• Tidak ada hasil yang ditemukan

429df bab 4 proposisi

N/A
N/A
Protected

Academic year: 2017

Membagikan "429df bab 4 proposisi"

Copied!
9
0
0

Teks penuh

(1)

BAB 4

PROPOSISI

1.

Pernyataan dan Nilai Kebenaran

Ilmu logika adalah berhubungan dengan kalimat-kalimat (argumen-argumen) dan hubungan yang ada diantara kalimat-kalimat tersebut. Tujuannya adalah memberikan aturan-aturan sehingga orang dapat menentukan apakah suatu kalimat bernilai benar.

Suatu kalimat deklaratif (Proposisi) adalah kalimat yang bernilai benar atau

salah, tetapi tidak keduanya.

Beberapa contoh proposisi :

a. 2 + 2 = 4

b. 4 adalah bilangan prima

c. Jakarta adalah ibukota negara Indonesia

d. Penduduk Indonesia berjumlah 50 juta

Kalimat-kalimat di atas dapat diketahui benar/salahnya. Kalimat a dan c bernilai benar, sedangkan kalimat b dan d bernilai salah.

Beberapa contoh bukan proposisi :

a. Dimanakah letak pulau Bali?

b. Siapakah namamu?

c. Simon lebih tinggi dari Lina

d. x + y = 2

Kalimat a dan b jelas bukan proposisi karena merupakan kalimat tanya sehingga tidak dapat ditentukan kebenarannya. Kalimat c juga bukan proposisi karena ada banyak orang di dunia ini yang bernama Simon dan Lina. Dalam kalimat d, nilai kebenaran kalimat tergantung dari harga x dan y.

(2)

Tabel 4.1

↔ Bi-Implikasi … bila dan hanya bila …

Dalam matematika digunakan huruf-huruf kecil seperti p, q, r, … untuk menyatakan

subkalimat dan simbol-simbol penghubung untuk menyatakan penghubung kalimat.

Contoh :

1. Misalkan p menyatakan kalimat “4 adalah bilangan genap” dan q menyatakan

kalimat “3 adalah bilangan ganjil”.

Dengan demikian, kalimat “4 adalah bilangan genap dan 3 adalah bilangan ganjil” dapat dinyatakan dengan simbol p q

2. Misal : p : hari ini panas q : hari ini cerah

Nyatakan kalimat di bawah ini dengan simbol logika :

a. Hari ini tidak panas tapi cerah

b. Hari ini tidak panas dan tidak cerah

c. Tidak benar bahwa hari ini panas dan cerah

Penyelesaian :

q : ayah akan membelikan sepeda motor Nyatakan kalimat di bawah ini dengan simbol logika :

a. Apabila saya lulus, maka ayah akan membelikan sepeda motor

b. Saya tidak lulus dan ayah tidak akan membelikan sepeda motor

c. Tidak benar saya lulus dan ayah akan membelikan sepeda motor

2.

Misal : p : kamu tidak belajar

q : kamu tidak akan lulus

(3)

b. Apabila kamu belajar, maka kamu akan lulus

c. Kamu belajar atau kamu tidak akan lulus

2.

Proposisi dan Tabel Kebenaran

Jika p maupun q merupakan kalimat, maka tabel kebenaran penghubung tampak pada tabel berikut (T = True/benar; F = False/salah).

Perhatikan bahwa secara umum, jika ada n variabel (p, q, …), maka tabel kebenaran

memuat 2n baris.

Negasi suatu kalimat akan memiliki nilai kebenaran yang berlawanan dngan nilai kebenaran kalimat aslinya. Jadi, jika p bernilai benar, maka ¬p bernilai salah. Sebaliknya, jika p bernilai salah, maka ¬p akan bernilai benar.

Kalimat p q akan bernilai benar jika p maupun q bernilai benar jika baik p maupun

q bernilai benar. Jika salah satunya (apalagi keduanya) bernilai salah, maka p q

bernilai salah.

Kalimat p q bernilai salah jika baik p maupun q bernilai salah. Jika salah satunya benar, maka p q bernilai benar.

Dalam kalimat implikasi p → q, p disebut hipotesis (anteseden) dan q disebut konklusi (konsekuen). Kalimat p → q disebut kalimat berkondisi karena kebenaran

kalimat q tergantung pada kebenaran kalimat p. Kalimat p → q akan bernilai salah

(4)

Latihan soal :

1. Misal k : Monde orang kaya

S : Monde bersukacita

Tulislah bentuk simbolis kalimat-kalimat berikut :

a. Monde orang yang miskin tetapi bersukacita

b. Monde orang kaya atau ia sedih

c. Monde tidak kaya ataupun bersukacita

d. Monde seorang yang miskin atau ia kaya tetapi sedih.

Anggaplah ingkaran kaya adalah miskin dan ingkaran dari bersukacita adalah sedih.

2. Buatlah tabel kebenaran untuk kalimat dalam bentuk simbol-simbol logika di

bawah ini : a. ¬(¬p ¬q)

b. ¬(¬p ↔ q)

c. (p → q) ¬(p q)

3. Pada kondisi bagaimanakah agar kalimat berikut ini bernilai benar?

“Tidaklah benar bila rumah kuno selalu bersalju atau angker, dan tidak juga benar bila sebuah hotel selalu hangat atau rumah kuno selalu rusak”.

4. Jika p dan q benar (T)

R dan s salah (F)

Tentukan nilai kebenaran kalimat berikut ini a. p (q r)

b. (p q r) ¬((p q) (r s))

3.

Tautologi dan Kontradiksi

Tautologi adalah bentuk kalimat yang selalu bernilai benar(T), tidak peduli bagaimanapun nilai kebenaran masing-masing kalimat penyusunnya. Sebaliknya, kontradiksi adalah suatu bentuk kalimat yang selalu bernilai salah (F), tidak peduli bagaimanapun nilai kebenaran masing-masing kalimat penyusunnya.

Dalam tabel kebenaran, suatu tautologi selalu bernilai T pada semua barisnya, dan kontradiksi selalu bernilai F pada semua baris.

Contoh :

Tunjukkan bahwa kalimat berikut adalah tautologi dengan menggunakan tabel kebenaran : (p q) → q

(5)

Tabel 4.4

Tunjukkan mana dari kalimat berikut yang merupakan tautologi dan kontradiksi dengan menggunakan tabel kebenaran :

1. q →(p q)

Dua proposisi P (p, q, …) dan Q (p, q, …) disebut ekuivalen jika kedua proposisi tersebut mempunyai tabel kebenaran yang identik, dinotasikan oleh :

(6)

Karena tabel kebenaran sama, yakni kedua proposisi salah pada keadaan pertama

dan kebenaran pada ketiga keadaan lainnya, maka proposisi ¬(p q) dan ¬p ¬q

ekivalen dan kita dapat menuliskan ¬(p q) ≡¬p ¬q

Latihan Soal :

Tentukan apakah pasangan-pasangan berikut ini ekuivalen 1. ((¬p q) (p ¬r)) (¬p ¬q) dengan ¬(p r) 2. (r p) ((¬r (p q)) (r q)) dengan p q 3. ¬(p q) →(¬p (¬p q)) dengan ¬p q

5.

Aljabar Proposisi

Proposisi memenuhi hukum-hukum pada pada tabel 4.5

Tabel 4.5 Hukum-hukum pada aljabar proposisi

(7)

Latihan Soal :

Argumen adalah rangkaian kalimat. Semua kalimat tersebut, kecuali yang terakhir, disebut Hipotesis (atau asumsi/premise). Kalimat terakhir disebut Kesimpulan.

Secara umum, hipotesis dan kesimpulan dapat digambarkan sebagai berikut :

} hipotesa

} kesimpulan

Tanda dibaca “jadi q”

Suatu argumen dikatakan valid apabila untuk sembarang pernyataan yang disubstitusikan ke dalam hipotesis, jika semua hipotesis tersebut benar. Sebaliknya, meskipun semua hipoesis tersebut benar, kesimpulan juga benar, tetapi ada kesimpulan yang salah, maka argumen tersebutdikatakan invalid.

Jika suatu argumen dan semua hipotesisnyabernilai benar,, maka kebenaran nilai konklusi dikatakan sebagai ”diinferensikan (diturunkan dari kebenaran hipotesis”.

Untuk mengecek apakah suatu argumen merupakan kalimat yang valid, dapat dilakukan langkah-langkah sebagai berikut :

1. Tentukan hipotesis dan kesimpulan kalimat.

2. Buat tabel yang menunjukkan nilai kebenaran untuk semua hipotesis dan

kesimpulan.

3. Carilah baris kritis, yaitu baris dimana semua hipotesis bernilai benar.

4. Dalam baris kritis tersebut, jika semua nilai kesimpulan benar, maka argumen

(8)

Contoh :

Kesimpulannya adalah p q. Tabel kebenaran hipotesis-hipotesis dan kesimpulan tampak pada tabel 4.6.

Tabel 4.6

Baris kritis adalah baris 2, 4, dan 6 (baris yang semua hipotesisnya bernilai T, ditandai dengan arsiran). Pada baris-baris tersebut, kesimpulannya juga bernilai T. Dengan demikian argumen tersebut valid.

(9)

Baris kritis adalah baris 1, 4, 7, dan 8 (baris yang semua hipotesisnya bernilai T, ditandai dengan arsiran). Pada baris ke- 4 (baris kritis) nilai konklusinya adalah F. Dengan demikian argumen tersebut invalid.

Latihan Soal :

1. p → q q →p

p q

2. p q

p → ¬q p → r

r

3. p ¬q →r p q q → p

Referensi

Garis besar

Dokumen terkait

Kebalikan dari tautologi adalah kontradiksi , yakni jika pada semua pasangan nilai dari tabel kebenaran menghasilkan nilai Fatau suatu ekspresi logika yang selalu

Di dalam penggunaanya bahasa matematika khususnya pada logika matematis, yang dimaksud proposisi adalah kalimat atau pernyataan yang selalu mempunyai nilai

Di dalam penggunaanya bahasa matematika khususnya pada logika matematis, yang dimaksud proposisi adalah kalimat atau pernyataan yang selalu mempunyai nilai

•••• Tautologi adalah suatu bentuk kalimat yang selalu

pertama dengan menggunakan tabel kebenaran, yaitu jika semua pilihan bernilai F atau salah maka disebut. kontradiksi, dan cara kedua yaitu

Tautologi merupakan suatu pernyataan majemuk yang selalu bernilai benar untuk semua kemungkinan nilai kebenaran dari pernyataan-pernyataan komponennya.. Sementara, kontradiksi

Proposisi adalah kalimat deklaratif yang bernilai benar (True) saja atau salah (Fals) saja, tetapi tidak sekaligus benar dan salah.. Proposisi juga

Kita dapat membuktikan validitas kalimat logika proposisional menggunakan tabel kebenaran atau metode Proof by