• Tidak ada hasil yang ditemukan

Post SoalTurunan

N/A
N/A
Protected

Academic year: 2017

Membagikan " Post SoalTurunan"

Copied!
3
0
0

Teks penuh

(1)

Materi Pokok : Turunan dan Turunan Berantai

Soal Ujian Nasional tahun 2007

2. Turunan pertama dari f(x) = sin ( 3x² – 2 ) Soal Ujian Nasional tahun 2006

3. Turunan dari f(x) = 3 cos2(3x2 5x) adalah

4. Turunan pertama f(x) = cos³ x adalah …. a. f x cosxsin2x

Soal Ujian Nasional tahun 2005

5. Jika f(x) = ( 2x – 1 )² ( x + 2 ), maka f’(x) = ….

Soal Ujian Nasional tahun 2004

6. Turunan pertama dari fungsi f yang dinyatakan dengan f(x) = 3 2 5

Soal Ujian Nasional tahun 2004 7. Diketahui f(x) = 4 2 9

x , Jika f’(x) adalah turunan pertama dari f(x), maka nilai f’(2) = …. a. 0,1

b. 1,6 c. 2,5 d. 5,0 e. 7,0

Soal Ujian Nasional tahun 2003 8. Diketahui

x

Soal Ujian Nasional tahun 2002

9. Jika f(x) = 1 x2

Soal Ujian Nasional tahun 2002

10. Turunan pertama fungsi f9x) = (6x – 3)³ (2x –

Soal Ujian Nasional tahun 2001

(2)

Luas daerah yang diarsir pada gambar akan mencapai maksimum jika koordinat titik M adalah ….

a. ( 2,5 ) b. ( 2,5/2 ) c. ( 2,2/5 ) d. ( 5/2,2 ) e. ( 2/5,2 )

Soal Ujian Nasional tahun 2007

13. Persamaan garis singgung kurva y = ³√( 5 + x ) di titik dengan absis 3 adalah ….

a. x – 12y + 21 = 0 b. x – 12y + 23 = 0 c. x – 12y + 27 = 0 d. x – 12y + 34 = 0 e. x – 12y + 38 = 0

Soal Ujian Nasional tahun 2006

14. Suatu pekerjaan dapat diselesaikan dalam x hari dengan biaya ( 4x – 160 + 2000/x )ribu rupiah per hari. Biaya minmum per hari penyelesaian pekerjaan tersebut adalah ….

a. Rp. 200.000,00 b. Rp. 400.000,00 c. Rp. 560.000,00 d. Rp. 600.000,00 e. Rp. 800.000,00

Soal Ujian Nasional tahun 2006

15. Suatu perusahaan menghasilkan produk yang dapat diselesaikan dalam x jam, dengan biaya per jam ( 4x – 800 + 120/x ) ratus ribu rupiah. Agar biaya minimum, maka produk tersebut dapat diselesaikan dalam waktu … jam.

a. 40 b. 60 c. 100 d. 120 e. 150

Soal Ujian Nasional tahun 2005 kurikulum 2004

16. Persamaan gerak suatu partikel dinyatakan dengan rumus s = f(t) = 3t1 ( s dalam meter dan t dalam detikk ). Kecepatan partikel tersebut pada saat t = 8 adalah … m/det.

a. 3/10 b. 3/5 c. 3/2 d. 3 e. 5

Soal Ujian Nasional tahun 2005 kurikulum 2004

17. Suatu perusahaan memproduksi x buah barang. Setiap barang yang diproduksi memberikan

keuntungan ( 225x – x² ) rupiah. Supaya total keuntungan mencapai maksimum, banyak barang yang harus diproduksi adalah ….

a. 120 b. 130 c. 140 d. 150 e. 160

Soal Ujian Nasional tahun 2005

18. Persamaan garis inggung pada kurva y = –2x + 6x + 7 yang tegak lurus garis x – 2y + 13 = 0 adalah ….

a. 2x + y + 15 = 0 b. 2x + y – 15 = 0 c. 2x – y – 15 = 0 d. 4x – 2y + 29 = 0 e. 4x + 2y + 29 = 0

Soal Ujian Nasional tahun 2004

19. Luas sebuah kotak tanpa tutup yang alasnya persegi adalah 432 cm². Agar volume kotak tersebut mencapai maksimum, maka panjang rusuk persgi adalah … cm.

a. 6 b. 8 c. 10 d. 12 e. 16

Soal Ujian Nasional tahun 2004

20. Garis singgung pada kurva y = x² – 4x + 3 di titik ( 1,0 ) adalah ….

a. y = x – 1 b. y = –x + 1 c. y = 2x – 2 d. y = –2x + 1 e. y = 3x – 3

Soal Ujian Nasional tahun 2003

21. Grafik fungsi f(x) = x³ + ax² + bx +c hanya turun pada interval –1 < x < 5. Nilai a + b = …. a. – 21

b. – 9 c. 9 d. 21 e. 24

Soal Ujian Nasional tahun 2003

22. Sebuah tabung tanpa tutup bervolume 512 cm³. Luas tabung akan minimum jika jari – jari tabung adalah … cm.

a.

 

3 2 8 

b. 43 2 

c. 163 2 

d. 83 2 

e. 83 32 

Soal Ujian Nasional tahun 2003

23. Garis l tegak lurus dengan garis x + 3y + 12 = 0 dan menyinggung kurva y = x² – x – 6. Ordinat titik singgung garis l pada kurva tersebut adalah ….

(3)

d. 2 e. 4

Soal Ujian Nasional tahun 2002

24. Persamaan garis singgung kurva y = x 2x di titik pada kurva dengan absis 2 adalah …. a. y = 3x – 2

b. y = 3x + 2 c. y = 3x – 1 d. y = –3x + 2 e. y = –3x + 1

Soal Ujian Nasional tahun 2001

25. Fungsi y = 4x³ – 6x² + 2 naik pada interval …. a. x < 0 atau x > 1

b. x > 1 c. x < 1 d. x < 0 e. 0 < x < 1

Soal Ujian Nasional tahun 2001

26. Nilai maksimum fungsi f(x) = x³ + 3x² – 9x dalam interval –3 ≤ x ≤ 2 adalah ….

a. 25 b. 27 c. 29 d. 31 e. 33

Soal Ujian Nasional tahun 2001

27. Nilai maksimum dari y 100 x2 pada interval –6 ≤ x ≤ 8 adalah ….

a. 164

b. 136

c. 10 d. 8 e. 6

Referensi

Dokumen terkait

Suatu kotak berbentuk kubus tanpa tutup, dibuat dari kayu yang tebalnya 1 cm2. Jika panjang rusuk kotak ( kubus ) 20 cm, tentukannlah luas permukaan kotak ( kubus

Jika panjang rusuk kotak ( kubus ) 20 cm, tentukannlah luas permukaan kotak ( kubus ) tersebut. Diketahui luas permukaan sebuah kubus 294

Volume sebuah limas yang alasnya berbentuk persegi adalah 1.352 cm 32. Panjang rusuk

Jika panjang rusuk kubus 24 cm, volume limas T.ABCD adalah ..... Sebuah limas alasnya berbentuk

Suatu kotak persegi panjang mempunyai rusuk-rusuk yang sejajar dengan sumbu-sumbu koordinat dan terletak di dalam elipsoida tersebut.. Untuk menentukan volum

Volume bola terbesar yang dapat dimasukkan ke dalam dus berbentuk kubus dengan panjang rusuk 21 cm adalah ...... Volume limas tersebut

Menghitung Luas, Volume &amp; Panjang Rusuk

Jika fungsi biaya produksi dan fungsi penjualan diketahui, banyak barang yang harus diproduksi dapat ditentukan agar perusahaan memperoleh keuntungan maksimum.. Banyak barang