• Tidak ada hasil yang ditemukan

Isolasi Dan Identifikasi Steroid Triterpenoid Pada Sponge (Xestospongia Sp De Laubenfels)Dari Pantai Lhoknga Aceh Besar

N/A
N/A
Protected

Academic year: 2017

Membagikan "Isolasi Dan Identifikasi Steroid Triterpenoid Pada Sponge (Xestospongia Sp De Laubenfels)Dari Pantai Lhoknga Aceh Besar"

Copied!
16
0
0

Teks penuh

(1)

BAB II

TINJAUAN PUSTAKA 2.1 Uraian Sponge

2.1.1 Habitat

Habitat sponge terdapat pada daerah jernih dan menempel pada permukaan substrat. Sponge Xestospongia sp merupakan salah satu jenis sponge yang banyak terdapat di perairan Indonesia (Krisyunida, 2011). Habitat sponge yang melekat pada pasir atau bebatuan menyebabkan hewan ini sulit untuk bergerak, untuk mempertahankan diri dari serangan predator dan infeksi bakteri patogen, sponge mengembangkan sistem “biodefense” yaitu dengan menghasilkan zat racun dari tubuhnya, zat ini umumnya yang dimanfaatkan sebagai bahan farmasi (Murniasih, 2003). Porifera yang sudah teridentifikasi ada 10.000 spesies, sebagian besar hidup dilaut dan hanya 159 spesies hidup di air tawar, semuanya termasuk famili Spongilidae. Umumnya sponge terdapat di perairan jernih dangkal dan menempel di substrat, beberapa menetap didasar perairan berpasir atau berlumpur (Suwignyo, dkk., 2005).

2.1.2 Morfologi dan anatomi

(2)

yang lebih stabil apabila dibandingkan dengan jenis yang sama yang hidup pada perairan yang dangkal (Suparno, 2005). Sponge adalah biota multiseluler primitif yang bersifat filter feeder menghisap air dan bahan-bahan lain di sekelilingnya melalui pori-pori kemudian dialirkan ke seluruh bagian tubuhnya melalui kanal dan dikeluarkan melalui pori-pori yang terbuka (ostula/osculum) (Vacelet, 2008).

Hewan ini dapat hidup dengan baik pada arus air yang kuat, karena aliran air “filter feeder” menyediakan kumpulan makanannya dan oksigen. Makanan sponge terdiri dari detritus organik seperti bakteri, zooplankton dan phytoplankton yang kecil-kecil yang mana secara efektif ditangkap oleh sel-sel berbulu cambuknya. Sponge dapat menyaring partikel yang sangat kecil (diameter < 50μm) yang tidak tersaring oleh hewan-hewan laut lainnya (Amir dan Budiyanto,

1996).

(3)

Pada dasarnya dinding tubuh porifera terdiri atas tiga lapisan, (Suwignyo, dkk., 2005) yaitu:

a) Pinococyte atau Pinacoderm, seperti epidermis berfungsi untuk melindungi tubuh bagian dalam. Bagian sel pinacocyte dapat berkontraksi atau berkerut, sehingga seluruh tubuh hewan dapat sedikit membesar atau mengecil.

b) Mesohyl atau Mesoglea, terdiri dari zat semacam agar, mengandung bahan tulang dan sel amebocyte yang mempunyai banyak fungsi, antara lain untuk pengangkut dan cadangan makanan, membuang partikel sisa metabolisme, membuat spikula, serat sponge dan membuat sel reproduktif.

c) Choanocyte, yang melapisi rongga atrium atau spongocoel. Bentuk choanocyte agak lonjong, ujung yang satu melekat pada mesohyl dan ujung yang lain berada di spongocoel serta dilengkapi sebuah flagelum yang dikelilingi kelopak dari fibril. Getaran flagel pada lapisan choanocyte menghasilkan arus air di dalam spongocoel ke arah osculum, sedangkan fibril berfungsi sebagai alat penangkap makanan. Gambar organ sponge dapat dilihat pada Gambar 2.1

(4)

Berdasarkan sistem aliran air (bukan secara taksonomi), bentuk tubuh porifera dibagi menjadi tiga tipe, (Suwignyo, dkk., 2005) yaitu:

1. Asconoid

Asconoid merupakan bentuk yang paling primitif, menyerupai vas bunga atau jambangan kecil. Pori-pori atau lubang merupakan saluran pada sel porocyte yang berbentuk tabung, memanjang dari permukaan tubuh sampai spongocoel 2. Syconoid

Sponge memperlihatkan lipatan-lipatan dinding tubuh secara horizontal, sehingga potongan melintangnya seperti jari-jari

3. Leuconoid

Tingkat pelipatan dinding spongocoel paling tinggi terdapat pada leuconoid. Gambar tipe morfologi sponge dapat dilihat pada Gambar 2.2.

Gambar 2.2. Tipe morfologi sponge Sumber : (Haris, dkk., 2012)

(5)

Spikula ibarat ‘rangka’ bagi tubuh sponge. Tulang yang berukuran kecil dan tajam, dapat dilihat dengan mata telanjang dan mikroskop. Tubuh sponge yang lunak dapat berdiri karena ditunjang oleh sejumlah besar spikula serta serat organik yang berfungsi sebagai kerangka. Spikula kapur dari CaCO3 dan spikula

silikat H2SiO7. Bentuk spikula bermacam–macam, sehingga dipakai sebagai

indikator untuk identifikasi. Gambar tipe spikula dapat dilihat pada gambar 2.3

Gambar 2.3. Tipe spikula Sumber : Vacelet, 2008

(6)

Budiyanto, 1996). Gambar megasklera dapat dilihat pada gambar 2.4 dan gambar mikrosklera dapat dilihat pada Gambar 2.5

Gambar 2.4. Megasklera Sumber : Haris, dkk., 2012.

Gambar 2.5 Mikrosklera (Haris, et al., 2012). Sumber : Haris, dkk., 2012

(7)

mempuyai tiga percabangan. Tetraxon berbentuk empat percabangan. Polyaxon berbentuk banyak percabangan memijar dari satu pusat.

Gambar megasklera monoaxon dapat dilihat pada Gambar 2.6 dan Gambar 2.7.

Gambar 2.6 Megasklera monoaxon Sumber : (Walker, 1932)

Keterangan: a. fusiform oxea, b. Hastate oxea, c. Strongyloxea, d. Strongyle, e. Tylote, f. Centrotylote oxea, g. Hastate style, h. Fusiform style, i. Styloid, j. Tylostyle, k. Subtylostyle.

.

Gambar 2.7 Megasklera Tetraxon (triaene) Sumber : Walker, 1932

(8)

Hewan avertebrata laut lainnya seperti pada karang, sponge juga tidak memiliki ciri seksual sekunder yang dapat digunakan untuk menentukan jenis seksualitasnya oleh karena itu, satu-satunya cara yang dapat dilakukan untuk pengamatan tersebut adalah pengamatan histologik pada jaringannya. Seksualitas pada sponge dapat dikelompokkan atas dua yaitu:

1) Hermaprodit, yaitu jenis sponge yang menghasilkan baik gamet jantan atau betina selama hidupnya, tetapi menghasilkan telur dan sperma dalam waktu yang berbeda.

2) Gonokhorik, yaitu jenis sponge yang memproduksi hanya gamet jantan atau betina saja selama hidupnya (Haris, dkk., 2012).

2.1.3 Klasifikasi

Filum Porifera yang dibagi dalam 3 kelas (Amir dan Budiyanto, 1996): 1. Kelas Hexactinellida

Hexactinellida merupakan sponge gelas dengan spikula yang terdiri dari silikat dan tidak mengandung spongin. Spikulanya berbentuk bidang "triaxon", dimana masing-masing bidang terdapat dua jari-jari. Sponge dari kelas ini belum banyak dikenal, karena sulit mendapatkan dan hanya terdapat di laut dalam (< 500 meter).

2. Kelas Calcarea

(9)

umum adalah Sycon gelatinosum (berbentuk silinder berwarna coklat muda), Clathrina sp. dan Leucetta sp.

3. Kelas Demospongiae

Hampir 75% jenis sponge yang dijumpai di laut adalah dari kelas Demospongiae. Sponge dari kelas ini tidak memiliki spikula "triaxon" (spikula kelas Hexactinellidae). Beberapa jenis sponge kelas ini ada yang tidak mengandung spikula tetapi hanya mengandung serat-serat kolagen atau spongin saja.

2.1.4 Klasifikasi sponge

Klasifikasi hewan sponge menurut ITS (2014) dan Walker (1932) adalah sebagai berikut:

Kingdom : Animalia Filum : Porifera Kelas : Demospongiae Ordo : Haploscleridae Sub ordo : Petrosina Famili : Petrosidae Genus : Xestospongia

Spesies : Xestospongia sp de Laubenfels

2.2 Kandungan Kimia 2.2.1 Alkaloid

(10)

biasanya sebagai bagian dari sistem siklik. Alkaloida mempunyai aktivitas fisiologi yang menonjol, sehingga banyak diantaranya digunakan dalam bidang pengobatan (Harborne, 1987).

2.2.2 Glikosida

Glikosida adalah suatu golongan senyawa bila dihidrolisis akan terurai menjadi gula (glikon) dan senyawa lain (aglikon atau genin). Umumnya glikosida mudah terhidrolisis oleh asam mineral atau enzim. Hidrolisis oleh asam memerlukan panas, sedangkan hidrolisis oleh enzim tidak memerlukan panas (Sirait, 2007).

Berdasarkan ikatan antara glikon dan aglikon, glikosida dapat dibedakan menjadi:

a. Tipe O-glikosida, ikatan antara bagian glikon dengan aglikon melalui jembatan O. Mayoritas glikosida termasuk ke dalam kelompok ini.

b. Tipe C-glikosida, ikatan antara bagian glikon dengan aglikon melalui jembatan C, yakni gula melekat pada aglikon melalui ikatan karbon-karbon.

c. Tipe S-glikosida, ikatan antara bagian glikon dengan aglikon melalui jembatan S. Contoh: sinigrin yang termasuk ke dalam glikosida glukosinolat dari tumbuhan dari tumbuhan Brassicaceae.

d. Tipe N-glikosida, ikatan antara bagian dari glikon dengan aglikon melalui jembatan N. Contoh: nikleosidin, kronotosidin.

2.2.3 Saponin

(11)

yang menyerupai sabun (bahasa Latin sapo berarti sabun). Saponin adalah senyawa aktif permukaan yang kuat dan menimbulkan busa jika dikocok dalam air dan pada konsentrasi yang rendah sering menyebabkan hemolisis sel darah merah. Saponin sangat beracun dalam larutan yang sangat encer, untuk ikan dan tumbuhan yang mengandung saponin telah digunakan oleh penduduk sebagai racun ikan selama beratus-ratus tahun. Beberapa saponin bekerja sebagai antimikroba (Robinson, 1995).

2.2.4 Steroid/triterpenoid

Steroid adalah triterpena yang kerangka dasarnya sistem cincin siklopentana perhidropenantren (Harbone, 1987). Triterpenoid adalah senyawa yang kerangka karbonnya berasal dari enam satuan isoprena dan secara biosintesis masuk jalur asam mevalonat yang diturunkan dari hidrokarbon C30 asiklik, yaitu

skualena. Uji yang banyak digunakan ialah reaksi Liebermann-Burchard yang dengan kebanyakan triterpen dan sterol memberikan warna hijau-biru (Harborne, 1987). Steroid pada umumnya berupa alkohol dengan gugus hidroksil pada C3

sehingga steroid sering juga disebut sterol (Robinson, 1995). Gambar struktur dasar dapat dilihat pada Gambar 2.8.

(12)

2.3 Ekstraksi

Ekstraksi adalah penyarian komponen aktif dari suatu jaringan tumbuhan atau hewan dengan menggunakan pelarut yang cocok (Handa, 2008). Beberapa metode ekstraksi dengan menggunakan pelarut (Depkes, 2000) yaitu:

A. Cara dingin 1. Maserasi

Maserasi adalah proses pengekstrakan simplisia dengan menggunakan pelarut dengan beberapa kali pengocokan atau pengadukan pada temperatur kamar. Maserasi kinetik berarti dilakukan pengadukan yang kontinu (terus menerus). Remaserasi berarti dilakukan penyaringan berulang dan seterusnya 2. Perkolasi

Perkolasi adalah proses penyarian simplisia dengan pelarut yang selalu baru sampai sempurna yang umumnya dilakukan pada temperatur ruangan. Proses perkolasi terdiri dari tahap pengembangan bahan, tahap maserasi antara, tahap perkolasi sebenarnya (penetesan/penampungan ekstrak), terus menerus sampai diperoleh ekstrak (perkolat) yang jumlahnya 1–5 kali bahan Cara panas

3. Refluks

Refluks adalah ekstraksi dengan menggunakan pelarut pada temperatur titik didihnya, selama waktu tertentu dan jumlah pelarut terbatas yang relatif konstan dengan adanya pendingin balik.

4. Digesti

(13)

5. Sokletasi

Sokletasi adalah proses penyarian dengan menggunakan alat soklet dengan pelarut yang selalu baru sehingga terjadi ekstraksi kontinu dengan jumlah pelarut yang relatif konstan dengan adanya pendingin balik.

6. Infus

Infus adalah ekstraksi dengan pelarut air pada temperatur penangas air (bejana infus tercelup dalam penangas mendidih, temperatur terukur 96–98oC) selama waktu tertentu (15–20 menit).

7. Dekok

Dekoktasi adalah infus pada waktu yang lebih lama (≥ 30 menit) dan temperatur sampai titik didih air

2.4 Kromatografi

Kromatografi adalah suatu metode pemisahan berdasarkan perbedaan perpindahan dari komponen-komponen senyawa di antara dua fase yaitu fase diam (dapat berupa zat cair atau zat padat) dan fase gerak (dapat berupa gas atau zat cair). Kromatografi serapan dikenal jika fase diam berupa zat, jika zat cair dikenal sebagai kromatografi partisi (Sastrohamidjojo, 1985).

1. Fase gerak zat cair–fase diam padat: - Kromatografi lapis tipis

- Kromatografi penukar ion 2. Fase gerak gas–fase diam padat:

- Kromatografi gas padat

(14)

- Kromatografi cair kinerja tinggi 4. Fase gerak gas–fase diam zat cair:

- Kromatografi gas cair - Kromatografi kolom kapiler

Pemisahan dan pemurnian kandungan tumbuhan dilakukan dengan menggunakan salah satu atau gabungan dari beberapa teknik tersebut dan dapat digunakan pada skala mikro maupun makro (Harborne, 1987).

2.4.1 Kromatografi lapis tipis

Kromatografi lapis tipis ialah metode pemisahan fisikokimia. Lapisan pemisah terdiri atas bahan berbutir-butir (fase diam), ditempatkan pada penyangga berupa plat gelas, logam atau lapisan yang cocok. Campuran yang akan dipisah berupa larutan yang di totolkan baik berupa bercak ataupun pita. Plat atau lapisan dimasukkan ke dalam bejana tertutup rapat yang berisi larutan pengembang yang cocok (fase gerak), pemisahan terjadi selama perambatan kapiler (pengembangan) (Stahl, 1985). Fase gerak akan bergerak sepanjang fase diam karena pengaruh kapiler pada pengembangan secara menaik (ascending) atau karena pengaruh gravitasi pada pengembangan secara menurun (descending) (Rohman, 2007).

(15)

bercak tersebut tampak yaitu pertama tanpa pemanasan, kemudian bila perlu dengan pemanasan (Rohman, 2007).

2.4.2 Kromatografi preparatif

Kromatografi lapis tipis (KLT) preparatif merupakan salah satu metode pemisahan dengan menggunakan peralatan sederhana. Ketebalan penjerap yang sering dipakai adalah 0,5-2 mm. Plat kromatografi biasanya berukuran 20 x 20 cm. Pembatasan ketebalan lapisan dan ukuran plat sudah tentu mengurangi jumlah bahan yang dapat dipisahkan dengan KLT preparatif. Penjerap yang paling umum digunakan adalah silika gel. Penotolan cuplikan dilakukan dengan melarutkan cuplikan dalam sedikit pelarut. Cuplikan ditotolkan berupa pita dengan jarak sesempit mungkin karena pemisahan tergantung pada lebar pita. Penotolan dapat dilakukan dengan pipet tetapi lebih baik dengan penotol otomatis. Pengembangan plat KLT preparatif dilakukan dalam bejana kaca yang dapat menampung beberapa plat. Bejana dijaga tetap jenuh dengan pelarut pengembang dengan bantuan kertas saring yang diletakkan berdiri disekeliling permukaan bagian dalam bejana (Hostettmann, et al., 1995).

2.5 Spektrofotometri

2.5.1 Spektrofotometri sinar ultraviolet (UV)

(16)

Suatu atom atau molekul menyerap sinar UV maka energi tersebut akan menyebabkan tereksitasinya elektron pada kulit terluar ke tingkat energi yang lebih tinggi. Tipe eksitasi tergantung panjang gelombang cahaya yang diserap. Gugus kromofor disebut juga gugus yang dapat mengabsorpsi cahaya (Dachriyanus, 2004).

2.5.2 Spektrofotometri sinar inframerah (IR)

Spektrofotometri inframerah pada umumnya digunakan untuk: 1. Menentukan gugus fungsi suatu senyawa organik

2. Mengetahui informasi struktur suatu senyawa organik dengan membandingkan daerah sidik jarinya.

Pengukuran pada spektrum infrared dilakukan pada daerah cahaya infrared tengah (mid-infrared) yaitu pada panjang gelombang 2.5–50 �m atau bilangan gelombang 4000–200 cm-1. Energi yang dihasilkan oleh radiasi ini akan menyebabkan vibrasi atau getaran pada molekul. Pita absorpsi sinar infrared sangat khas dan spesifik untuk setiap tipe ikatan kimia atau gugus fungsi

(Dachriyanus, 2004). Jenis absorpsi energi yang lain, molekul-molekul dieksitasikan ke tingkat

Gambar

Gambar 2.1. Bagian organ sponge  Sumber : (Vacelet, 2008)
Gambar 2.2.  Tipe morfologi sponge  Sumber : (Haris, dkk., 2012)
Gambar 2.3.  Tipe spikula  Sumber : Vacelet, 2008
Gambar 2.4.  Megasklera    Sumber :  Haris, dkk., 2012.
+3

Referensi

Dokumen terkait

Tujuan penelitian untuk mengetahui karakteristik simplisia, pemeriksaan golongan senyawa kimia, isolasi dan identifikasi senyawa steroid/triterpenoid dari sponge.

Puji dan syukur kehadirat Tuhan Yang Maha Esa yang telah melimpahkan rahmat dan anugerah-Nya sehingga penulis menyelesaikan skripsi ini yang berjudul “Isolasi

ISOLASI STEROID/TRITERPENOID DARI SPONGE Chalinula sp DAN IDENTIFIKASI SECARA SPEKTROFOTOMETRI ULTRAVIOLET DAN.. INFRAMERAH

karakterisasi simplisia, isolasi senyawa steroid/triterpenoid dari sponge Chalinula. sp dan identifikasi isolat yang diperoleh secara spektrofotometri

Metabolit Sekunder Dari Sponge Sebagai Bahan Obat- Obatan.. Biology Of