Kalkulus Differensial – Nur Insani 2012
2.6. TEOREMA LIMIT UTAMA
Andaikan bil. bulat positif, konstanta, &
fungsi-fungsi yg mempunyai limit di �. Maka:
1. �
→ � = 2. �
→ � = 3. �
→ � = �→ � 4. �
→ � ± = �→ � ± �→ � 5. �
→ � . = �→ � . �→ �
6. �
→ �
=
�
→�
�
→�
, asal �
→ � ≠ 0
7. �
→ � = �→ � 8. �
→ � = �→ � , asal �
→ � > 0 jk n genap.
Contoh:
1. �
→ −13
2 − 1 = �
→ −13
2 − �
Kalkulus Differensial – Nur Insani 2012
= 3 �
→ −1
2 − 1 = 3 �
→ −1
2
− 1
= 3 −1 2 − 1 = 2
2. �
→ −2
3 + 6
4
= �
→ −2
3 + 6
4
= �
→ −2
3 + �
→ −26
4
= 4 −8 − 12
= 4 −20 (tidak ada).
∴ �→ � harus > 0 jk n genap (sifat 8).
Teorema Substitusi
Jika suatu fungsi polinom atau fungsi rasional, maka
�
→ � = �
asalkan dlm kasus fs. rasional, penyebut ≠ 0.
Contoh:
1. � → 1
3 + 2 2 + + 6
Kalkulus Differensial – Nur Insani 2012
Soal Tambahan
1. � → 0
5 3+8 2
3 4−16 2
2. � → 1
3−1
−1
3. � → 4
−4
−2
4. � → 2
1
−2 −
4
2−4
5. �
→ 0−
6. �