• Tidak ada hasil yang ditemukan

数值求的基本思想

N/A
N/A
Protected

Academic year: 2023

Membagikan "数值求的基本思想"

Copied!
27
0
0

Teks penuh

(1)

.

1

8

(2)

.

1

(

) 1

) ( )

( )

( x dx F b F a

b f

a = -

ò

ò

= b

a f x dx

I ( )

. ( .

F

(3)

.

2

: f(x)

ò

ò a b

b

a dx

x dx x

x sin

, sin 2

f(x)

x i x 0 x 1x n

y i = f(x i ) y 0 y 1y n

(4)

.

3

? .

x y

: 1

1 [ ( ) ( )]

) 2

( b a f b f a

dx x

b f

a - +

ò »

: 2 ) 3

a b

(5)

.

4

2,(

i i n

i

i i

b

a f x dx = å f D x = D x

ò ( ) lim ® = ( ) , max

0 1 x l

l

2, å ) = ( 0

= n D

i

i

i x

f

1

) ( x

= 2,(

2 = 2, ) x k ( = ( 0 2,(

ò å

=

» n

k

k k

b

a f x dx A f x

0

) (

)

(

(6)

5

L :

1. ?

2. ?

3. .

4. .

0 5

1.5

ò

= b

a f x dx

S ( )

(7)

.

6

h x

f S

n j

j

n å

=

=

1

) (

ò å

® =

= n

j h j

b

a f x dx f x h

0 1 ( )

lim )

(

h 1 0.5 0.2 ···

S n 5.2908 5.1044 4.9835 ···

0 1 2 3 4 5 6 7 8 9 10

0 0.5 1 1.5

) 1 (

3

= x - e x x

f

(8)

.

7

] [ )

( )

(

0

f R x

f A dx

x f

n

k

k k

b

a = å +

ò =

R[f ] ——

x 0 , x 1 , ···, x n ——

A 0 , A 1 , ···, A n ——

: a b

)]

( )

( 2 [

)

( b a f a f b

dx x

b f

a - +

ò » A 0 = (b – a )/2

A 1 =(b – a )/2

) ( )

( )

( x dx A 0 f a A 1 f b

b f

a » +

ò

(9)

8

.

[a b] : a x 0 < x 1 < x 2 < …… < x n b

å =

» n

j

j

j x f x

l x

f

0

) (

) ( )

(

å ò

ò =

» n

j

j b

a j b

a f x dx l x dx f x

0

) (

] )

( [

) (

) , ,

2 , 1 , 0 (

, )

( x dx j n

l

A b

a j

j = ò = !

] [

) (

) (

0

f R x

f A dx

x f

n

j

j j

b

a = å +

ò =

Lagrange

(10)

.

9

ò

ò - = + + +

= b

a n

b n

a n x dx

n dx f

x L

x f f

R ( )

)!

(

) )] (

( )

( [ ]

[

) (

1 1

1 x w

2.

) 2 (

1

0 dx b a

a b

x A b b

a = -

-

= ò - A 1 = ò a b b x - - a a dx = 2 1 ( b - a )

] [ )]

( )

( 2 [

)

( b a f a f b R f

dx x

b f

a - + +

ò =

è

(11)

.

10

3. .

è x 0 = a

2 / ) ( b a h = - , x k = x 0 + kh ( k = 0, 1, 2 )

ï ï ï î ï ï ï í ì

- -

=

- -

-

=

- -

=

) )(

2 ( ) 1

(

) )(

1 ( )

(

) )(

2 ( ) 1

(

1 2 0

2

2 2 0

1

2 2 1

0

x x

x h x

x l

x x

x h x

x l

x x

x h x

x l

) )(

)(

! ( 3

) ) (

( ) ( )

( 0 1 2

2 0

x x

x x

x f x

x f x l

x f

k

k

k ¢¢¢ - - -

+

= å

=

x

ï ï î ï ï í ì

=

=

=

ò ò ò

b a

b a

b a

dx x

l A

dx x

l A

dx x

l A

) (

) (

) (

2 2

1 1

0 0

] [ )

( )

( )

( )

( x dx A 0 f x 0 A 1 f x 1 A 2 f x 2 R f

b f

a = + + +

ò

(12)

.

11

h dx

x x

x A x x

ò x - -

= 2

0 2

2 1

0 2

) )(

(

h dx

x x

x A x x

ò x - - -

= 2

0 2

2 0

1

) )(

(

h dx

x x

x A x x

ò x - -

= 2

0 2

1 0

2 2

) )(

(

] [ )]

( 2 )

( 4 )

( 6 [

)

( a b f b R f

f a

a f dx b

x

b f

a + + +

- +

ò =

Simpson ,

ò - - -

= b

a f x x x x x x dx

f

R ( )( )( )( )

! 3 ] 1

[ ( 3 ) x 0 1 2

) 6 (

1 b - a

=

) 6 (

1 b - a

=

) 3 (

2 b - a

=

(13)

12

4. .

a b

h = -

) ( )

( )

( )

( )

( )

( )

( )

( )

( x f a 0 x f b 1 x f a 0 x f b 1 x

H = a + a + ¢ b + ¢ b

:

ò

ò = + -

= 1

0

2 0

0 a ( x ) dx h ( 1 2 x )( 1 x ) d x

A b

a

ò

ò = + -

= 1

0

2 1

1 a ( x ) dx h [ 1 2 ( 1 x )] x d x

A b

a

2

= h

h a

x ) /

( -

x =

2

= h ]

[ )

( )

( x dx H x dx R f

f b

a b

a = ò +

ò

) ( )

( )

( )

( )

( x dx A 0 f a A 1 f b B 0 f a B 1 f b

b H

a = + + ¢ + ¢

ò

(14)

.

13

] [ )]

( )

( 12 [

)]

( )

( 2 [

) (

2

f R a

f b

h f b

f a

h f dx

x

b f

a = + - ¢ - ¢ +

ò

ò - -

= b

a f x a x b dx

f

R ( 4 ) ( )( ) 2 ( ) 2

! 4 ] 1

[ x

ò

ò = -

= 1

0

2 2

0

0 b ( x ) dx h x ( 1 x ) d x

B b

a

x x

x

b x dx h d

B b

a ò

ò = - -

= 1

0

2 2

1

1 ( ) ( 1 )

12

= h

12 - h

=

(15)

: m f(x), .

. b f ( x ) dx b a [ f ( a ) f ( b )]

a - +

ò » 2 1

ò å

=

» n

k

k k

b

a f x dx A f x

0

) (

) (

m

m+1 , L

: Simpson 3 What? Why?

R[f ] =

Z b

a

f (x)dx

X n

k=0

A k f (x k ) ⌘ 0

<latexit sha1_base64="FNJEhDWr2wjbUCpeDaQ81JPwqzI=">AAACJHicbZDLSsQwGIX/ene8jbp0ExRhXCitGwUZ8Aa6VHF0oK0lTVMnTJrWJBWH0hfwLdz4Km5ceMGFG5/FzIwLbwcCH+f8IflPmHGmtG2/WwODQ8Mjo2PjlYnJqemZ6uzcmUpzSWiDpDyVzRArypmgDc00p81MUpyEnJ6H7b1ufn5NpWKpONWdjPoJvhQsZgRrYwXVrRM39lEdeUzooMDlRRGWce1mJbpZ9VSeBEW7bhtTlDsGu0nQXvHoVc6ukR1Ul+w1uyf0F5wvWNo+uN0Ho6Og+uJFKckTKjThWCnXsTPtF1hqRjgtK16uaIZJG19S16DACVV+0VuyRMvGiVCcSnOERj33+40CJ0p1ktBMJli31O+sa/6XubmON/2CiSzXVJD+Q3HOkU5RtzEUMUmJ5h0DmEhm/opIC0tMtOm1Ykpwfq/8F87W1xzDx6aNXehrDBZgEWrgwAZswyEcQQMI3MEDPMGzdW89Wq/WW390wPq6Mw8/ZH18AjfHpfw=</latexit><latexit sha1_base64="wVdl2r6kdIR+2nSBxxY976eryqo=">AAACJHicbZC7TsMwFIadcivlVmBksUBI7QBKWEBClQodYCyIlkpNiBzXoVYdJ9hO1SrKC7DxCCy8CgsDBTGw8CgI9zJwO5KlT/9/jo7P70WMSmWa70Zmanpmdi47n1tYXFpeya+u1WUYC0xqOGShaHhIEkY5qSmqGGlEgqDAY+TS61SG/mWXCElDfqH6EXECdM2pTzFSWnLzh+dN34ElaFOu3ASlV4mX+oVesdXbsWUcuEmnZGqRp0cah47bKdrkJqZdaLr5LXPXHBX8C9YEtsont5VP+25QdfMvdivEcUC4wgxJ2bTMSDkJEopiRtKcHUsSIdxB16SpkaOASCcZHZnCba20oB8K/biCI/X7RIICKfuBpzsDpNrytzcU//OasfIPnITyKFaE4/EiP2ZQhXCYGGxRQbBifQ0IC6r/CnEbCYSVzjWnQ7B+n/wX6nu7luYzncYxGFcWbIBNUAAW2AdlcAqqoAYwuAeP4BkMjAfjyXg13satGWMysw5+lPHxBd9KqLc=</latexit><latexit sha1_base64="wVdl2r6kdIR+2nSBxxY976eryqo=">AAACJHicbZC7TsMwFIadcivlVmBksUBI7QBKWEBClQodYCyIlkpNiBzXoVYdJ9hO1SrKC7DxCCy8CgsDBTGw8CgI9zJwO5KlT/9/jo7P70WMSmWa70Zmanpmdi47n1tYXFpeya+u1WUYC0xqOGShaHhIEkY5qSmqGGlEgqDAY+TS61SG/mWXCElDfqH6EXECdM2pTzFSWnLzh+dN34ElaFOu3ASlV4mX+oVesdXbsWUcuEmnZGqRp0cah47bKdrkJqZdaLr5LXPXHBX8C9YEtsont5VP+25QdfMvdivEcUC4wgxJ2bTMSDkJEopiRtKcHUsSIdxB16SpkaOASCcZHZnCba20oB8K/biCI/X7RIICKfuBpzsDpNrytzcU//OasfIPnITyKFaE4/EiP2ZQhXCYGGxRQbBifQ0IC6r/CnEbCYSVzjWnQ7B+n/wX6nu7luYzncYxGFcWbIBNUAAW2AdlcAqqoAYwuAeP4BkMjAfjyXg13satGWMysw5+lPHxBd9KqLc=</latexit><latexit sha1_base64="8+oCHqim79v/MDdF/AjjpCPvscQ=">AAACJHicbZC7TsMwFIadcivlVmBksaiQ2oEqYQEJVSqwMBZEL1ITIsd1WquOE2ynahXlYVh4FRYGLmJg4VlwLwO0HMnSp/8/R8fn9yJGpTLNLyOztLyyupZdz21sbm3v5Hf3GjKMBSZ1HLJQtDwkCaOc1BVVjLQiQVDgMdL0+ldjvzkgQtKQ36lRRJwAdTn1KUZKS27+/LbtO7ACbcqVm6D0PvFSvzgsdYbHtowDN+lXTC3y9ELj2HH7JZs8xHQATTdfMMvmpOAiWDMogFnV3Py73QlxHBCuMENSti0zUk6ChKKYkTRnx5JECPdRl7Q1chQQ6SSTI1N4pJUO9EOhH1dwov6eSFAg5SjwdGeAVE/Oe2PxP68dK//MSSiPYkU4ni7yYwZVCMeJwQ4VBCs20oCwoPqvEPeQQFjpXHM6BGv+5EVonJQtzTdmoXo5iyMLDsAhKAILnIIquAY1UAcYPIJn8ArejCfjxfgwPqetGWM2sw/+lPH9A2pEpKc=</latexit>

(16)

15

.

1

1

+ 1

2. 1

1 , .

, , 1

2 .

, 1

(17)

.

16

3. 5 )( 1 5 )

=0 5 )

)]

( )

( 2 [

)

( b a f b f a

dx x

b f

a - +

ò »

a b

dx dx

x

f b

a b

a = ò = -

ò ( ) 1

a a b

b - + = - ]

1 1

2 [

5 )

(18)

.

17

) 2 (

) 1

( x dx xdx b 2 a 2

f b

a b

a = ò = -

ò

) 2 (

)] 1 (

) ( 2 [

2

2 a

b b

f a

a f

b - + = -

(

1 .)

(19)

.

18

) 1

) 3 (

) 1

( x dx x 2 dx b 3 a 3

f b

a b

a = ò = -

ò

) )(

2 ( )] 1

( )

( 2 [

2

2 b

a a

b b

f a

a f

b - + = - +

2 ( .

2 ( .

(20)

19

L k f(x) <=n

. 0 ( n+1 W )

b . n i .

R[x k ] = 0, (k = 0,1,2,···,n)

6 3 h f ( x ) dx A 0 f ( 0 ) A 1 f ( h ) A 2 f ( 2 h )

0 » + +

ò

e

f(x) = x k (k = 0, 1, 2,···, n), n+1 W n Lagrange

å = ò

=

b a n k

j

k j

j x x dx

A

0 n k

j

k j

j x x x

l =

å = 0

)

( è

(21)

20

ï ï î ïï í ì

+ +

=

+ +

=

+ +

=

2 2 2

1 3

2 1

2

2 1

0

4 0

9

2 2 0

9 3

A h h

A h

h A

h A h

A A

A

h A h

4 3

0 =

h A 4

9

2 = A 1 = 0

) (

) ( )

( h f h

h f dx

x

h f

4 2 0 9

4 3

3

0 » +

ò

.

2

W 1 W , f (x) = x 3 .

L . . 2

: f(x)= 1, x, x 2 . L ,

(22)

.

21

åò å

ò -

= +

-

=

+

»

= + 1

0

1 1

0

)]

( )

( 2 [

) ( )

( 1

n

j

j j

n

j

x x b

a h f x f x

dx x

f dx

x

f j

j

] ) (

) ( )

(

[ å -

=

+ +

+

= 1

1

2 2

n j

n h f a f b f a jh

T

] ) (

2 )

( )

( 2 [

1

å - 1

=

+ +

= n

j

x j

f b

f a

h f

n a h b -

=

] ) (

2 )

( )

( 2 [

1 2

1

1 1

2 å -

=

+ +

+

= n

j

n h f a f b f a jh

T 1 2

h = h

[a,b] n . h=(b-a)/n . x j =a+jh

(23)

.

22

)]

( )

(

[ f a f b

a

T b - +

= 2

1

e

£ - n

n T

T 2

ε>0,

T 1 à T 2 à T 4 à ··· à T n à T 2n

] 2 ) (

2 [ 1

1

2 å

=

- +

+

= n

j n

n

jh h a

f h

T T

T 2n .

(24)

.

23

Newton-Cotes p167-p168

x j = a + jh , . L Newton-

Cotes

7.1 : n , n Newton-Cotes (n+1)

å =

» n

j

j

j x f x

l x

f

0

) (

) ( )

(

ò å

=

» n

j

j j

b

a f x dx A f x

0

) (

) (

Newton-Cotes n

è

(25)

.

24

3

(1) [ ( 1 ) 2 ( 0 ) ( 1 )]

2 ) 1

1 (

1 f x dx » f - + f + f

ò -

(1) = ò - 1

1 ( )

)

( f f x dx

I

)]

1 ( )

0 ( 2 )

1 ( 2 [

) 1

1 ( f f f f

I = - + +

(26)

.

25

2 )

1

( 1

1 =

= ò - dx

I [ 1 2 1 ] 2

2 ) 1

1

1 ( = + + =

I 0

)

( 1

1 =

= ò - xdx x

I [ 1 0 1 ] 0

2 ) 1

1 ( x = - + + =

I

3 ) 2

( 1

1 2

2 = ò - x dx = x

I [ 1 0 1 ] 1

2 ) 1

( 2

1 x = + + =

I

), (

) ( ,

) 1 ( )

1

( I 1 I x I 1 x

I = =

) (

)

( x 2 I 1 x 2

I ¹

(1)

(27)

.

Referensi

Dokumen terkait

第九章 第一节 一、区域 二、多元函数的概念 三、多元函数的极限 四、多元函数的连续性