• Tidak ada hasil yang ditemukan

Summary

Dalam dokumen Materials for Advanced Packaging (Halaman 185-191)

wire. Such a condition rarely occurs in today’s modern packaging configura- tions. Elongation in aluminum wires can increase as much as 30% under high temperature aging but again, reliability is not threatened.

Gold wires are typically stabilized and annealed at elevated temperatures so that their strength and elongation properties will be affected less by the high temperature environment. Again, as shown above under proper circumstances, the gold-gold interface will remain strong and stable to at least 5008C temperatures.

While the metallurgical interfaces are stable after long periods of annealing (storage) at high temperature, the question remains as to the fatigue resistance of these wires when subjected to temperature cycling over wide temperature ranges (Ts). LargeT environments can occur in space, oil wells, engines and under certain operational conditions (power cycling).Ts, in these environ- ments can range from 2008C to over 5008C in certain applications with lower temperature in the –1408C range and high temperatures exceeding 350–4008C.

Little or no data exists on fatigue of wirebonds under temperature cycling at elevated mean temperatures. Benoit, et al. [7], studied fatigue at room tempera- ture after the wires were anneal at 3008C. His findings indicate that the annealed wires failed more rapidly than their unannealed counterparts. Much more work in this area is needed to ensure wirebond reliability in high temperature, large T environments.

References

1. ASTM Standard Test Method: F458-06 (2006), ‘‘Standard Non-Destructive Pull Testing of Wire Bonds,’’ in Annual Listing of ASTM Standards, ASTM International West Conshohocken, Pennsylvania, USA

2. ASTM Standard Test method: F459-06(2006), ‘‘Standard Test Methods for Measuring Pull Strength of Microelectronic Wire Bonds’’ in Annual Listing of ASTM Standards ASTM International, West Conshohocken, PA, USA

3. ASTM Standard Test Method: F1269-06(2006), ‘‘Test Method for Destructive Shear Testing of Ball Bonds,’’ in Annual Listing of ASTM Standards, ASTM International West Conshohocken, Pennsylvania, USA

4. Banda, C. V., Mountain, D. J., Charles, Jr., H. K., Lehtonen, J. S., Keeney, A. C., Johnson, R. W., Zhang, T., and Hou, Z. ‘‘Development of Ultra-thin Flip Chip Assem- blies for Low Profile SiP Applications,’’ in Proc. 37th Int. Microelectronics Symposium, Long Beach, CA, pp. 551–555 (2004)

5. Banda, C.V., Johnson, R.W., Zhang, T., Hou, Z., and Charles, Jr., H.K. ‘‘Flip Chip Assembly of Silicon Die on Flex Substrates’’ IEEE Trans on Electronic Packaging Manufacturing, Vol. 31, No. 1, pp 1–8, (2008)

6. Bardeen, J. and Brattain, W. H. ‘‘The Transistor, A Semiconductor Triode,’’ Physical Review, 74, 230 (1948)

7. Benoit, J., Chen, S., Grzybowski, R., Lin, S., Jain, R., and McClusky, P., ‘‘Wire Bond Metallurgy for High Temperature Electronics’’ Proc. 4th International High Tempera- tureElectronics Conference, Albuqyerque, NM, pp 109–113 (1998)

8. Bischoff, A., Aldinger, F., and Heraeus, W. ‘‘Reliability Criteria of New Low Cost Materials for Bonding Wires and Substrates,’’ in Proc. 34th Electronic Components Conference, New Orleans, Louisiana, USA, pp. 411–417 (1984)

9. Breach, C., Wulff, W., Ditter, K., Calpito, D. R., Garnier, M., Boillot, V., and Wei, T. C.,

‘‘Reliability and Failure Analysis of Gold Ball Bonds in Fine and Ultra-fine Pitch Applications’’, Proceedings of Semicon Singapore, pp. 1–10 (2004)

10. Charles, Jr., H. K., Romenesko, B. M., Uy, O. M., Bush, A. G., and Von Briesen, R.

‘‘Hybrid Wirebond Testing – Variables Influencing Bond Strength and Reliability,’’ The International Journal for Hybrid Microelectronics 5(1), 260–269 (1982a)

11. Charles, Jr., H. K., Romenesko, B. M., Wagner, G. D., Benson, R. C., and Uy, O. M.

‘‘The influence of contamination on aluminum-gold intermetallics,’’ in Proc. Int. Relia- bility Physics Symposium, San Diego, California, USA pp. 128–139 (1982b)

12. Charles, Jr., H. K., Clatterbaugh, G. V., and Weiner, J. A. ‘‘The Ball Bond Shear Test: Its Methodology and Application,’’ in Gupta D C (ed), Semiconductor Processing, ASTM STP 850, 429–457 (1984)

13. Charles, Jr., H. K. ‘‘Ball Bond Shearing: An Interlaboratory Comparison,’’ in Proc.

International Microelectronics Symposium, Atlanta, GA, pp. 265–274 (1986)

14. Charles, Jr., H. K. and Clatterbaugh, G. V. ‘‘Thin Film Hybrids.,’’ in Minges M L. (ed), Electronic Materials Handbook, Vol. 1, Packaging, ASM International, Materials Park, Ohio, USA, 313–331 (1989)

15. Charles, Jr., H. K., Mach, K. J., and Edwards, R. L. ‘‘Multichip Module (MCM) Wirebonding,’’ in Proc. International Symposium on Electronic Packaging Technology (ISEPT ’96), Shanghai, Peoples Republic of China, pp. 336–341 (1996)

16. Charles, Jr., H. K., Mach, K. J., Edwards, R. L., Lehtonen, S. J., and Lee, D. M.

‘‘Wirebonding on Various Multichip Module Substrates and Metallurgies,’’ in Proc.

47th Electronic Components and Technology Conference, San Jose, California, USA, pp. 670–675 (1997)

17. Charles, Jr., H. K., Mach, K. J., Edwards, R. L., Francomacaro, A. S., Lehtonen, S. J., and DeBoy, J. S. ‘‘Wirebonding: Reinventing the Process for MCMs,’’ in Proc. Interna- tional Symposium on Microelectronics, San Diego, California, USA, pp. 645–655 (1998)

18. Charles, Jr., H. K., Mach, K. J., Edwards, R. L., Francomacaro, A. S., Lehtonen, S. J., and DeBoy, J. S. ‘‘Multichip Module and Chip-On-Board Wirebonding, in Proc. 12th European Microelectronics Conf., Harrogate, Yorkshire, England, pp. 525–532 (1999) 19. Charles, Jr., H. K., Mach, K. J., Edwards, R. L., Francomacaro, A. S., DeBoy, J. S., and

Lehtonen, S. J. ‘‘High Frequency Wirebonding: Its Impact on Bonding Machine Para- meters and MCM Substrate Bondability,’’ in Proc. 34th International Microelectronics Symposium, Baltimore, MD, pp. 350–360 (2001)

20. Charles, Jr., H. K., Mach, K. J., Lehtonen, S. J., Francomacaro, A. S., DeBoy, J. S., and Edwards, R. L. ‘‘High-Frequency Wirebonding: Process and Reliability Implications,’’ in Proc. 52nd IEEE Electronic Components and Technology Conference, San Diego, CA, pp. 881–890 (2002)

21. Charles, Jr., H. K., Mach, K. J., Lehtonen, S. J., Francomacaro, A. S., DeBoy, J. S., and Edwards, R. L. ‘‘Wirebonding at High Ultrasonic Frequencies: Reliability and Process Implications,’’ Microelectronics Reliability, Vol. 43, pp. 141–153 (2003)

22. Charles, Jr., H.K. ‘‘The Wirebonded Interconnect: Mainstay for Electronics’’ Chapter 3 in Micro-and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging, Vol.2. E. Suhir, Y.C.Lee, and C.P. Wong editors, Springer, pp 71–120 (2007)

23. Chen, G. K. C. ‘‘The Role of Micro-Slip in Ultrasonic Bonding of Microelectronic Dimensions,’’ in Proc. 1972 International Microelectronic Symposium, Washington DC, October 30 – November 1, 1972, pp. 5:A-1-1 to 5-A-1-9

24. Ching, T. B. and Schroen, W. H. ‘‘Bond Pad Structure Reliability,’’ 24th Annual Proc.

Reliability Physics Symposium, Monterey, CA, pp. 64–70 (1988)

25. Clatterbaugh, G. V., Weiner, J. A., and Charles, Jr., H. K. ‘‘Gold-Aluminum Interme- tallics,’’ Ball Bond Shear Testing and Thin Film Reaction Couples,’’ IEEE Trans. Com- ponents, Hybrids Manufacturing Technology, CHMT-7(4), 349–356 (1984)

26. Clatterbaugh, G. V. and Charles, Jr., H. K. ‘‘The effect of high temperature intermetallic growth on ball shear induced cratering,’’ IEEE Trans. Components, Hybrids and Man- ufacturing Technology, CHMT-13, No. 4, pp. 167–175 (1990)

27. Demmin, J. C. ‘‘Ultrasonic Bonding Tools for Fine Pitch, High Reliability Intercon- nects,’’ in Proc. Int. Conference on Multichip Modules, Denver, Colorado, USA, pp.

397–402 (1996)

28. Ehrlich, V. J. and Tsao, J. Y. ‘‘Laster Direct Writing for VLSI,’’ in VLSI Electronics:

Microstructure Science, Vol. 7, Academic Press, pp. 129–164 (1983)

29. Endicott, H. W., James, H. K., and Nobel, F. ‘‘Effects of Gold-Plating Additives on Semiconducting Wire Bonding,’’ Plating and Surface Finishing V, pp. 58–61 (1981) 30. Evans, K. L., Guthrie, T. T. and Hayes, R. G. ‘‘Investigations of the Effect of Thallium on

Gold/Aluminum Wire Bond Reliability,’’ in Proc ISTFA, Los Angeles, CA, pp. 1–10 (1984)

31. Gehman, B. L. ‘‘Bonding Wire for Microelectronic Interconnections,’’ IEEE Trans.

Components Hybrids and Manufacturing Technology, CHMT-3(8), 375–380 (1980) 32. Geppert, L. ‘‘Solid State,’’ IEEE Spectrum 35(1), 23–28 (1998)

33. Glaser, A. B. and Subak-Sharpe, G. E. Integrated Engineering: Design Fabrication and Applications, Addison-Wesley, Reading, West Virginia, USA (1979)

34. Goldfarb, S., ‘‘Wire Bonds on Thick Film Conductors’’, proc. 21st IEEE Electronics Components Conference, Washington, DC pp 295 – (1971)

35. Gonzalez, B., Knecht, S., and Handy, H. ‘‘The Effect of Ultrasonic Frequency on Fine Pitch Al Wedge Wirebonds,’’ in Proc. 46th Electronic Components and Technology Conference, Orlando, Florida, USA, pp. 1078–1087 (1996)

36. Gonzalez, C. G., Wessel, R. A., and Padlewski, S. A. ‘‘Epoxy-Based Aqueous-Processable Photodielectric Dry Film and Conductive Via Plug for PCB Build-Up and IC Packa- ging,’’ in Proc. 48th Electronic Components and Technology Conference, Seattle, Washington, USA, pp. 138–143 (1998)

37. Harman, G. G. ‘‘Wirebonding – Towards 6 Yield and Fine Pitch,’’ in Proc. 42nd Electronic Components and Technology Conference, San Diego, California, USA, pp.

903–910 (1992)

38. Harman, G. G., ‘‘Metallurgical Interconnections for Extreme High and Low Tempera- ture Environments’’, Chapter 4, Micro- and Opto-Electronic Materials and Structures:

Physics, Mechanics, Design, Reliability, Packaging: Volume 2, Ephraim Suhir, Y. C. Lee, and C. P. Wong (Editors), Springer, 2007

39. Harman, G. G. ‘‘Wire Bonding to Multichip Modules and Other Soft Substrates,’’ in Proc 1999 International Conference and Exhibition on Multichip Modules, Denver, Colorado, USA, pp. 292–301 (1995)

40. Harman, G. G. Wire Bonding in Microelectronics: Materials Processes, Reliability and Yield, McGraw-Hill, New York, New York, USA (1997)

41. Harman, G. G. and Canon, C. A. ‘‘The Microelectronic Wire Bond Pull Test, How to Use It, How to Abuse It,’’ IEEE Trans. Components, Hybrids and Manufacturing Technol- ogy, CHMT-1(3), 203–210 (1978)

42. Heinen, G., Stierman, R. J., Edwards, D., and Nye, L. ‘‘Wire Bond Over Active Circuits,’’

in Proc. 44th Electronic Components and Technology Conference (ECTC), Washington, D.C., pp. 922–928 (1994)

43. Hirota, J., Machinda, K., Okuda, T., Shimotomai, M., and Kawanaka, R. ‘‘The Devel- opment of Copper Wirebonding for Plastic Molded Semiconductor Packages,’’ in Proc.

35th IEEE Electronics Component Conference, Washington, DC, pp. 116–121 (1985) 44. Horsting, C. ‘‘Purple Plaque and Gold Purity,’’ 10th Annual Proc. IRPS, Las Vegas, NV,

pp. 155–158. (1972)

45. Ito, S., Kuwamura, M., Akizuki, S., Ikemura, K., Fukushima, T., and Sudo, S. ‘‘Solid Type Cavity Fill and Underfill Materials for New IC Packaging Applications,’’ in Proc.

45th IEEE Electronic Components and Technology Conference, Las Vegas, Nevada, USA (1995)

46. Jaecklin, V. P. ‘‘Room Temperature Ball Bonding Using High Ultrasonic Frequencies,’’

in Proc. Semicon: Test, Assembly and Packaging, Singapore, pp. 208–214 (1995) 47. Jellison, J. L. ‘‘Effect of Surface Contamination on the Thermocompression Bondability

of Gold,’’ IEEE Trans. Parts, Hybrids and Packaging, Vol. PHP-11, pp. 206–211 (1975) 48. Jellison, J.L., ‘‘Kinetics of Thermocompression Bonding to Organic Contaminated Gold

Surfaces’’ IEEE Trans. Parks, Hybrids and Packaging, PHP-13, pp 132–137 (1977) 49. Jellison, J.L., and Wagner, J. A. ‘‘role of Surface Contaminants in the Deformation

Welding of Gold to Thick and Thin Films’’ Proc. 28th Electronic Components Confer- ence pp 336–345, (1979)

50. Johnston, C. N., Susko, R. A., Siciliano, J. V., and Murcko, R. J. ‘‘Temperature Depen- dent Wear-out Mechanism for Aluminum/Copper Wire Bonds,’’ in Proc. International Microelectronics Symposium, Orlando, FL, pp. 292–296 (1991)

51. Kilby, J. S. ‘‘Invention of the Integrated Circuit,’’ IEEE Trans. Electronic Devices, ED- 23, 648–654 (1976)

52. Klein, H. P., Durmutz, U., Pauthner, H., and Rohrich, H. ‘‘Aluminum Bond Pad Requirements for Reliable Wire Bonds,’’ in Proc. IEEE Int. Symposium on Physics and Failure Analysis of ICs, Singapore, pp. 44–49. (1989)

53. Koch, T., Richling, W., Whitlock, J., and Hall, D., ‘‘A Bond Failure Mechanism’’ Proc.

24th Annual Reliability Physics Symposium, Anaheim, CA. pp 55–60 (1986)

54. Kurtz, J., Cousens, D., and Defour, M. ‘‘Copper Wire Ball Bonding,’’ in Proc. Int.

Electronic Packaging Society Conference, New Orleans, Louisiana, USA, pp. 1–5 (1984) 55. Langenecker, B. ‘‘Effects of Ultrasound on Deformation Characteristics of Metals,’’

IEEE Transactions on Sonics and Ultrasonics, Vol. SU-13, pp. 1–8 (1966)

56. Levinson, L. M., Eichelberger, C. W., Wognarowski, and Carlson, R. O. ‘‘High-Density Interconnect Using Laser Lithography,’’ in Proc. International Symposium on Micro- electronics, Seattle, Washington, October 17–19, 1988, pp. 301–306

57. Ling, J. and Albright, C. E. ‘‘The Influence of Atmospheric Contamination in Copper to Copper Ultrasonic Welding,’’ in Proc. 34th Electronic Components Conference, New Orleans, Louisiana, USA, pp. 209–218 (1984)

58. Liu, D., Zhang, C., Graves, J., and Kegresse, T. ‘‘Laser Direct-Write (LDW) Technology and Its Applications in Low Temperature Co-Fired Ceramic (LTTC) Electronics,’’ in Proc. 2003 International Symposium on Microelectronics, Boston, Massachusetts, Nov.

18–20, 2003, pp. 298–303

59. Lo, George and Sitaraman ‘‘G-Helix: Lithography-Based, Wafer-Level Compliant Chip- to-Substrate Interconnect,’’ in Proc. 54th Electronic Components and Technology Con- ference, Las Vegas, Nevada, June 1–4, 2004, pp. 320–325

60. Meisser, C. ‘‘Bonding Techniques for Plastic MCMs,’’ Semiconductor International 14, 120–124 (1991)

61. Microbonds, Inc., 151 Amber Street, Unit 1 Markham, Ontario, Canada L3R3B3, www.

microbonds.com

62. Miller, L. F. ‘‘Controlled Collapse Reflow Chip Joining,’’ IBM J. Res. Dev., 13, 239–250 (1969)

63. Moore, G. E. ‘‘VLSI: Some Fundamental Challenges,’’ IEEE Spectrum, 16(4), 30–37 (1979)

64. Mundt, R., O’Dell, G., and Ruben, D., ‘‘Laser Ribbon Bonding: A novel Interconnect Method’’ Proc. 37th International Microelectronics Symposium, Long Beach, CA. Ses- sion THA12-2 (2004)

65. Newsome, J.L., Oswalkm R.G., and rodrigues de Miranda, W.R., ‘‘Metallurigical Aspects of Aluminum Wire Bonds to Gold Metallization’’ Proc. 14th Annual Reliability Physics Symposium, Las Vegas, NV, pp 63–74 (1976)

66. Onoda, H., Itashimoto, K., and Touchi, K. ‘‘Analysis of Electromigration-Induced Fail- ures on High Temperature Sputtered Al-Alloy Metallization,’’ J. Vacuum Science Tech- nology, A(13), 1546–1555 (1995)

67. Onuki, J., Suwa, M., Iizuka, T., and Okikawa, S. ‘‘Study of Aluminum Ball Bonding for Semiconductors,’’ in Proc. 34th Electronic Components Conference, New Orleans, Louisiana, USA, pp. 7:12 (1984)

68. Otsuka, K. and Tamutsa, T. ‘‘Ultrasonic Wire Bonding Technology for Custom LSIC with Large Number of Pins,’’ in Proc. 31st IEEE Electronic Components Conference, Atlanta, Georgia, USA, pp. 350–355 (1981)

69. Philofsky, E. ‘‘Intermetallic Formation in Gold-Aluminum Systems,’’ Solid State Elec- tronics 13(10), 1391–1399 (1970)

70. Prather, J.B. Robertson, S.D., and Slemmons, J.W., ‘‘Aluminum Wire Bonding to Gold Thick-Film Conductors’’ Electronic Packaging and Productions, p. 68 – (1974) 71. Ramsey, T. H. and Alfaro, C. ‘‘The Effect of Ultrasonic Frequency on Intermetallic

Reactivity of Au-A1 Bonds,’’ Solid State Technology, Vol. 34, pp. 37–38, (1991) 72. Ravi, K. V. and Philofsky, E. M. ‘‘Reliability Improvement of Wire Bonds Subjected to

Fatigue Stresses,’’ in Proc. 10th IEEE Reliability Physics Symposium, Las Vegas, Nevada, USA, pp. 143–149 (1972)

73. Riddle, J. ‘‘High Cycle Fatigue (Ultrasonic) Not Corrosion in Fine Microelectronic Bonding Wire,’’ in Proc. 3rd ASM Conference on Electronics Packaging, Materials, Processes, and Corrosion in Microelectronics, Minneapolis, Minnesota, pp. 185–191 (1987)

74. Romensko, B. M., Charles, Jr., H. K., Clatterbaugh, G. V., and Weiner, J. A. ‘‘Thick-film Bondability: Geometrical and Morphological Influences,’’ The Int. J. for Hybrid Micro- electronics, Vol. 8, pp. 408–419 (1985)

75. Romenesko, B. M., Charles, Jr. H. K., Cristion, J. A., and Sui, B. K. ‘‘Gold-Aluminum Wirebond Inteface Testing Using Laser-Induced Ultrasonic Energy,’’ in Proc. 50th Electronic Components and Technology Conference, Las Vegas, NV, pp. 706–710 (2000)

76. Schaller, R. R. ‘‘Moore’s Law: Past, Present, and Future,’’ IEEE Spectrum, 34(6), 53–59 (1997)

77. Shirai, Y., Otsuka, K., Araki, T., Seki, I., Kikuchi, K., Fujita, N., and Miwa, T. ‘‘High Reliability Wire Bonding Technology by the 120 kHz Frequency of Ultrasonic,’’ in Proc.

1993 International Conference on Multichip Modules, Denver, Colorado, pp. 366–375, (1993)

78. Spencer, T.H. ‘‘Thermocompression Bond Kinetics – The Four Principle Variables’’ Int.

J. hybrid Microelectronics, Vol. 5 No. 1 pp. 404–408 (1982)

79. Takahashi, T., Rutter, Jr., E. W., Moyer, E. S., Harris, R. F., Frye, D. C., St. Joor, V. L., and Oakes, F. L. ‘‘A photo-definable benzocyclobutene resin for thin-film microelectro- nic applications,’’ in Proc. Int. Microelectronics Conference, Yokohama, Japan, pp. 64–70 (1992)

80. Takeda, K., Ohmasa, M., Kurosu, N., Hosaka, J. ‘‘Ultrasonic Wirebonding Using Gold Plated Wire onto Flexible Printed Circuit Board,’’ in Proc. 1994 International Microelec- tronics Conference, Oamya, Japan, pp. 173–177 (1994)

81. Tay, A. A. O., Yeo, K. S., Wu, J. H. ‘‘The Effect of Wirebond Geometry and Die Setting on Wire Sweep,’’ IEEE Trans. on Components, Packaging and Manufacturing Technol- ogy – Part B 18(1), 201:209 (1995)

82. Teverosky, A. ‘‘Effect of Vacuum on High Temperature Degradation of Gold/Aluminum Wire Bonds in PEMS’’, Proc. 42nd Annual Reliability Physics Symposium, Phoenix, AZ, pp. 547–556 (2004)

83. Thomas, A. and Berg, H. M. ‘‘Micro-Corrosion of Al-Cu Bonding Pads,’’ in Proc. 23rd IEEE Reliability Physics Symposium, Orlando, Florida, USA, pp. 153–158 (1985) 84. Tsujino, J., Mori, T., and Hasegawa, K. ‘‘Characteristics of Ultrasonic Wire Bonding

Using High Frequency and Complex Vibration Systems,’’ in Proc. 25th Annual Ultra- sonic Industry Association Meeting, Columbus, Ohio, pp. 17–18, (1994)

85. Tuckerman, D. B., Ashkenas, D. J., Schmidt, E., and Smith, C. ‘‘Die Attach and Inter- connection Technology for Hybrid WSI,’’ 1986 Laser Pantography States Report UCAR-10195, Lawrence Livermore Laboratories (1986)

86. Tummula, R. R., Rymazewski, E. J., Klopfenstein, A. G. Microelectronics Packaging Handbook, Vols. I, II, & III, Chapman Hall, NY, USA (1997)

87. Wakabayashi, S., Murata, A., and Wakobauashi, N. ‘‘Effects of Grain Refinement in Gold Deposits on Aluminum Wire-Bond Reliability,’’ Plating and Surface Finishing V, pp. 63–68 (1981)

88. Weiner, J. A., Clatterbaugh, G. V., Charles, Jr., H. K., and Romenesko, B. M. ‘‘Gold Ball Bond Shear Strengths Effects of Cleaning, Metallization and Bonding Parameters,’’ in Proc. IEEE 33rd Electronic Components Conference. Orlando, Florida, USA, pp.

208–220 (1983)

89. The Welding Handbook, Vol. 2, eighth edition, ‘‘Ultrasonic Welding,’’ pp. 784–812 (1991)

90. Yao, Y. F., Lin, T. Y., and Chua, K. H. ‘‘Improving the Deflection of Wirebonds in Stacked Chip Scale Packages CSP,’’ in Proc. 53rd Electronic Components and Technol- ogy Conference, New Orleans, LA, pp. 1359–1363 (2003)

Lead-Free Soldering

Ning-Cheng Lee

Abstract Due to the global trend of green manufacturing, lead-free becomes the main stream soldering choice of electronic industry. SnAgCu alloys are the prevailing choices, with SnCu(+Y), SnAg(+Y), and BiSn(+Y) families also being adopted, where Y represents minor additive elements. The soldering processing window is narrower than that of Sn63, mainly due to the elevated melting temperature of SnAgCu solder and the limited high temperature toler- ance of components and board. The high surface tension of Sn aggravates the difficulty in wetting, while the high reactivity of Sn puts more constraint in contact time allowed between molten solder and base metal or solder container.

The creep rate of SnAgCu is slower at low stress, but faster at high stress than Sn63. This results in a longer temperature cycling life at low joint strain applications, but a shorter cycling life at high joint strain applications. Higher Cu content stabilizes IMC structure at interface between SnAgCu solder and NiAu. The high rigidity of SnAgCu solders enhances the fragility of joints, although significant improvement has been accomplished via low Ag or high Cu content or doping approaches.

Keywords Solder

Soldering

Lead-free

Pb-free

SnAgCu

SAC

Tin-silver-copper

Surface finish

Reliability

Dalam dokumen Materials for Advanced Packaging (Halaman 185-191)