KARAKTERISTIK FUNGSI PEMBANGKIT MOMEN DISTRIBUSI GENERALIZED GAMMA
Oleh Dinda Meisilia
Skripsi
Sebagai salah satu syarat untuk mencapai gelar SARJANA SAINS
pada
Jurusan Matematika
Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung
UNIVERSITAS LAMPUNG BANDAR LAMPUNG
ABSTRACT
CHARACTERISTICS OF THE MOMENT GENERATING FUNCTION OF GENERALIZED GAMMA DISTRIBUTION
By
DINDA MEISILIA
In this paper, some characteristics of Generalized Gamma distribution and Gamma distribution as a special case of the generalized Gamma distribution are described. Generalized Gamma distribution (GG ) is a continuous probability distribution with three parameters. GG distribution and Gamma distribution has the same domain for a non-negative x. In addition to the parameters and the domain, GG distribution has some characteristics such as probability density function, expected value, variance, and moment generating function. In the approximated GG distribution to the Gamma distribution through the moment generating function, used the Maclaurin series. This paper also presents a graph of the probability density function of GG disrtribution and Gamma distribution separately, for each of its parameters. In graphing, used the R version 3.0.1 program.
ABSTRAK
KARAKTERISTIK FUNGSI PEMBANGKIT MOMEN DISTRIBUSI GENERALIZED GAMMA
Oleh
DINDA MEISILIA
Dalam skripsi ini, akan dijelaskan beberapa karakteristik Distribusi Generalized Gamma dan Distribusi Gamma sebagai kasus khusus dari Distribusi Generalized Gamma. Distribusi Generalized Gamma (GG ) adalah suatu distribusi peluang kontinu dengan tiga parameter. Distribusi GG dan Distribusi Gamma memiliki domain yang sama yaitu untuk bilangan x yang tak negatif. Selain parameter dan domainnya, Distribusi GG memiliki beberapa karakteristik seperti fungsi kepekatan peluang, nilai harapan, varian, dan fungsi pembangkit momen. Dalam pendekatan Distribusi GG terhadap Distribusi Gamma melalui fungsi pembangkit momen, akan digunakan deret Maclaurin. Skripsi ini juga menampilkan fungsi densitas peluang dari Distribusi GG dan Distribusi Gamma secara terpisah, untuk masing-masing parameternya. Grafik dibuat menggunakan program R versi 3.0.1.
DAFTAR ISI
2.2Nilai Harapan Distribusi Gamma ... 5
2.3Varian Distribusi Gamma ... 6
2.4Distribusi Generalized Gamma ... 7
2.5Fungsi pembangkit Momen Distribusi Gamma ... 8
2.6Ekspansi Deret Maclaurin ... 10
4.2Fungsi Pembangkit Momen Distribusi Generalized Gamma ( ) ... 14
4.3Nilai Harapan Distribusi Generalized Gamma ... 14
4.4Varians Distribusi Generalized Gamma ... 16
4.5Distribusi Gamma( ) sebagai Kasus Khusus dari Distribusi Generalized Gamma( ) ... 18
4.6Grafik Distribusi Gamma dengan Parameter yang Berbeda ... 19
4.7Grafik distribusi Generalized Gamma dengan parameter yang 4.8 berbeda ... 21
V. KESIMPULAN ... 25 DAFTAR PUSTAKA
1
I. PENDAHULUAN
1.1 Latar Belakang
Perkembangan teori statistika telah mempengaruhi hampir semua aspek
kehidupan. Hal ini disebabkan statistika merupakan salah satu disiplin ilmu
yang berperan sebagai alat untuk mengumpulkan, menyusun, menyajikan,
menganalisis data serta mengambil kesimpulan yang bersifat objektif
mengenai populasi berdasarkan data sampel.
Dalam teori statistika dan peluang, distribusi gamma adalah suatu
famili dari distribusi peluang kontinu dengan parameter bentuk dan
parameter skala . Distribusi gamma berasal dari fungsi gamma yang banyak
dipelajari dalam bidang matematika. Distribusi gamma dapat membentuk dua
famili dari peubah acak eksponensial dan chi-square yang sering digunakan
dalam aplikasi statistika. Distribusi gamma khusus untuk =1 disebut
distribusi eksponensial, sedangkan distribusi gamma khusus untuk = , =2
disebut distribusi chi-square dengan derajat kebebasan . Selain distribusi
normal, salah satu distribusi yang banyak digunakan dalam statistika,
2
eksponensial dan distribusi gamma berperan penting dalam teori antrian dan
masalah-masalah keterandalan, contohnya yaitu; jarak antara waktu
menunggu sampai tiba di fasilitas pelayanan (seperti pada bank, loket tiket
kereta api, rambu lalu lintas, dan sebagainya) dan lamanya waktu sampai
rusaknya suku cadang mesin, lampu dan lain-lain.
Distribusi Generalized Gamma (GG ) merupakan distribusi peluang
kontinu dengan tiga parameter, yaitu; dan . Parameter
dan dikenal sebagai parameter bentuk dan parameter dikenal sebagai
parameter skala. Distribusi GG adalah generalisasi dari dua parameter
distribusi gamma, yaitu; dan . Distribusi Weibull dan distribusi
log-normal merupakan kasus khusus dari GG. Distribusi-distribusi tersebut
pada umumnya digunakan untuk model parametrik dalam analisis
kelangsungan hidup. Distribusi GG terkadang digunakan untuk menentukan
model parametrik mana yang cocok untuk sekumpulan data. Jika =1, maka
distribusi GG( =1, , ) akan membentuk distribusi gamma dengan
parameter ( , ). Distribusi GG dan distribusi gamma memiliki domain
yang sama yaitu untuk bilangan x yang tak negatif. Selain parameter dan
domainnya, distribusi generalized gamma mempunyai beberapa karakteristik
seperti fungsi kepekatan peluang, nilai harapan, varian, dan fungsi
pembangkit momen. Oleh karena itu akan dilakukan penelitian tentang
3
1.2 Batasan Masalah
Dalam penelitian ini penulis akan mengkaji karakteristik fungsi pembangkit
momen distribusi generalized gamma dengan parameter ( , , ) dan
menunjukkan bahwa distribusi gamma merupakan kasus khusus dari
distribusi generalized gamma.
1.3 Tujuan Penelitian
Tujuan dari penelitian ini adalah :
1. Mengetahui karakteristik fungsi pembangkit momen distribusi generalized
gamma.
2. Mengetahui bahwa distribusi gamma merupakan kasus khusus dari
distribusi generalized gamma melalui pendekatan terhadap fungsi
pembangkit momen dari masing-masing distribusi.
3. Menentukan nilai dan dari distribusi gamma yang dapat mendekati
distribusi generalized gamma.
1.4 Manfaat Penelitian
Memahami tentang karakteristik fungsi pembangkit momen distribusi
4
II. LANDASAN TEORI
Pada bab ini akan dijelaskan beberapa definisi dan teorema yang berkaitan dengan
penelitian mengenai karakteristik fungsi pembangkit momen distribusi
generalized gamma( , , ) serta distribusi gamma sebagai kasus khusus
distribusi generalized gamma( , , ).
2.1 Distribusi Gamma
Peubah acak X dikatakan berdistribusi gamma, jika dan hanya jika fungsi
densitasnya berbentuk :
{
Penulisan notasi dari peubah acak X yang berdistribusi gamma adalah
, artinya peubah acak X berdistribusi gamma dengan parameter
, dimana menunjukkan shape (skewness dan kurtosis) dan
menunjukkan scale ( skala dan lokasi). Fungsi distribusi kumulatif dari distribusi
gamma berbentuk :
∫
5
Distribusi gamma berasal dari fungsi gamma yang banyak dipelajari dalam bidang
matematika. Fungsi gamma didefinisikan sebagai berikut :
6
2.3 Varians Distribusi Gamma
Misalkan peubah acak X berdistribusi gamma( ) maka varians dari X adalah
7
2.4 Distribusi Generalized Gamma
Distribusi Generalized Gamma (GG) merupakan distribusi peluang kontinu
dengan tiga parameter, yaitu; dan . Distribusi GG adalah
generalisasi dari dua parameter distribusi gamma, yaitu; dan .
Distribusi Weibull dan distribusi log-normal merupakan kasus khusus dari GG.
Distribusi-distribusi tersebut pada umumnya digunakan untuk model parametrik
dalam analisis kelangsungan hidup. Distribusi GG terkadang digunakan untuk
menentukan model parametrik mana yang cocok untuk sekumpulan data.
Distribusi GG dan distribusi gamma memiliki domain yang sama yaitu untuk
bilangan x yang tak negatif. Suatu peubah acak X menyebar mengikuti distribusi
GG( , , ) dan disebut sebagai peubah acak generalized gamma jika dan hanya
jika X memiliki fungsi kepekatan peluang sebagai berikut
{ ( )
8
2.5 Fungsi Pembangkit Momen Distribusi Generalized Gamma
Pada bagian ini akan dijelaskan fungsi pembangkit momen dari peubah acak X
berdistribusi GG( , , ). Namun sebelumnya, akan diterangkan proposisi yang
diperoleh (Warsono, 2010).
Proposisi
Distribusi GLL berparameter ( , , ) konvergen ke distribusi GG dengan
menuju , dan .
Menurut (Warsono, 2010), jika suatu peubah acak X berdistribusi GG( , , ),
maka fungsi pembangkit momen dari X adalah
∑
Bukti:
Berdasarkan proposisi di atas, limit fungsi pembangkit momen distribusi GLL
9
Rumus aproksimasi Stirling dari fungsi gamma (Spiegel, 1968) adalah
√
√
√
Maka momen properti limit dari distribusi GLL( , , ) dapat ditulis sebagai
10
2.6 Ekspansi Deret Maclaurin
Ekspansi deret Maclaurin bagi fungsi adalah sebagai berikut:
(2.3)
Jika fungsi , maka fungsi tersebut dapat diuraikan menjadi bentuk
deret sebagai berikut:
∑
(2.4)
III. METODE PENELITIAN
Pada bab ini akan dijelaskan tentang waktu dan tempat penelitian serta
langkah-langkah yang digunakan dalam sub bab metode penelitian.
3.1 Waktu dan Tempat Penelitian
Penelitian ini dilakukan pada semester genap tahun akademik 2012/2013.
Bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan
Alam Universitas Lampung.
3.2 Metode Penelitian
Penelitian ini ditujukan untuk mengkaji karakteristik fungsi pembangkit momen
distribusi generalized gamma( , , ). Adapun langkah-langkah yang dilakukan
adalah sebagai berikut:
1. Mendefinisikan fungsi densitas dari distribusi gamma dan distribusi
generalized gamma.
12
3. Membuktikan bahwa distribusi gamma( ) merupakan kasus khusus dari
distribusi generalized gamma( , , ), yaitu untuk .
4. Membuat grafik distribusi gamma dan distribusi generalized gamma untuk
V. KESIMPULAN
Berdasarkan hasil penelitian yang telah dilakukan dapat diperoleh beberapa
kesimpulan sebagai berikut :
1. Distribusi gamma pada parameter yang berbeda sedangkan parameter
tetap, yaitu , dan , memiliki bentuk grafik
dengan puncak kurva yang semakin tinggi jika nilai semakin besar.
Sedangkan distribusi generalized gamma pada parameter yang berbeda
sedangkan parameter dan tetap, yaitu
dan , memiliki bentuk grafik dengan puncak kurva yang semakin
landai jika nilai semakin besar. Kedua distribusi tersebut memiliki grafik
yang berbeda. Hal ini dikarenakan parameter merupakan parameter
bentuk pada masing-masing distribusi, sehingga nilai yang diberikan pada
mempengaruhi bentuk dari masing-masing distribusi.
2. Distribusi gamma pada parameter yang berbeda sedangkan parameter
tetap, yaitu dan , memiliki bentuk grafik
yang serupa dengan grafik distribusi generalized gamma pada parameter
yang berbeda sedangkan parameter dan tetap, yaitu
dan . Kedua distribusi memiliki grafik dengan
puncak kurva yang semakin landai/rendah jika nilai semakin besar. Hal ini
26
distribusi, sehingga nilai yang diberikan pada tidak mempengaruhi bentuk
dari masing-masing distribusi.
3. Distribusi generalized gamma pada parameter yang berbeda sedangkan
parameter dan tetap, memiliki bentuk grafik yang puncak kurvanya
semakin tinggi jika semakin besar nilai yang diberikan. Parameter
dikenal sebagai parameter bentuk yang mempengaruhi bentuk distribusi
DAFTAR PUSTAKA
Herrhyanto, N., Gantini. 2009. Pengantar Statistika Matematis. Yarma Widya. Bandung.
Khodabin, M., Ahmadabadi, A.R. 2010. Some Properties of Generalized Gamma Distribution. Islamic Azad University-Kharaj Branch. Iran.
Myers, R.H., dkk. 2007. Probability &Statistics For Engineers & Scientists. Edisi ke-8. Prentice Hall. New Jersey.
Purcell, E.J., Varberg, D., dan Ringdon, S.E. 2003. Kalkulus Jilid 2 Edisi Kedelapan. Erlangga. Jakarta.
Stacy, E.W. 1962. A Generalization of The Gamma Distribution. The Annals of Mathematical Statistics, 33, 1187-1192.
Warsono . 2010. Remark on Moment Properties of Generalized Distribution.