• Tidak ada hasil yang ditemukan

ciiu khi

N/A
N/A
Protected

Academic year: 2024

Membagikan "ciiu khi"

Copied!
9
0
0

Teks penuh

(1)

557

Tuyen tap cdng trinh Hdi nghi Cff hoc todn qudc Ky idem 30 niim Vien Cff hoc vd 30 nam Tgp chi Cff hoc Hd Ndi, ngdy 8-9/4/2009

Nghien ciiu khi dong hoc ciia may bay true thang khi giam do cao bang phuo'ng phap tu quay

Thai Doan T u o n g , Lsl Hai D u n g , T r i n Q u 6 c Cuffng Vien Ky thuat Qudn su Phdng khdng - Khdng qudn

Tom tat: Chi do tu quay ciia true thdng Id chi do bay xudng khi ddng ca khdng Idm viec hoac xudng thdng dimg hoac xudng xien, khi md true thdng duy tri dugc mdt toe do xudng mot cdch an todn. Cdc trudng hgp cd thi xdy ra Id ddng ca hdng hoac do phi cdng chu y dua vdo che do tu quay, cdnh quay (CQ) dugc quay bdi ddng ca a vdng quay ndo do vd vdng quay ndy dugc duy tri do tdc dong cua luc khi dong khi md cdc Id cdnh quay (LCQ) ciia nd cd dugc gdc lap vd gdc tdn xdc dinh. Bdi bdo ndy dua ra kit qud nghien dm vi khd ndng Idm viec d chi do tu cjuay cua true thdng a hai che do xudng thang dimg vd xudng xien.

\. Dat v a n de

True thang la loai phuo'ng tien bay co dgng ca, thiet bi tao lire nang va dieu khien co chuyen dgng quay, co the cat canh, ha canh thang dirng, co the bay treo trong khong gian tham ehi bay liii. Mot trong nhung che do bay dac biet ciia true thang la che do tu quay. Che do tu quay cua true thang la che do bay xuong khong lam viec hoac xuong thang diing hoac xuong xien, khi ma true thang duy tri duge mot toe do xuong mot each an toan. Cac truong hgp eo the xay ra la dgng eo hong hoac do phi cong ehii y dua vao che do tu quay, canh quay duge quay bai dgng eo' a vong quay nao do va vong quay nay dugc duy tri do tae dgng eiia eae lye khi dgng khi ma eae la CQ ciia no co dugc goc lap va goc tan xac djnh.

Trong khuon kh6 bai bao, se dua ra ket qua tinh toan xac djnh tai khi dgng tren CQ bing phuang phap xung lugng va ket luan ve kha nang lam viec a che do tir quay cua true thang a hai che do xuong thang dirng va xuong xien [1], [2].

2. Dac diem khi dong trong c h i do t y quay ciia true thang

2.1. Che do tw quay xuong thang

Dong khong khi trong che do tu quay xuong thang eiia trire thang chay qua mat phing eiia CQ til' duoi len tren voi toe do Vy nao do, mot phan tii' dang chuyen dgng eiia la quay co tac dung ciia dong khi voi toe do Fnao do voi huong va do Ion ciia no bang tong vec to cua t6e do dai V va t6c do Vy . Goc tin la CQ aix:o bing tong goc lip cp va goe Occ, tao boi vee ta eiia toe do dai V va toe do ciia dong khi F(xem hinh 2.1).

(2)

ILCQ

sung V Luc ham

a) b) Hinh 2.1 Su xuat hien tir quay khong on lap

0 che do tu quay on lap khi ma cac LCQ quay quanh true CQ voi toe do goc (p khong dii khong CO su tac dgng eiia dgng co' thi cac ti le tren LCQ se la (xem hinh 2.2): tgaci,= —^ = ^ V C V C., Vgi gia thiet goc Ocq nho nen tgacc,~acy thi voi che do tu quay on lap se co ac^=—-, eo nghTa la C.

^y

toe do xuong eiia true thang trong che do tu quay xuong thang dirng se cang nho khi ma ti le

Q , ,,

cang nho.

,

\ c, _ J

\ / 0 \ x \ / • '

^^Wo _J\){

9o acq

— • B>.

t)

CILCQ MAX CtLCt *cq

Hinh 2.2. Vimg co the xay ra tir quay xuong thang

X , • C , . ' . .

Che do tu quay khong on lap khi goc a^^ > —^, vi ring trong mat phang quay xuat hien

y

luc tac dgng nim trong mat phing quay va theo ehilu quay ciia CQ (xem hinh 2.1a). Trong

(3)

Nghien cim khi ddng hoc cita mdy bay true thdng khi gidm dd cao ^^^

bang phuong phdp tie quay

truang hgp ngugc lai khi a^^^ < —^ thi khong xay ra tir quay boi le tren moi phan tir eiia LCQ C

^y

xuat hien luc nam trong mat phang quay co tac dung ching lai ehilu quay eiia CQ va nhu vay tu quay se bj ham lai hoac khong xay ra (xem hinh 2.1b).

Tat ea eae trang thai ciia CQ a che do tu quay duoc bilu diin bing do thj mii quan he giua , ,. C , , , ,

ti le — va goc tan a ^ o (xem hinh 2.2). Trong hinh do goc Uico la tong eiia goc lap cp va goc

^y

X ' C ,

aa,. Nhu vay eo the quan sat moi quan he giua goc a^, va —- trong mot goc lap nao do cho

^y

truac. Tren duong cong -^- =f(aLC(j) co the tim thay eae diim ® va @ dap iing dieu kien tu

^y

n

quay: a„, = — - , diem (1) la diem tu quay khong on dinh boi vai viec giam vong quay ciia C<^

^y

se lam tang goc tan aicg va lam giam goc acq so voi ti le —- va tren CQ se xuat hien lire ham C

^y

(quan sat theo ti le tren hinh 2.3b) va nhu vay true thang se dan den roi tu do. Diem @ la diem tu quay on djnh, boi le voi viec giam vong quay eiia CQ se tang goc tan aicx) va cimg voi no se tang ea goe a„y va tren phan tu' eiia la quay se xuat hien lire bo sung de quay CQ (xem hinh 2.3a).

Nhu vay a giua vimg diem Q) va © la viing eo lire bo sung, co nghTa la cac che do tu quay trong vimg nay co the xay ra voi mot gia tri goc lap cho truac va trong khoang rat nhieu goe tan eiia CQ. Neu thay doi gia tn ciia goe lap 9 thi se thay doi cae vimg cua cac goc tan trong do che do tir quay deu co kha nang xay ra va voi sir tang ciia goc lap thi viing xay ra tu quay se nho di den gia tri ^,„„,v,, (diem (S) hinh 2.2) (vimg gach gaeh la viing eo the xay ra tu quay).

Truang hgp (p>(pmax thi khong the xay ra che do tu quay. O cac che do tu quay yeu cau (p=0-^"

hoac 5" va giai ban tu quay thuong trong khoang (p=8". Cac goe lap eiia LCQ trong che do dgng CO lam viec phan Ion tren gioi ban nay. Nhu vay khi dgng ea tat can nhanh chong giam goc lip ciia LCQ dl khong the xay ra viec giam vong quay CQ duoi gia trj eiia tu quay.

2.2. Che do tie quay xuong theo qui dao xien

Tuong tu nhu truong hgp bay xuong a che do dgng ca lam viec, che do tu quay xuong xien a moi la quay viec chay eiia dong khi tren moi phan tir ciia LCQ tuong tu quay xuong thing diing [4] (xem hinh 2.3). Tir hinh ve, he s6 lire ham la: CHP=C:,.cos(auo - <p) - Cy.sin(auo - <p)-

N I U CHP>0, tthi khong xay ra che do tu quay, trong truang hgp ngugc lai CHP<0 thi tao dilu kien cho che do tu quay. Cae kha nang true thang xuong trong che do tu quay la ban chi trong vimg bay khi ma do cao bay va toe do tjnh tien ciia true thang khong du dl ehi do tu quay dugc xay ra mot each hoan toan thi viec hong hoc dgng ea rat nguy hilm boi le true thang ha canh voi t6c do xu6ng rat Ion.

(4)

560 Thdi Doan Tudng, Ld Hdi Dung, Trdn Qudc Cudng

KLCO

Hinh 2.3. Su chay bao tiet dien la canh quay a che do thoi xien 3. Xac dinh miic xu6ng Vy true thang ff che do ty quay

3.1. Chi do tie quay xudng thdng

Mo hinh chi do tu quay xuing thing eua fruc thang (xem hinh 3.1).

uT

Hinh 3.1 Mo hinh chi do Cir quay xu6ng thang ciia true thang

Tren hinh 3.1, cac luc tac dung len true thang a chi do tu quay xuong thing diing gom:

Trgng lire G ;

- Luc keo eua canh quay: T;

- Luc keo canh quat duoi: Tj .

D I xac dinh van toe bay xuIng theo phuong thing dii'ng Vy (eon ggi la mire xuong), su' dung phuang trinh can bing lue theo phuong thing dung, bo qua anh buong ciia lire can va luc keo canh quat duoi, ta eo:

T=G (3-2)

trong do: T = -pV'^ .F.C,^; F -dien tich mat phing canh quay; p - mat do khong khi; C„ -he so khi dgng. Tir do, mirc xuIng Vy duge xac dinh theo cong thirc:

Vy-

IG

\pFC,

(3.3)

(5)

Nghien cini khi ddng hoc ciia mdy bay true thdng khi gidm dd cao bdng phieong phdp tu quay

561

3.2. Che do tie quay xuong theo qui dao xien

Mo hinh che do tu quay xuong theo qiiT dao xien ciia true thang dugc bieu dien tren hinh 3.2.

Hinh 3.2 Mo hinh che do tir quay xuong theo qiiT dao xien

De xac djnh mire xuong Vy trong che do tir quay eiia trirc thang theo quy dao xien, ta eung sir dung phuong trinh can bang luc theo phuong thang dirng va cae phuong trinh bo sung (bo qua anh huong ciia lire keo canh quat duoi):

T = G ;

T ; =T.COS0 •

Vy =F.sin6' ;

N,=T{V.sma^,,+V,); (3.4)

V. = T

2pFVy.cose 2pF.Vy

trong do, V^ - van toe cam irng do canh quay true thang gay ra ; ^ - goe xuong ; a goc tan dong khi; Ni, - cong suit cin thiet eiia dgng ca khi bay bang.

Sau khi thay vao phuong trinh can bang va thuc hien giai phuong trinh dai so bac 2, ta nhan duge cong thuc tinh mirc xuong Vy:

Vy-

N, + ^]N; + 4.a.b.G'

2 ^ (3.5)

trong do : a —

sin 6 ' 2pF

(6)

3.3. Xdc djnh van tdc bay tdi hgn do d do cao thdp (viing H-V)

Trong khoang van t i e va do cao bay ciia true thang truang hgp hong mot dgng co thi true thang thuong phai ha canh voi van toe va mirc xuong ha canh Ion ban gia tri cho phep (theo tieu chuin trong s6 tay phi cong). Klioang do eao va toe do do dugc ggi la vimg H-V, ma phia trong do phi cong kho thuc hien dugc bai bay ha canh bang tu quay an toan khi mot dgng co bj hong.

D6i voi tiing loai true thang thi vimg H-V la khac nhau va phu thuoc vao trong lugng true thang khi ha canh, do eao toi da voi goc chiie ngoc Ion nhat, he so lire keo eiia dgng ea con lai,...

Vimg H-V CO the xac djnh bang phuong phap tfch phan hoac phuong phap nang lugng.

Phuong phap tich phan dua vao each giai he phuong trinh chuyen dgng ciia true thang khi giam do eao , dugc viet duoi dang [3]:

dV g.{X + F-G) dH ^^ ^ , dV^

li' a '^^^^''^^>-^>- <^'"

F = / { f ) ) . C , , G ; X = | p F ' C , . S

Trong do, F-lue khi dgng tong hgp (luc nang cong luc keo); G-trgng lugng ciia true thang;

(p - goe lap la canh quay; / ( ^ ) = 8.1.10'".^ - phuong trinh quan he giua lire nang va goc lip la canh quay; C^,- he so lue nang eiia canh quay; C^ he so luc can than true thang; g,p- gia toe trong truang va mat do khong khi; Kg- gia trj kiim tra; w - s6 lieu diu vao (gia toe dich).

Phuong phap nang lugng dua tren dinh ly bien doi dgng nang va the nang, duge viet duoi dang:

V' -V'

m.-^ '- = -^{R + mg.sme)ds = -\R.ds-mg{H^ - / / , ) . (3.7)

S .V

Trong do, R-lue khi dgng tae dung len true thang; s-quy dao eua true thang; 8- goe xuong;

H- do cao; V- van toe tuong iing voi do eao.

Khi giam do eao theo phuong thing ddng R=Ko. T^p ( Ko«l,2); ds=-dH, vi vay, sau mot so phep biin dii, ta nhan dugc cong thiic [2]:

V^-V,'

H,-H,=—^ -J^ (3.8)

Tc

T^p = K^.-^ lire nang eua true thang eo xet toi lire can eua than do su hiit khi bai canh G

quay (thuong liy T^.p = 0.8 ).

(7)

Nghiin cieu khi ddng hoc ciia mdy bay true thdng khi gidm do cao ^^^

bdng phuang phdp tie quay 4. Mot so ket qua tinh toan

Dimg phan mlm Matlab de tinh toan, khao sat doi vai mot loai true thang eu thi, ap dung eho mot loai true thang voi 2 dgng eo : G„,ax =12.000 kg, G„,i„ = 5.130kg; so la canh quay: 5, kieh thuoc la canh quay: 10,644x 0,6in.; duong kinh canh quay: (|)= 21,288in.; goc lip canh ban diu: ^0 = ^ ° ; vong quay ciia canh quay: « = 192v/;.A . ^-^^ ^^,x^ ^^^ ^.^g. A^, = 2.250A:W 4.1. Mirc xuong ciia true thdng a chi do tie quay:

Miic xuong Vy eiia true thang khi ha canh a chi do tu quay eho truang hgp xuIng thing va va xuong eo goe xien duge bilu dien tren bang 4.1 va dl thi hinh 4.1.

Bang 1. Su phu thuge mire xuong vao trgng lugng ciia true thang G ( K G )

Vy (xuong thang) Vyi(xu6ng xien)

12000 21,3952

14,6250

10800 20,3020 13,2114

10015 19,5457 12,3428

7290 16,6759

8,5216

5130 14,4012

6,2189 12000,

G(KG) 11000 10000

-»<— Bay xuong thing diing -©— Bay xudng co goe xien

Vy (m/s)

Hinh 4.1 Mue xuong Vy iing voi cac trgng lugng true thang khac nhau

So sanh ket qua tinh toan o che do xuong thing diing va xuong theo quT dao xien ta thiy mu'c xuong khi xuong thang diing Ion ban so vol khi xuong xien a che do tir quay khoang ban 2 lin (xem hinh 4.1). Vl vay neu khoiig bj can tro boi cae vat can xung quanh eho viec bay xu6ng thi nen tiln hanh bay xuong xien cho mgi truang hgp.

(8)

4.2. Viing H-V

Klii bay xuIng voi van tie tilt kiem V,k (dii vai loai true thang lira chgn la lOOkm/h) la bao dam an toan nhit vi no tuong irng vai mirc xuong nho nhat. Neu khi chuyen sang chi do tir quay tru'c thang voi toe do tiln theo phuong nam ngang Vbb thi dieu kien bien ciia phuong trinh (3.8) dugc xac dinh nhu sau:

H: = H„„„=Om...lOm, H|=H; V2= V,k=100kin/h, V,=Vbb;

Til' cong thii'c (3.6), do eao bay treo H phu thuge vao van toe co dang:

ion- -V^

H= 1"" +0...lOim)..

2g{l-Ta')

Do thj H-V eho loai triic thang dugc lira chgn bieu dien tren hinh 4.2.

(4.1)

250

•200

150

ro 100

20 ,,.30 : 40 ' 50 60 , 70 80 Van toe bay bang cuatruc thang (km/h)

Hinh 4.2 Do cao an toan khi bay treo

Ket qua tinh toan va tren d l thi 4.2 eo thi ehi ra viing nguy hiem doi voi loai true thang lira chgn khao sat. Qua do, co thi nhan thay do eao treo an toan phai thip hon lOin hoac cao han 203in. Kit qua nay tuong dii phii hgp vai chi din trong "S6 tay phi cong" cho loai true thang tren.

5. Ket luan

Che do tu quay ly tuong eiia true thang (liic cong suit bing 0) khi bay xuong la che do nguy hiem, eo the lam mat do cao dot nggt, dan din uy hilp hoac mat an toan bay. Vi vay, trong huan luyen bay true thang thuong thir cae bai bay tu quay thuc t l (giam cong suit dgng co); khi do thuong true thang bay a che do ga nho, tao lugng cong suit cin thiit dl thing dugc luc can eiia canh quay.

(9)

Nghien cim khi ddng hoc cua mdy bay true thdng khi gidm do cao ^^^

bdng phieong phdp tie quay

Hau bet cac truang hgp tir quay ciia true thang duge thuc hien vai van toe tjnh tien. De dira true thang ha canh tu quay, phi cong phai dilu khiln cin ehu ky (thay doi goc lap) sao eho lire nang tang va mire xuong, toe do xuong o cac giai doan giam do cao dirge duy tri theo diing ehi dan trong "So tay phi cong" moi ha canh thanh cong va an toan.

De ha canh bang tu quay thanh cong can nghien ciru va nim vung nguyen ly khi dgng hge cua true thang khi giam do eao bing tir quay, bilu ro ban chit khi dgng lue hge trong cae giai doan eiia tir quay tinh tien: vao tu quay, di xuong va culi cimg la xoe canh va tiep dat.

T a i lieu t h a m k h a o

[1] Nguyin Van Phuc (1988), Khi ddng hoc true thdng, Quan chiing Khong Quan.

[2] A. C. EpasepMaH, A. O. BafiHTpy6 {\9^?>). fliiuamiKa Bepojiemoe, MocKsa.

[3] Jonkwon Kim, Soohong Park, Cheolsoon Jang (2008). "Control System Design for an Unmanned Helicopter". Pusan, Korea.

Referensi

Dokumen terkait

NghiSn cuu thuc nghiSm da ydu td Kdt qua thuc nghiem don ydu td hinh 3 va 4 cho tiiiy, quy ludt va miic dO anh hudng ciia tirng yeu td diu vio ap suit dp, nhiet dO dp vi thdi gian ep

Bang 1: Cac chi so dirtfc su- dung trong nghiSn cihi Yeu to quyet dinh mirc dp de bi ton tbirgng Chi thi thanh phSn Md ta chi thi DO PHOI NHIEM DO NHAY CAM HiSn tugng khi hau cyc

Bien nay dai bao gom: Khao sat miic song hp gia dinh Viet Nam dien eho chat lugng giao dye tai dia phuang, trong VHLSS theo cac nam tir 2006 din 2016; dilu tra • do dia phuang nao c6 ti

Gidi ban do va ham lugng nguyen td trong mdu dia chdt cua phuong phdp do trung phung gamma duge tinh theo edng tiuic 1 va 2 sau ddy: 3.29C 137 Trong dd: CDL^ gidi hgn do tinh theo

Phuong phap thu thap va phan tich so lieu D6 xac dinh duac cac bleu hien tieu cue ve SKTT va miic do ph6 bi^n cua cac bi^u hien nay, nghien cuu da su dung Bang hoi diem manh va di^m

Tu- goc do phan tam hoc, cac dgi bilu cua tru'O'ng phai Frankfurt cho rang, chu nghTa phat xit fascism'^' khong phai la mpt truang hp'p ngogi le, mpt hien tu'p'ng ea bipt trong heh su-,

KY T H U ^ T VA CONG NGH^ HANH C H I N H bode sft dung them bilu, bing; - Hdp tuc lkm nhu vdy vdi cic slides cd bfi eye tuong ty title: tin muc/ten phdn nfii dung; ndi dung duge

Hanh vi nay dugc quy djnh trong BLHS nam 2015 va tuy truong hpp cu the, do tinh nguy hiem eiia hanh vi ky thi nhu: che bai, noi xau, beu rieu hoac co hanh vi, cii chi co dnh chat xiic