil pengukuran dijumlahkan kemudian didapatkan ratanya. Hasil rata-rata dari setiap sampel dimasukkan ke dalam rumus, yaitu:2

(8)

dimana:

l1 = rata-rata panjang garis pada setiap sampel (mm) l0 = panjang garis pada stainless steel die (mm)

2.5 Faktor yang Mempengaruhi Perubahan Dimensi Gips Tipe III 2.5.1 Suhu Ruangan dan Suhu Air

Perubahan suhu ruangan dan suhu air dapat memberikan pengaruh pada gips selama proses pengerasan. Peningkatan suhu ruangan dan suhu air dapat menyebabkan pergerakan ion kalsium dan ion sulfat meningkat sehingga setting time menjadi lebih singkat. Peningkatan suhu ruangan yang berawal 20ºC menjadi 37ºC dapat meningkatkan kecepatan reaksi pengerasan sehingga setting time menjadi lebih singkat dan setting ekspansi menjadi lebih besar, tetapi suhu yang meningkat diatas 37ºC menyebabkan setting time menjadi lebih lama, serta setting ekspansi menjadi lebih kecil. Peningkatan suhu air (tidak melebihi 37.5ºC) yang digunakan sebagai campuran gips dapat mempersingkat setting time, tetapi jika suhu air diatas 37.5ºC dapat memberikan efek retarder pada pengerasan gips.2,3,5

2.5.2 Rasio W/P

(9)

2.5.3 Waktu dan Kecepatan Pengadukan

Metode pengadukan yang tepat adalah dengan penyediaan air yang sudah diukur terlebih dahulu kemudian diikuti dengan penambahan bubuk yang telah ditimbang secara bertahap. Adonan gips diaduk selama kurang lebih 15 detik dengan kecepatan pengadukan 120 rpm menggunakan spatula dan diikuti dengan pengadukan mekanik selama 20-30 detik dengan kecepatan 450 rpm menggunakan mixer.4,5,22

Sebagian kristal gips terbentuk langsung ketika gips berkontak dengan air. Begitu pengadukan dimulai, pembentukan kristal ini meningkat. Pada saat yang sama, kristal-kristal tersebut diputuskan oleh spatula dan didistribusikan merata dalam adukan dengan hasil pembentukan lebih banyak nukleus kristalisasi. Dalam jangka limitnya, semakin lama pengadukan maka akan meningkatkan jumlah nukleus kristalisasi dari partikel dihidrat. Akibatnya, jalinan ikatan kristalin yang terbentuk akan semakin banyak, pertumbuhan internal dan dorongan keluar dari kristal-kristal dihidrat meningkat. Hal inilah yang menyebabkan setting ekspansi gipsum meningkat sejalan dengan semakin lamanya waktu pengadukan.3,5

2.5.4 Retarder

Retarder merupakan suatu bahan kimia yang ditambahkan pada gips dan

berguna untuk memperlambat setting time. Beberapa contoh retarder adalah NaCl > 20%, natrium sulfat > 3,4%, asetat, boraks, dll.5,23 Menurut Noort (2007) dan Manappallil (2008) penambahan retarder seperti boraks dapat mengurangi ekspansi dengan mengubah bentuk kristal dihidrat. Kristal akan menjadi pendek dan datar dan mencegah pertumbuhan lebih lanjut sehingga dapat mengurangi ekspansi gips.13,20

2.5.5 Akselerator

(10)

kristal dihidrat yang terbentuk. Beberapa contoh akselerator, yaitu NaCl 2%, Na2SO4 3,4%, K2SO4 dengan konsentrasi di atas 2%.2,3,5 Menurut Anusavice (2003) setting ekspansi gips dapat dikurangi dengan penambahan NaCl.5 Menurut Soratur (2002) penambahan bahan kimia seperti kalium sulfat dapat mengurangi ekspansi dengan membawa perubahan dalam bentuk kristal kristal dihidrat. Kristal akan menjadi lebih pendek, tipis, dan datar dan juga dengan menyebabkan tingkat awal kristalisasi begitu cepat sehingga ekspansi berkurang.13 Berdasarkan penelitian yang dilakukan oleh Kumar (2012), kelompok gips yang direndam dengan slurry water memiliki nilai perubahan dimensi yang paling kecil dibandingkan dengan kelompok lain, yaitu gips yang direndam dengan 0,525% sodium hypochlorite dan 2% glutaradehyde. Berdasarkan hasil penelitian yang dilakukan Langgeng (2013) pSada

pemakaian slurry water, air bersih dan aquadestilata menunjukkan pada kelompok dengan pemakaian slurry water memiliki nilai perubahan dimensi paling besar dan perubahan dimensi paling kecil terdapat pada kelompok gips dengan penambahan aquadestilata.33

2.6 Natrium Klorida (NaCl)

(11)

heksahedral, berwarna putih dan memiliki rasa asin. Kemurnian yang dipersyaratkan dalam Farmakope Indonesia edisi III tahun 1979 minimal sebesar 99,5%.17

Tabel 2. NaCl 33

Natrium klorida

58.44 gr/mol

Penampilan Tidak berwarna/berbentuk kristal putih

2.16 gr/cm

3

801 °C (1074 K)

1465 °C (1738 K)

35.9 gr/100 mL (25 °C)

2.6.1 NaCl 2%

Penggunaan NaCl sebagai akselerator membawa dampak yang signifikan dalam pembuatan model gigitiruan, hal ini dikarenakan NaCl dapat menyebabkan penurunan setting time. NaCl selain merupakan bahan kimia yang dapat mempercepat initial setting time dan final setting time hingga 50% juga mempunyai pengaruh

(12)

mengurangi setting ekspansi dengan menyediakan lokasi tambahan untuk pembentukan kristal sehingga mengurangi interaksi kristal untuk saling mendorong terpisah.5,20,34 NaCl 2% didefenisikan sebagai 2 gr NaCl/100 ml air. Secara umum, NaCl bertindak sebagai aselerator pada konsentrasi 1 sampai 10% namun konsentrasi NaCl yang paling umum digunakan dan memberikan setting time tercepat, yaitu 210 detik adalah 2%.14

2.6.2 Garam Dapur

Jenis NaCl yang beredar di pasaran saat ini ada beberapa macam, diantaranya adalah garam murni keluaran pabrikan yang dibuat untuk kebutuhan bahan kimia, laboratorium kesehatan, dan industri. Jenis garam NaCl lainnya adalah garam dapur yang sudah dikenal masyarakat luas sebagai bumbu dapur dan pengawet.17 Selain itu garam dapur merupakan salah satu kebutuhan yang merupakan pelengkap dari kebutuhan pangan dan merupakan sumber elektrolit bagi tubuh manusia dan mempunyai kegunaan utama sebagai pencegah gejala kekurangan iodium yang dapat mengakibatkan beberapa penyakit seperti gondok, masalah kelenjar tiroid, dan penurunan mental.26 Menurut Standar Nasional Indonesia nomor 01-3556-2000 garam beriodium adalah garam dapur yang mengandung komponen utama NaCl 94,7%, air maksimal 7% dan kalium iodat (KIO3) 30mg/kg, serta senyawa-senyawa lain seperti timbal (Pb), tembaga (Cu), raksa (Hg), dan arsen (As) dalam jumlah yang sangat kecil.28,29

(13)

tepat untuk diterapkan pada perkembangan teknologi dan ekonomi di Indonesia pada waktu sekarang.15

Evaporasi matahari (solar evaporation) dimulai dengan mengumpulkan air laut ke suatu kolam seperti tambak di tepi pantai kemudian dengan bantuan sinar matahari, air laut diuapkan hingga kristal NaCl-nya tertinggal di tambak. Kemudian para petani garam mengumpulkan kristal kristal tersebut untuk dicuci ulang agar bersih, lalu dijemur kembali. Proses pencucian pada garam dapur ini dilakukan berulang kali hingga kotorannya benar-benar hilang dan menghasilkan butiran-butiran kecil garam.16 Garam yang dihasilkan dari proses penguapan air laut dengan tenaga matahari ini sangat bergantung pada luas areanya dengan kondisi air laut yang rata-rata mengandung garam sekitar 3,7%. Garam terdiri dari senyawa kimia dengan bagian terbesar terdiri dari natrium klorida (NaCl) dengan pengotor terdiri dari kalsium sulfat (CaSO4), Magnesium sulfat (MgSO4), Magnesium klorida (MgCl2), dan lain-lain. Apabila air laut diuapkan maka akan dihasilkan kristal garam, yang biasa disebut garam krosok. Untuk meningkatkan kualitas garam dapur dapat dilakukan dengan cara kristalisasi bertingkat, rekristalisasi, dan pencucian garam. Cara lain untuk meningkatkan kualitas garam adalah pemurnian dengan penambahan bahan pengikat pengotor. Tanpa adanya proses pemurnian maka garam dapur yang dihasilkan melalui penguapan air laut masih bercampur dengan senyawa lain yang terlarut.28

(14)
(15)
(16)

2.8 Kerangka konsep

Penambahan NaCl 2% dapat mengurangi setting ekspansi

(17)

2.9 Hipotesis Penelitian

Berdasarkan rumusan di atas maka dapat disusun hipotesis penelitian, yaitu : 1. Ada pengaruh penambahan NaCl 2% dan garam dapur 2% terhadap perubahan dimensi gips tipe III.

Gambar

Tabel 1. Tipe-tipe Gips4,5
Gambar 1. Garis pada ruled block
Tabel 2. NaCl 33

Referensi

Dokumen terkait

This paper outlines the results of the data process- ing and analysis technique used to estimate the spa- tially resolved LE flux and its spatial variability over cottonwoods in

Menentukan turunan fungsi satu peubah dan menyatakana dalam aturan pencarian turunan fungsi6. Menentukan turunan

Hasil uji spearman rank menunjukkan adanya hubungan yang bermakna anemia kehamilan trimester III dengan kejadian BBLR di Puskesmas Purwanegara I Tahun 2012-2013

Dalam jaman yang modern ini, laptop merupakan hal yang sudah tidak asing lagi karena dengan laptop kita dapat melakukan banyak manfaat seperti mudah dibawa, dan lain- lain.

Sementara, sejauh ini dana perimbangan yang merupakan transfer keuangan oleh pusat kepada daerah dalam rangka mendukung pelaksanaan otonomi daerah, meskipun jumlahnya

Selain itu mobilisasi dana kesehatan juga dapat diupayakan dengan menjalin kerjasama dengan semangat kemitraan antar semua pelaku pembangunan di Pidie Jaya terutama Dinas

L akseptor IUD yang mengalami keputihan normal hari pertama adalah melakukan asuhan selama 3 kali kunjungan yang meliputi kunjungan pertama di Puskesmas kemudian dilakukan

Dengan adanya aplikasi sistem pendukung keputusan yang diterapkan pada Jurusan Teknik Informatika maka penyelesaian masalah dalam menentukan nilai tunjangan dan