• Tidak ada hasil yang ditemukan

Soal Prediksi UN Matematika IPA SMA 2016 2

N/A
N/A
Protected

Academic year: 2017

Membagikan "Soal Prediksi UN Matematika IPA SMA 2016 2"

Copied!
5
0
0

Teks penuh

(1)

SOAL PREDIKSI UN MATEMATIKA IPA TAHUN 2016

http://www.matematrick.com

PAKET 2

1. Hasil dari

(

8

−1

m

4

n

9

)

−3

(

12

m

−5

n

−3

)

4

adalah ...

A.

m

12

12

n

15

B.

8

m

12

81

n

15

C.

m

8

81

n

15

D.

m

8

162

n

15

E.

2

m

8

81

n

15

2. Bentuk sederhana dari

6

+

7

2

3

6

2

2

adalah ...

A.

2

+

3

B.

1

+

3

C.

1

3

D.

2

3

E.

2

(

1

3

)

3. Nilai dari

r

log 1

p5

. q

log 1

r3

. p

log 1

q=… .

A. – 15 B. – 5

C.

1

15

D. 5 E. 15

4. Akar – akar persamaaan 2x2 – 3x + 1 =o adalah p dan

q. Persamaan kuadrat yang akar – akarnya

p

q

dan

q

p

adalah ....

A. 2x2 + 5x + 2 = 0 B. 2x2 + 5x – 2 = 0 C. 2x2 – 5x – 2 = 0 D. 2x2 – 5x + 2 = 0 E. 2x2 – 2x – 5 = 0

5. Jika akar-akar persamaan x2 + 2x – 8 = 0 adalah x1 dan x2 sedangkan akar-akar persamaan x2 + 10x – 16p = 0

adalah

(

2

x

1

)

dan

(

2

x

2

)

maka nilai p adalah .... A. 2

B. 4 C. 8 D. 10 E. 16

6. Supaya fungsi kuadrat

f

(

x

)=

px

2

−(

2

p

+

3

)

x

+

p

+

6

selalu bernilai positif, maka nilai

p

adalah ....

A.

p

<

0

B.

p

>

3

4

C.

p

>

3

D.

p

>

4

E.

0

<

p

<

3

4

7. Enam tahun yang lalu, umur Andi 3 tahun kurangnya dari sepertujuh umur ayah. Umur Andi sekarang 3 tahun lebihnya dari seperdelapan umur ayah. Enam tahun yang akan datang umur ayah adalah ... tahun.

A. 15 B. 48 C. 54 D. 56 E. 57

8. Persamaan garis singgung lingkaran (x – 4)2 + (y + 3)2 = 40 yang sejajar dengan garis 3x – y + 5 =0 adalah ….

A. y = 3x + 1 dan y = 3x – 30 B. y = 3x + 2 dan y = 3x – 32 C. y = 3x – 2 dan y = 3x – 32 D. y= 3x + 5 dan y = 3x – 35 E. y = 3x – 5 dan y = 3x – 35

9. Koordinat titik pusat dan jari-jari lingkaran X2+y2 -4x+6y+4=0 adalah…

A. (-3,2) dan 3 B. (3,-2) dan 3 C. (-2,-3) dan 3 D. (2,-3) dan 3 E. (2,3) dan 3

10. Jika polinom P(x) dibagi dengan x2 – 3x + 2 sisanya 4x + m. Jika P(x) dibagi (x – 1) sisanya 2 dan jika dibagi dengan (x – 2) sisanya adalah….

A. 6 B. 7 C. 8 D. 9 E.10

11. suku banyak

6

x

3

+

13

x

2

+

qx

+

12

, mempunyai faktor

(3

x

−1

)

. Faktor linier yang lain adalah... A.

(2

x

−1

)

dan

(

x

−4)

(2)

12. Diketahui fungsi

f

:

R

R

dan

g

:

R

R

ditentukan oleh

(

gof

)(

x

)=

2

x

2

+

4

x

+

5

,dan

g

(

x

)=2

x

+3

. Nilai dari

f

(−1

)=...

A. – 2

B. – 1 C. 0 * D. 1 E. 2

13. Diketahui

g

(

x

)=

2

x

1

x

+

3

, x ≠

3

dan

f

(

x

)=

3

x

+

1.

Jika invers

(

gof

)

adalah.

(

gof

)

−1 ,maka

(

gof

)

−1

(

2

)

=... A.

15

2

B.

11

2

C.

5

2

D.

17

10

E.

3

/

4

14. Seorang pembuat kue mempunyai pesediaan bahan 4 kg gula dan 9 kg tepung. Untuk membuat kue jenis A. Dibutuhkan 20 gram gula dan 60 gram tepung. Sedangkan untuk membuat kue jenis B dibutuhkan 20 gram gula dan 40 gram tepung. Jika kue A dijual dengan harga Rp.4.000,00/buah.Dan kue B dijual dengan harga Rp.3.000,00/buah, pendapatan maksimum yang dapat diperoleh Pembuat kue tersebut adalah . . . .

A. Rp 600.000 B. Rp 650.000. C. Rp 700.000 D. Rp 750.000 E. Rp 800.000

15. Seorangpembuatkuemempunyai 4 kg guladan 9 kg tepung. Untukmembuatsebuahkuejenis A dibutuhkan 20 gram guladan 60 gram tepung, sedangkanuntukmembuatsebuahkuejenis B

dibutuhkan 20 gram guladan 40 gram tepung. Jikakue A dijualdenganhargaRp. 60.000,00/buahdankue B dijualdenganhargaRp. 45.000,00/buah,

makapendapatanmaksimum yang dapatdiperolehpembuatkuetersebutadalah

A. Rp. 9.000.000,00 B. Rp. 9.750.000,00 C. Rp.10.500.000,00 D. Rp. 11.250000,00 E. Rp. 12.000.000,00

16. Diketahui Matriks A =

(

4

1

1

4

)

, B =

(

x

+

y

2

3

y

)

, dan C =

(

7 2

3 1)

, Matrik CT merupakan matrik transpos matrik C. Jika B - A = CT. Nilai xy = ….

A. 4 B. 6 C. 12

D. 16 E. 20.

17. DiketahuiMatriksA=

(

2

1

2 3)

, B=

(

7

5

11

9

)

danC=

(

a c

b d

)

, jika AC =B,

nilai ad yang memenuhiadalah . A. -4

B. -3 C. -1 D. 1 E. 4

18. Matrikstransformasi yang mewakilirotasi (O , 900 ) dilanjutkanolehdilatasi [O,3] adalah. . . . .

A.

(

3 0

0

3)

B.

(

3

0

0

3)

C.

(

0

3

3 0)

D.

(

0

3

3

0

)

E.

(

0

3

3

0

)

19. . Persamaan bayangan lingkaran

x

2

+

y

2

=

4

apabila dicerminkan terhadap garis

x

=

2

dan dilanjutkan dengan translasi

(

3

4

)

adalah … .

A.

x

2

+

y

2

2

x

8

y

+

13

=

0

B.

x

2

+

y

2

+

2

x

8

y

+

13

=

0

C.

x

2

+

y

2

2

x

+

8

y

+

13

=

0

D.

x

2

+

y

2

+

2

x

+

8

y

+

13

=

0

E.

x

2

+

y

2

+

8

x

2

y

+

13

=

0

20. Di sebuah lembaga pendidikan yang baru dibuka, banyak murid baru yang mendaftar. Dan Setiap bulan bertambah dengan jumlah yang sama. Jumlah murid yang mendaftar pada bulan ke-4 ada 20 orang. Jika jumlah semua murid dalam satu tahun pertama 360 orang, maka murid yang mendaftar pada bulan ke-10 sebanyak … orang.

A. 40 B. 44 C. 48 D. 52 E. 54

21. Suku ke 3 dan suku ke 7 suatu deret geometri berturut-turut 8 dan 128. Jika rasionya negative, jumlah tujuh suku pertama deret tersebut adalah …

(3)

22. Sebuah bandul diay unkan. Panjang lintasan ayunan

pertama 80 cm dan mengayun kembali

3

4

dari

panjang lintasan ayunan sebelumnya, sampai seterusnya hingga bandul berhenti. Panjang lintasan bandu adalah ….

A. 160 cm B. 240 cm C. 320 cm D. 360 cm E. 560 cm

23. Diketahui kubus ABCD.EFGH memiliki panjang rusuk 8 cm. Jarak titik D ke diagonal EG adalah ….

A.

4

2

cm B.

4

6

cm

C.

4

7

cm

D.

6

6

cm

E.

6

7

cm

24. Diketahui kubus ABCD.EFGH dengan rusuk a cm. Jika sudut antara AH dan bidang BDHF adalah

β

,maka nilai tan

β

adalah

A.

1

2

2

B.

1

2

3

C.

1

3

3

D.

2

3

3

E.

2

3

2

25. Bila diketahui

sin

x

+

sin 3

x

cos

x

+

cos 3

x

=

1

2

6

maka nilai cos 2x adalah , , , , ,

A. 5

B.

2

5

6

C.

1

5

6

D.

5

12

6

E.

1

5

26. Nilai maksimum dari :

y

=

3sin 3

x

13cos 3

x

+

8

adalah ...

A.12 B.14 C.8 +

3

D.8 +

13

E.

8

+

1

2

6

1

2

26

27. Diketahuisegiempat ABCD seperti pada gambar berikut:

C 5 cm D 60o

6 cm

A 8 cm B

Panjangsisi BC adalah …. A. 3

5

B. 5

2

C. 5

3

D. 5

7

E. 7

5

28.

lim

x→1

x

1

x

2

+

3

2

adalah ...

A. 4 C. 0 E. -4

B. 2 D. -2

29.

lim

x→1

sin(

πx

π

)

(

x

−1)cos

(

πx

π

)

= ...

A. 0 C. 1 E. 4

B.  D. 1/2

30. Turunan fungsi f(x) =

5

(

10

x

2

8)

4 adalah f”(x). Nilai f’(x) = ....

A. 128 B. 32 C. 16 D. 8 E. 4

31. Jika f(x) =

sin

x

cos

x

sin

x

, nilai dari f’(

1

3

π

)

= ....

A.

1

4

B. 1

C.

3

4

D.

4

3

E. 2

32. Grafik fungsi y = 2x3-9x2+12x+6, akan naik dalam interval….

a. x<1 atau x>2 b. x<-1 atau x>2 c. x<-2atau x>1 d. x<1 atau x>2 e. x<-1 atau x>2

33. Hasil dari

4

x

5

3

x

2

dx

=

....

A.

4

5

3

x

2

+

C

B.

4

3

5

−3

x

(4)

C.

4

3

5−3

x

2

+

C

D.

4

5

3

x

2

+

C

E.

6

5

3

x

2

+

C

34.

1 2

(

3

x

2

+

2

x

+

1

)

dx

adalah . . . A. – 11

B. 11 C. – 10 D. 10 E. 9

35. Nilai

x

.sin

(

x

2

+

1

)

dx

=

....

A. – cos ( x2 + 1 ) + C B. cos ( x2 + 1 ) + C

C. –½ cos ( x2 + 1 ) + C D. ½ cos ( x2 + 1 ) + C E. – 2cos ( x2 + 1 ) + C

36. Luas daerah yang dibatasi oleh parabola y= x2 – x – 2 dan garis y = x + 1 pada interval – 1 ≤ x ≤ 3 adalah ... satuan luas.

A.

5

1

3

B.

9

1

3

C.

10

1

3

D.

10

2

3

E.

11

2

3

37. Perhatikan gambar berikut!

Jika daerah yang diarsir diputar mengelilingi sumbu-X sejauh 360, maka volume benda putar yang terjadi adalah ...

a.

88

15 satuan volume

b.

96

15 satuan volume

c.

184

15 satuan volume

d.

186

15 satuan volume

e.

280

15 satuan volume

38. Modus dari data pada histogram berikut adalah ....

39. Dari 8 orang yang terdiri dari 5 pria dan 3 wanita akan dibentuk kelompok kerja yang beranggotakan 3 orang. Jika dalam kelompok kerja itu paling sedikit 2 pria, maka banyaknya cara membentuk kelompok kerja adalah ….

A. 72 B. 56 C. 40 D. 30 E. 24

40. Seorang peneliti sedang melakukan penelitian didaerah X, yang berdekatan dengan tepi sungai .Ia mengatakan bahwa dalam dua tehun kedepan, daerah tersebut berpeluang terjadi banjir. Besar peluangnya yaitu dua per tiga. Pernyataan berikut yang sesuai dengan maksud bacaan di atas adalah .

A.

2

3

x 3 = 1,33 sehingga antara 1 dan 2 tahun

dari sekarang akan terjadi banjir di daerah X

B.

2

3

lebih besar daripada

1

2

, sehingga kita

dapat meyakini bahwa akan terjadi banjir di daerah X suatu saat dalam dua tahun kedepan.

C. peluang terjadinya banjir di daerah X dalam dua tahun ke depanlebih tinggi daripada peluang tidak terjadinya banjir.

D. Kita tidak dapat mengetahui kapan terjadinya banjir karena itu rahasia illahi

E. Pasti akan terjadi banjir dua tahun ke depan karena telah diprediksi

A. 47,5 B. 46,5

(5)

0 2 4 6 8 10 12 14

Frekuensi

Nilai

F

re

k

u

e

n

s

i

Referensi

Dokumen terkait

Suatu deret geometri diketahui suku kedua adalah 12 dan suku kelima adalah 3/2, maka jumlah sampai tak hingga suku-sukunya adalahA. Jumlah deret geometri tak hingga adalah

Jika suku kedua dikurangi 1, maka terbentuklah barisan geometri dengan jumlah 14.. Diketahui kubus ABCD.EFGH dengan panjang rusuk

Semua anggot a keluarga pergi dan ada pint u rumah yang t idak dikunci rapat.. Jum lah t ujuh suku pert ama deret t ersebut

Jumlah soal sebanyak 40 butir, pada setiap butir soal terdapat 4 (empat) pilihan jawaban. Periksa dan bacalah soal-soal sebelum anda menjawabnya. Laporkan kepada pengawas ujian

Jika hasil kali ketiga bilangan tersebut adalah 216, suku pertama dan suku ketiga barisan tersebut berturut-turut adalah.. E-book ini hanya untuk

Jika jumlah semua suku deret geometri tak hingga adalah 96 dan jumlah semua suku yang berindeks ganjil adalah 64, maka suku ke-4 deret tersebut adalah ….. Jika nilai rata-rata

Jika suku pertama dikurangi 2 dan suku ketiga ditambah 6, maka barisan menjadi barisan geometri dengan rasio 2 hasil kali ketiga bilangan pada barisan geometri

Jumlah 5 suku pertama dari suatu deret geometri adalah 93 dan rasio deret itu 2... Sebuah garis l 1 mempunyai kemiringan -2 dan melalui