• Tidak ada hasil yang ditemukan

BAB 2 TINJAUAN PUSTAKA 2.1. Tumbuhan Tembelekan (L. camara Linn) - Analisis Komponen Minyak Atsiri dari Daun Tembelekan (Lantana camara L.) secara Kromatografi Gas – Spektrometri Massa (GC-MS)

N/A
N/A
Protected

Academic year: 2019

Membagikan "BAB 2 TINJAUAN PUSTAKA 2.1. Tumbuhan Tembelekan (L. camara Linn) - Analisis Komponen Minyak Atsiri dari Daun Tembelekan (Lantana camara L.) secara Kromatografi Gas – Spektrometri Massa (GC-MS)"

Copied!
15
0
0

Teks penuh

(1)

BAB 2

TINJAUAN PUSTAKA

2.1. Tumbuhan Tembelekan (L. camara Linn) 2.1.1. Deskripsi Tanaman

Tumbuhan Tembelekan (L. camara Linn) secara morfologi merupakan herba menahun, batang semak, berkayu, tegak, bercabang, batang berduri. Tinggi batang mencapai 4 m, daun berhadapan , warna hijau, bundar telur, permukaan atas daun berambut banyak dan permukaan bawah berambut jarang. Pinggir daun bergerigi dan berbulu kasar dengan panjang 5-8 cm dan lebar 3-5 cm. Perbungaan mengelompok, tersusun dalam bulir yang padat pada ketiak daun. Warna bunga beragam ,seperti putih, kuning, merah, merah muda, dan jingga. Buah bergerombol di ujung tangkai, kecil, bulat, warna hijau ketika mentah, hitam kebiruan dan mengkilap ketika matang. Di dalam satu buah terdapat satu biji. Tumbuhan ini berkembang biak dengan biji. Tumbuhan ini ditemukan di daerah tropis pada lahan terbuka sebagai tanaman liar atau tanaman untuk pagar. Tumbuhan dari dataran rendah sampai ketinggian 1700 m di atas permukaan laut (Djauhariya, 2004).

Klasifikasi tembelekan hasil identifikasi tumbuhan di laboratorium Herbarium Medanense (MEDA) Universitas Sumatera Utara adalah sebagai berikut :

Kingdom : Plantae

Divisi : Spermatophyta

(2)

Ordo : Lamiales

Famili : Verbenaceae

Genus : Lantana

Spesies : Lantana camara Linn

Nama Lokal : Tembelekan

Gambar 2.1. Daun Tembelekan (Lantana camara Linn)

2.1.2. Manfaat tumbuhan Tembelekan

(3)

Balurkan hasil tumbukan tersebut pada bagian yang sakit. Manfaat tembelekan diantaranya yaitu menyembuhkan flu, menyembuhkan demam, menyembuhkann TBC, menyembuhkan rematik, menyembuhkan bengkak, menyembuhkan paru-paru dan sesak napas (Suparni,2012).

2.2. Minyak Atsiri

Minyak atsiri adalah salah satu kandungan tanaman yang sering disebut minyak terbang. Minyak atsiri dinamakan demikian karena minyak tersebut mudah menguap. Selain itu, minyak atsiri juga disebut essential oil (dari kata essence) karena minyak tersebut memberikan bau pada tanaman (Koensoemardiyah, 2010).

Minyak atsiri, minyak mudah menguap, atau minyak terbang merupakan campuran senyawa yang berwujud cairan atau padatan yang memiliki komposisi maupun titik didih yang beragam, penyulingan dapat didefinisikan sebagai proses pemisahan komponen-komponen suatu campuran yang terdiri atas dua cairan atau lebih berdasarkan perbedaan tekanan uap atau berdasarkan perbedaan titik didih komponen-komponen senyawa tersebut (Sastrohamidjojo, 2004).

Minyak atsiri memiliki kandungan komponen aktif yang disebut terpenoid atau terpena. Jika tanaman memiliki kandungan senyawa ini, berarti tanaman tersebut memiliki potensi untuk dijadikan minyak atsiri. Zat inilah yang mengeluarkan aroma atau bau khas yang terdapat pada banyak tanaman (Yuliani dan Satuhu, 2012). Minyak atsiri bukan merupakan senyawa tunggal, tetapi tersusun dari berbagai komponen kimia, seperti alkohol, fenol, keton, ester, aldehida, dan terpena. Bau khas yang ditimbulkan nya sangat tergantung dari perbandingan komponen penyusunnya, demikian pula khasiatnya sebagai obat. Sebagai contoh, minyak atsiri yang banyak mengandung fenol (misalnya minyak sirih, Piper betle)berkhasiat sebagai antiseptik. Minyak sirih ini mampu membunuh kuman seperti halnya karbol atau lisol sehingga minyak atsiri ini sering digunakan sebagai obat cuci hama (Gunawan, 2007).

(4)

minyak atsiri, seperti hidrokarbon, alcohol, oksida, ester, aldehida dan eter. Sangat sedikit sekali yang mengandung satu jenis komponen kimia yang persentasenya sangat tinggi. Yang menentukan aroma minyak atsiri biasanya komponen yang persentasenya tinggi. Walaupun begitu, kehilangan satu komponen yang persentasenya kecil pun dapat memungkinkan terjadinya perubahan aroma minyak atsiri tersebut (Agusta, 2000).

Berdasarkan jumlah atom karbon atau unit isopren yang membentuk senyawa terpen/terpenoid dapat diklasifikasikan sebagai berikut (Fessenden & Fessenden,1992):

Tabel 2.1. Klasifikasi Senyawa Terpenoid

No Kelompok Jumlah Atom Karbon (C)

1.

(5)

H

Menthol α-Terpineol

Gambar 2.2. Struktur Monoterpen

Seskuiterpen memiliki sifat-sifat yang mirip dengan monoterpen dan merupakan kandungan dalam banyak minyak atsiri (Heinrich,et al.,2009). Beberapa struktur seskuiterpen dapat dilihat pada gambar 2.3.

α-Bisabolene β-Selinene

(6)

2.3. Sumber Minyak Atsiri

Minyak atsiri terdapat pada tumbuhan dan biasanya diperoleh dari bagian tertentu dari tumbuhan seperti bunga, buah, akar, daun, kulit kayu, dan rimpang. Kandungan minyak atsiri tidak akan selalu sama antara bagian satu dengan bagian lainnya. Misalnya kandungan minyak atsiri yang terdapat pada kuntum bunga cengkih berbeda dengan pada bagian tangkai bunga maupun daun. Berikut ini beberapa contoh tanaman sumber minyak atsiri dan bagian tanaman yang mengandung minyak atsiri:

• Akar : akar wangi, kemuning.

• Biji : alpukat, kasturi, lada, pala,seledri, wortel, nagasari. • Buah : adas, jeruk, jintan, kemukus, ketumbar.

• Bunga : cempaka kuning, cengkih, daun seribu, kenanga, melati, sedap

malam, srikanta, srigading.

• Daun : cemara gimbul, cemara kipas, cengkih, sereh wangi, kaki kuda, kemuning,kunyit, selasihan, semanggi, sirih.

• Kulit kayu: kayu manis, akasia, kayu teja, selasihan. • Ranting : cemara gimbul, cemara kipas

• Rimpang : jahe, jeringau, kencur, lengkuas, lempuyang sari, temu hitam, temu lawak • Seluruh bagian : akar kucing, bandotan, inggu, selasih, sudamala, trawas (Tony,1994).

Ditinjau dari sumber alami minyak atsiri, substansi mudah menguap ini dapat dijadikan sebagai sidik jari atau ciri khas dari suatu jenis tumbuhan karena setiap tumbuhan menghasilkan minyak atsiri dengan aroma yang berbeda. Dengan kata lain, setiap jenis tumbuhan menghasilkan minyak atsiri dengan aroma yang spesifik (Agusta,2000).

(7)

yang semula ada di luar sel, yang kemudian merusak sel-sel disekitarnya sehingga terbentuklah saluran semacam organ dengan minyak atsiri di dalamnya. Ada kemungkinan sel-sel di sekitarnya kemudian larut dan membentuk kelompok sel yang disebut kelenjar dan kemungkinan suatu deretan sel terlarut sehingga membentuk saluran yang didalamnya berisi minyak atsiri. Kelenjar eksternal berupa sel-sel permukaan (lazim disebut sel epidermis). Produk dari kelenjar (minyak atsiri) biasanya tertimbun di antara kutikula (lapisan sel terluar) dan dinding sel antara suatu sel dengan sel yang lain. Kutikula berupa lapisan tipis, bila kutikula pecah minyak atsiri akan keluar sehingga bau minyak atsiri akan menyebar (Koensoemardiyah, 2010).

2.4. Khasiat dan Manfaat Minyak Atsiri

Kegunaan minyak atsiri sangat luas dan spesifik, khususnya dalam berbagai bidang industri. Banyak contoh kegunaan minyak atsiri, antara lain dalam industri kosmetik (sabun, pasta gigi, sampo, lotion), dalam industri makanan digunakan sebagai bahan penyedap atau penambah cita rasa, dalam industri parfum sebagai pewangi dalam berbagai produk minyak wangi, dalam industri farmasi atau obat-obatan (antinyeri, antiinfeksi, pembunuh bakteri), dalam industri bahan pengawet bahkan digunakan pula sebagai insektisida (Tony, 1994).

Minyak atsiri merupakan preparat antimikroba alami yang dapat bekerja terhadap bakteri, virus, dan jamur yang telah dibuktikan secara ilmiah oleh banyak peneliti (Yuliani dan Satuhu, 2012). Minyak daun sirih (Piper betle) adalah salah satu minyak atsiri yang bersifat sebagai antibakteri. Minyak ini dapat menghambat pertumbuhan beberapa jenis bakteri merugikan seperti Escherichia coli, Salmonella sp, Staphylococcus aureus dan Pasteurella. Minyak adas, lavender (Lavandula officinalis), dan eukaliptus (Eucalyptus globulus)dapat digunakan sebagai antiseptik (Agusta, 2000).

(8)

minyak yang mengandung senyawa citronella seperti minyak serai wangi, Cinnamomum camphora dan eucalyptus memiliki aktivitas sebagai insektisida. Minyak atsiri yang berkhasiat sebagai antiinflamasi (menghilangkan peradangan) adalah minyak lavender. Minyak ini biasanya hanya digunakan untuk mengatasi inflamasi ringan, seperti luka bakar. Senyawa lain dalam minyak yang direkomendasikan efektif untuk menghilangkan bau badan/ deodoran adalah geraniol, patchoulol, dan linalool. Senyawa-senyawa tersebut terdapat pada minyak nilam, jahe, pala, dan serai wangi (Yuliani dan Satuhu, 2012). Beberapa khasiat minyak atsiri yang sering digunakan untuk terapi-aroma dapat dlihat pada tabel berikut (Agusta, 2000).

Tabel 2.4. Aktivitas biologis minyak atsiri yang sering digunakan untuk terapi-aroma

Nama Tumbuhan Nama daerah Khasiat

Abies alba

(9)

Isolasi minyak atsiri adalah usaha memisahkan minyak atsiri dari tanaman atau bagian tanaman asal. Minyak atsiri dalam tanaman terdapat pada bagian dalam rambut kelenjar dan sel kelenjar. Bila tanaman itu tetap utuh, minyak atsiri tetap berada dalam kelenjar pada batang tanaman sehingga sukar untuk dipisahkan. Minyak atsiri hanya dapat dipisahkan dari sel tanaman bila ada uap air atau pelarut lain yang sampai ke tempat minyak tersebut, yang selanjutnya akan membawa butir-butir minyak menguap secara bersamaan. Agar minyak atsiri itu lebih cepat kontak dengan penyari maka bagian-bagian tanaman harus dipotong-potong (Koensoemardiyah, 2010). Pada dasarnya pemotongan merupakan upaya menjadikan bahan tanaman menjadi lebih kecil hingga mempermudah lepasnya minyak atsiri setelah bahan tersebut ditembus uap (Sastrohamidjojo, 2004).

2.5.1. Penyulingan

Penyulingan adalah proses pemisahan antara komponen cair atau padat dari dua macam campuran atau lebih berdasarkan perbedaan titik uapnya dan dilakukan untuk minyak atsiri yang tidak larut dalam air (Yuliani dan Satuhu, 2012). Dalam industri minyak atsiri dikenal tiga metode penyulingan (hidrodestilasi) yaitu :

1. Penyulingan dengan air (water distillation)

Pada metode ini, bahan tanaman yang akan disuling mengalami kontak langsung dengan air mendidih. Ciri khas model ini yaitu adanya kontak langsung antara bahan dan air mendidih. Oleh karena itu, sering disebut penyulingan langsung (Tony, 1994). Perbandingan jumlah air perebus dan bahan baku dibuat seimbang, sesuai dengan kapasitas ketel. Bahan yang telah mengalami proses pendahuluan seperti perajangan dan pelayuan dimasukkan dan dipadatkan. Selanjutnya ketel ditutup rapat agar tidak terdapat celah yang mengakibatkan uap keluar (Armando, 2009).

2. Penyulingan uap dan air (water and steam distillation)

(10)

bahan ditempatkan. Air dipanaskan dengan api seperti pada penyulingan air di atas. Bahan tanaman yang akan disuling hanya terkena uap dan tidak terkena air yang mendidih (Sastrohamidjojo, 2004). Metode ini disebut juga dengan system kukus. Pada prinsipnya, metode penyulingan ini menggunakan uap bertekanan rendah. Keuntungan dari metode ini yaitu penetrasi uap terjadi secara merata ke dalam jaringan bahan dan suhu dapat dipertahankan sampai 1000 C. Lama penyulingan relatif lebih singkat, randemen minyak lebih besar dan mutunya lebih baik jika dibandingkan dengan minyak hasil dari system penyulingan dengan air (Armando, 2009).

3. Penyulingan dengan uap (steam distillation)

Cara ketiga dikenal sebagai penyulingan uap dan perangkatnya mirip dengan kedua alat penyuling sebelumnya hanya saja tidak ada air di bagian bawah alat. Uap yang digunakan lazim memiliki tekanan yang lebih besar daripada tekanan atmosfer dan dihasilkan dari hasil penguapan air yang berasal dari suatu pembangkit uap air. Uap air yang dihasilkan kemudian dimasukkan ke dalam alat penyulingan (Sastrohamidjojo, 2004).

2.5.2. Ekstraksi Minyak atsiri

Ekstraksi adalah proses penarikan komponen aktif (minyak atsiri) yang terkandung dalam tanaman menggunakan bahan pelarut yang sesuai dengan kelarutan komponen aktifnya. Ekstraksi minyak atsiri dapat dilakukan dengan tiga cara yaitu :

1. Ekstraksi dengan pelarut menguap (solvent extraction)

(11)

minyak yang diproses dengan cara ini akan menghasilkan minyak dengan warna kuning kecoklatan (gelap) karena mengandung pigmen alami yang tidak mudah menguap. 2. Ekstraksi dengan lemak dingin (enfluorasi)

Enfluorasi merupakan cara terbaik untuk menarik minyak atsiri yang terdapat dalam bunga. Hal itu karena prosesnya dilakukan dalam suasana dingin sehingga kandungan minyak atsirinya tidak cepat menguap. Untuk proses enfluorasi dibutuhkan lemak dingin yang berfungsi sebagai adsorban atau penyerap minyak atsiri dari bunga.

3. Ekstraksi dengan lemak panas (maserasi)

Maserasi merupakan salah satu proses ekstraksi yang dilakukan melalui perendaman bahan baku dengan pelarut organik (Yuliani dan Satuhu, 2012). Cara maserasi dapat digunakan untuk bahan yang lunak dan untuk bahan yang keras (telah dirajang). Selama perendaman minyak atsiri yang keluar dari bahan (sampel) akan berinteraksi dengan lemak, minyak atsiri kemudian dipisahkan. Untuk memisahkan minyak atsiri dari lemak, diekstraksi dengan alkohol (Guenther, 1997).

2.5.3. Pengepresan

Sistem pengepresan pada umumnya dilakukan untuk bahan berbentuk biji.. Alat ini bekerja dengan menekan atau mengepres bahan baku sehingga sel-sel di dalam bahan akan pecah dan mengeluarkan minyak atsiri (Yuliani dan Satuhu, 2012).

2.6. Kromatografi Gas – Spektrometer Massa

(12)

sistem ionisasi, dimana Electron Impact (EI) adalah metode yang umum digunakan (Agusta, 2000).

2.6.1`. Kromatografi Gas (KG)

Kromatografi gas merupakan proses pemisahan dimana fase geraknya berupa gas dan fase diam umumnya suatu cairan, tetapi dapat berupa zat padat dan zat cair (Depkes RI, 1995). Prinsip dasar kromatografi gas melibatkan volatilisasi atau penguapan sampel dalam injektor, pemisahan komponen-komponen dalam campuran, dan deteksi tiap komponen dengan detektor. Kromatografi gas digunakan untuk memisahkan komponen campuran kimia dalam suatu bahan berdasarkan polaritas campuran (Eaton,1989). Komponen-komponen utama pada Kromatografi Gas :

1. Fase gerak

Fase gerak pada KG juga disebut dengan gas pembawa karena tujuan awalnya adalah untuk membawa solut ke kolom (Rohman, 2009). Fase gerak akan membawa campuran sampel menuju kolom. Campuran dalam fase gerak akan berintegrasi dengan fase diam (Eaton, 1989). Faktor yang menyebabkan suatu senyawa bergerak melalui kolom kromatografi gas adalah sifat mudah menguap dari cuplikan, aliran gas pembawa melalui kolom dapat terjadi karena perbedaan tekanan pada ujung masuk dan ujung keluar dari kolom tersebut. Gas pembawa yang sering dipakai adalah Helium (He), Argon (Ar), Nitrogen (N2), dan Karbondioksida (CO2). Gas pembawa yang dipakai harus disesuaikan

dengan jenis detektornya (Adnan Mochamad, 1997). 2. Ruang suntik sampel

Lubang injeksi didesain untuk memasukkan sampel secara cepat dan efisien. 3. Kolom

(13)

4. Detektor

Komponen utama selanjutnya dalam kromatografi gas adalah detektor. Detektor merupakan perangkat yang diletakkan pada ujung kolom tempat keluar fase gerak (gas pembawa yang membawa komponen hasil pemisahan. Detektor pada kromatografi adalah suatu sensor elektronik yang berfungsi mengubah sinyal gas pembawa dan komponen-komponen di dalamnya menjadi sinyal elektronik (Rohman, 2009). Fungsi detektor (terletak pada ujung kolom pemisah) untuk mengukur kuantitas dari komponen yang telah dipisahkan yang ada dalam aliran gas pembawa yang meninggalkan kolom. Kolom dari detektor diumpan ke sebuah perekam yang menghasilkan suatu kurva yang disebut kromatogram (Griter,J.Roy, 1991).

5. Komputer Kromatografi Gas

modern menggunakan komputer yang dilengkapi dengan perangkat lunaknya (software) untuk digitalisasi sinyal detektor (Rohman, 2009).

2.6.2. Spektrometer Massa

Spektrometer massa adalah suatu alat berfungsi untuk mendeteksi masing-masing molekul komponen yang telah dipisahkan pada sistem kromatografi gas (Agusta,2000). Spektrometer massa adalah suatu instrument yang menghasilkan berkas ion dari suatu zat uji, memilah ion tersebut menjadi spektrum sesuai dengan perbandingan massa terhadap muatan (m/z) dan merekam kelimpahan relatif tiap jenis ion yang ada. Spektrometer massa dapat digunakan untuk mengukur perbandingan massa ion terhadap muatan, untuk menetapkan kelimpahan ion dan untuk mempelajari proses ionisasi (Depkes RI,1995). Spektrometri massa pada umumnya digunakan untuk : menentukan massa molekul, menentukan rumus molekul dengan menggunakan spektrum Massa Beresolusi Tinggi (High Resolution Mass Spectra) dan untuk mengetahui informasi dari struktur dengan melihat pola fragmentasinya (Silverstein,et al.,1986). Spektrometer massa bekerja melalui 4 tahap yaitu :

1. Ionisasi

(14)

kondisi hampa udara pada tekanan 10-4 sampai 10-6 mmHg pada suhu tertentu. Sampel yang berupa uap akan diteruskan ke dalam ruang pengion. Di dalam ruang pengion ini, sampel dibombardir dengan arus electron sekitar 70 eV sehingga terbentuk ion molekul. Kemudian ion molekul tersebut terpecah lagi menjadi ion-ion yang lebih kecil (Agusta, 2000).

2. Akselerasi

Ion yang terbentuk akan diakselerasi sehingga seluruhnya akan mempunyai energi kinetik yang sama. Ion positif akan ditolak dari ruang ionisasi dan seluruh ion diakselerasikan menjadi sinar ion yang terfokus dan tajam.

3. Defleksi

Ion didefleksikan (dibelokkan) oleh medan magnet sesuai dengan massanya. Besarnya defleksi tergantung pada : massa ion yaitu ion yang memiliki massa kecil akan lebih terdefleksi dari yang berat dan muatan ion yaitu ion yang mempunyai 2 atau lebih muatan positif akan lebih terdefleksi dari yang hanya mempunyai satu muatan positif.

Kedua faktor ini digabung menjadi rasio massa/muatan (rasio massa/muatan). Rasio massa/muatan diberi simbol m/z (atau kadang-kadang dengan m/e). Sebagai contoh : jika suatu ion memiliki massa 56 dan muatannya adalah 2+ , maka ion ini akan mempunyai rasio m/z 28.

4. Deteksi

Ion yang melewati mesin akan dideteksi secara elektrik (Dachriyanus, 2004).

(15)

Gambar

Gambar 2.1. Daun Tembelekan (Lantana camara Linn)
Gambar 2.3. Struktur Seskuiterpen
Tabel 2.4. Aktivitas biologis minyak atsiri yang sering digunakan untuk terapi-aroma

Referensi

Dokumen terkait

Penelitian yang dilakukan meliputi karakterisasi simplisia, isolasi minyak atsiri dengan destilasi air, analisis komponen minyak atsiri secara Gas Chromatography-Mass Spectrometry

Sejauh mana adanya perbedaan komponen kimia minyak atsiri yang diperoleh dari rimpang tanaman Jerangau (Acorus calamus) dapat diidentifikasi melalui analisis GC-MS bila

Komponen kimia propolis sangat kompleks yang terdiri dari lilin, getah, minyak atsiri, asam amino, gula, dan berbagai senyawa metabolit sekunder tergantung oleh sumber tanaman

Perlu dilakukan metode pemisahan yang lain untuk mendapatkan minyak atsiri dari tanaman temulawak sehingga dapat dibandingkan hasilnya dari berbagai metode.Perlu juga di

Waktu Tambat dan Konsentrasi Komponen Minyak Atsiri Hasil Analisis GC-MS dari Simplisia Rimpang Lengkuas Merah ...3.

Penelitian yang dilakukan meliputi karakterisasi simplisia, isolasi minyak atsiri dengan metode destilasi air dan analisis komponen minyak atsiri secara Gas

Brum dkk., (1997) juga telah melaporkan bahwa minyak atsiri banyak digunakan sebagai sumber obat- obatan seperti yang dilaporkan dalam hasil uji aktivitas dari minyak atsiri dalam

Minyak atsiri adalah salah satu kandungan tanaman yang sering disebut..