i
BAYESIAN SURVIVAL ANALYSIS UNTUK MENGESTIMASI PARAMETER MODEL KETAHANAN HIDUP PASIEN PENDERITA
JANTUNG KORONER
THE USE OF BAYESIAN SURVIVAL ANALYSIS TO ESTIMATE PARAMETERS OF SURVIVAL MODEL FOR CORONARY HEART
DISEASE’S PATIENTS
Oleh:
A. DEWI LUKITASARI 662011009
TUGAS AKHIR
Diajukan kepada Program Studi Matematika, Fakultas Sains dan Matematika, guna memenuhi sebagian dari persyaratan untuk memperoleh Gelar Sarjana Sains
(Matematika)
PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS KRISTEN SATYA WACANA
v MOTTO
“Do your best and lets God do the rest” (Anonim)
“FULL TILT!” (James Gwee)
“It doesn’t matter how hard the obstacles are, you must finish what you started”
(Vivi Adeliana)
PERSEMBAHAN Tuhan Yesus Kristus
vi
KATA PENGANTAR
Puji dan syukur penulis panjatkan kehadirat Tuhan Yang Maha Esa karena atas
berkatnya yang melimpah penulis dapat menyelesaikan skripsi ini tepat waktu.
Penulis menyadari, penulisan skripsi ini tidak lepas dari bantuan dan dukungan dari
berbagai pihak. Oleh karena itu penulis ingin menyampaikan ucapan terima kasih
kepada :
1. Dr. Adi Setiawan, M.Sc selaku pembimbing I atas bimbingan, motivasi dan
kesabarannya dalam membimbing agar segera menyelesaikan skripsi ini.
2. Leopoldus Ricky Sasongko, M.Si sebagai pembimbing II untuk bimbingan
dan koreksi yang diberikan dalam penyusunan skripsi ini.
3. Dosen pengajar, Dr. Bambang Susanto,MS, Dr. Hanna Arini Parhusip, Dra.
Lilik Linawati, M.Kom, Dr. Didit Budi Nugroho, dan Tundjung Mahatma,
M.Kom untuk ilmu dan bimbingan yang diberikan kepada penulis selama
belajar di Program Studi Matematika.
4. Staf TU dan Pak Edy untuk bantuannya saat kesulitan instal software.
5. Bapak, Ibuk, Kakak dan Adik atas segala dukungan, semangat dan doa yang
diberikan.
6. Mas Restu yang selalu memberikan semangat untuk tidak pernah putus asa
selama proses penyelesaian skripsi.
7. Freda, Dek Tina dan Mbak Nina yang selalu memberikan semangat dalam
penyelesaian skripsi ini.
8. Rekan seperjuangan Matematika 2011 Daivi, Titis, Priska, Purwoto, Dwi,
Malik dan Kevin.
Penulis menyadari bahwa skripsi ini masih banyak kekurangan. Oleh sebab itu,
penulis mengharapkan kritik dan saran yang membangun dari pembaca. Semoga
skripsi ini dapat bermanfaat bagi semua pihak.
Salatiga, 21 Januari 2015
vii DAFTAR ISI
Halaman
HALAMAN JUDUL……… i
PERNYATAAN KEASLIAN KARYA TULIS TUGAS AKHIR……….. ii
PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS………. iii
HALAMAN PENGESAHAN……….…. iv
MOTTO DAN PERSEMBAHAN………..……. v
KATA PENGANTAR……….…… vi
DAFTAR ISI………..…….. vii
ABSTRAK……….……….. viii
ABSTRACT………. ix
PENDAHULUAN……… x
MAKALAH 1 : Bayesian Survival Analysis untuk mengestimasi parameter model Cox-Regression pada kasus ketahanan hidup pasien penderita jantung koroner. MAKALAH 2 : Bayesian Survival Analysis ntuk mengestimasi parameter model Weibull-Regression pada kasus ketahanan hidup pasien penderita jantung koroner. PENUTUP………...……….………. ... xiii
DAFTAR PUSTAKA……….. xiv
LAMPIRAN 1 : Data survival pasien penderita jantung koroner………..… xvi
LAMPIRAN 2 : Program WINBUGS 1.4 untuk Bayesian Survival Analysis menggunakan Cox-Regression ………... xvii
LAMPIRAN 3 : Program WINBUGS 1.4 untuk Bayesian Survival Analysis menggunakan Weibull-Regression………...…… xx
LAMPIRAN 4 : Manual penggunaan WINBUGS 1.4………... xxi
LAMPIRAN 5 : Makalah 1 Publikasi………... xxi
viii
BAYESIAN SURVIVAL ANALYSIS UNTUK MENGESTIMASI PARAMETER MODEL KETAHANAN HIDUP PASIEN PENDERITA
JANTUNG KORONER
A. Dewi Lukitasari1, Adi Setiawan2, Leopoldus Ricky Sasongko3 1,2,3
Program Sudi Matematika, Fakultas Sains dan Matematika,
Universitas Kristen Satya Wacana, Jl.Diponegoro No.52-60, Salatiga. 1
[email protected],[email protected],
3
ABSTRAK
Skripsi ini membahas mengenai analisis survival menggunakan
Cox-Regression dan Weibull-Regression untuk mengestimasi parameter model ketahanan
hidup pasien penderita jantung koroner dengan pendekatan Bayesian. Data yang
digunakan adalah data survival pasien penderita jantung koroner dan data tersensor
hasil simulasi meliputi waktu hidup pasien, status pasien (hidup/mati) dan treatment
yang dikenakan pada pasien yaitu ring dan bypass, dengan jumlah pasien sebanyak
40 orang. Pendekatan Bayesian (Bayesian approach) digunakan untuk mengestimasi
parameter yang belum diketahui dari model regresi yang digunakan. Metode Markov
Chain Monte Carlo (MCMC) menggunakan algoritma Gibbs Sampling digunakan
untuk membangkitkan Rantai Markov untuk mengestimasi distribusi posterior dari
parameter, meliputi koefisien regresi () dari masing-masing model dan parameter r
dari model survival Weibull. Parameter  dan r yang diperoleh digunakan untuk
menghitung fungsi survival tiap pasien sesuai dengan treatment yang dikenakan.
Fungsi survival menunjukkan probabilitas bertahan hidup pasien penderita jantung
koroner. Berdasarkan analisis kedua model regresi, pada kasus penderita jantung
koroner, Weibull-Regression kurang mampu memodelkan data survival pasien
penderita jantung koroner karena diperoleh nilai probabilitas yang kurang wajar yakni
ix
Kata Kunci : Survival Analysis, model Weibull-Regression, Bayesian, Markov Chain Monte Carlo (MCMC)
THE USE OF BAYESIAN SURVIVAL ANALYSIS TO ESTIMATE PARAMETERS OF SURVIVAL MODEL FOR CORONARY HEART
DISEASE’S PATIENTS
A. Dewi Lukitasari1, Adi Setiawan2, Leopoldus Ricky Sasongko3 1,2,3
Mathematics Department, Faculty of Science and Mathematics,
Satya Wacana Christian University, Jl.Diponegoro No.52-60, Salatiga. 1
[email protected],[email protected],
3
ABSTRACT
This study examined survival analysis using Cox and Weibull-Regression to estimate survival model for coronary heart disease’s patients. Survival and censored data simulation of coronary heart disease’s patients were used for data collection, including survival time, survival status (life or die) and custom treatment (ring and
bypass). The total number of patients was 40 patients. Bayesian approach was
applied to estimate unknown parameter from regression models. Markov Chain
Monte Carlo (MCMC) method using Gibbs Sampling algorithm generated Markov
Chain to estimate posterior distribution of parameter that included regression
coefficient () from each models and r parameter from Weibull’s model. Parameter
that had been found was to count survival function from each patient in each treatment. This showed life probability of coronary heart disease’s patients. Regarding the analysis from the two models, in context of coronary heart’s diseases
Weibull-Regression not really good in modeling of survival data of coronary heart’s
diseases patients because the result of the probability were bad.
x
PENDAHULUAN Latar Belakang
Kemajuan ilmu pengetahuan dan teknologi yang memunculkan inovasi di
berbagai aspek kehidupan, membawa dampak pada perubahan pola hidup masyarakat
yang cenderung serba instan. Pola hidup tersebut membawa dampak negatif.
Diantaranya muncul berbagai jenis penyakit yang berbahaya dan mematikan, salah
satunya adalah penyakit jantung koroner. Karena penyakit ini sangat berbahaya maka
seseorang yang terkena penyakit ini mungkin melakukan investasi/ asuransi sebagai
bentuk antisipasi apabila sewaktu-waktu penyakit ini kambuh dan harus menjalani
perawatan ,operasi atau meninggal dunia. Perusahaan asuransi perlu untuk
menentukan peluang waktu hidup pemegang polis yang menderita jantung koroner.
Peluang hidupnya biasa direpresentasikan dengan tabel mortalitas.
Inovasi yang berkembang meliputi bidang aktuaria, engineering dan
biostatistik yaitu munculnya survival analysis yang digunakan untuk memodelkan
data survival Survival analysis bertujuan menduga probabilitas kelangsungan hidup,
kematian, dan peristiwa-peristiwa lainnya sampai pada periode waktu tertentu serta
menjelaskan pengaruh variabel independent terhadap waktu hidup. Teknik analisis
yang biasa digunakan antara lain parametric, semi-parametric dan non-parametric.
Salah satu teknik analisis parametric yang digunakan adalah Weibull-Regression
sedangkan teknik analisis non-parametric sederhana yang digunakan untuk
memodelkan data survival adalah model Cox-regression.
Kenyataannya, selama proses observasi dimungkinkan terdapat data yang
tidak terobservasi secara penuh (not completely observed) yang disebut data
tersensor. Oleh karena itu untuk mengolah data tersensor digunakan teknik analisis
parametric menggunakan model Weibull. Distribusi Weibull digunakan secara
efektif untuk menganalisis data waktu hidup khususnya untuk data tersensor.
Saat ini dikenal ada dua pendekatan model yaitu pendekatan klasik (classical
approach) dan pendekatan Bayesian (Bayesian approach). Keunggulan pendekatan
xi
secara analitis dan mampu menawarkan kemungkinan yang kaya dengan interferensia
serta mengeksplor perbedaan-perbedaan interpretasi data terhadap kriteria kinerja
prior. Pada proses pemodelannya menggunakan estimasi Bayesian dengan bantuan
Markov-Chain Monte-Carlo (MCMC) berdasarkan algoritma Gibbs Sampling.
Berdasarkan uraian di atas, pada skripsi ini dibahas analisis survival untuk
model dengan Cox-Regression dan Weibull-Regression menggunakan pendekatan
klasik kemudian dilanjutkan dengan menggunakan pendekatan Bayesian untuk
mengestimasi parameter dari model yang digunakan. Pada model Cox-Regression
digunakan data pasien penderita jantung koroner yang dikenakan pengobatan dengan
treatment Ring dan Bypass, sedangkan untuk model Weibull-Regression digunakan
data survival simulasi pasien penderita jantung koroner. Total pasien adalah sebanyak
40 pasien. Treatment Ring adalah teknik pengobatan jantung koroner dengan cara
memasangkan cincin pada jantung untuk melebarkan pembuluh darah yang
menyempit atau tersumbat di bagian jantung, sedangkan treatment Bypass adalah
teknik pengobatan dengan mengambil pembuluh darah vena yang diambil dari vena
lengan atau kaki.
Rumusan Masalah
Berdasarkan uraian latar belakang tersebut, permasalahan yang dibahas dalam penelitian ini adalah :
1. Bagaimana mengestimasi parameter pada model Cox-Regression dengan
Bayesian survival analisis pada kasus ketahanan hidup pasien penderita
jantung koroner?
2. Bagaimana mengestimasi parameter pada model Weibull-Regression dengan
Bayesian survival analisis pada kasus ketahanan hidup pasien penderita
xii Tujuan
Tujuan dari penelitian ini adalah :
1. Memperoleh nilai parameter pada model Cox-Regression dengan
menggunakan Bayesian survival analisis pada kasus ketahanan hidup pasien
penderita jantung koroner.
2. Memperoleh nilai parameter pada model Weibull-Regression dengan
menggunakan Bayesian survival analisis pada kasus ketahanan hidup pasien
penderita jantung koroner.
Batasan Masalah
Beberapa hal yang membatasi penelitian ini adalah :
 Diasumsikan bahwa tidak ada kegagalan yang dapat terjadi secara bersamaan.
 Diasumsikan data termasuk ke dalam tipe data Random Censoring.
Manfaat penelitian
Penelitian ini dapat bermanfaat untuk perusahaan asuransi jiwa kategori manfaat
penyakit kritis seperti asuransi operasi dalam membuat kalkulasi asuransi (insurance
calculations) seperti alat pengukur pembentuk rate premi yang akan digunakan untuk
membuat perhitungan asuransi sehubungan dengan orang-orang yang dipilih untuk
cakupan asuransi.
Untuk menyelesaikan rumusan masalah tersebut, maka dibuat dua makalah yaitu :
1. Bayesian Survival Analysis menggunakan Cox-Regression untuk
mengestimasi model ketahanan hidup pasien penderita jantung koroner yang
telah diseminarkan di Universitas Muhammadiyah Purworejo pada tanggal 29
November 2014.
2. Bayesian Survival Analysis untuk mengetimasi parameter model
xiii PENUTUP Kesimpulan
Berdasarkan analisis yang dilakukan, diperoleh nilai dari setiap parameter
yang diestimasi meliputi, koefisien regresi
 
 dan 0 pada model Cox-Regression.Parameter r dan koefisien regresi
 
 untuk model Weibull-Regression. Didapatkanprobabilitas pasien bertahan hidup untuk masing-masing treatment yakni treatment
Ring dan Bypass. Diperoleh adanya kelemahan untuk model Weibull-Regression
dalam memodelkan ketahanan hidup pasien penderita jatung koroner karena
menghasilkan nilai probabilitas yang kurang wajar dikarenakan pada analisis dengan
menggunakan Weibull-Regression diperoleh nilai probabilitas untuk treatment
Bypass sebesar nol.
Saran
Penelitian ini dapat diaplikasikan untuk perusahaan asuransi jiwa kategori
penyakit kritis seperti asuransi operasi dalam membuat kalkulasi asuransi (insurance
calculations) seperti alat pengukur pembentuk rate premi yakni menghitung nilai
probabiltas kematian pemegang polis yang akan digunakan untuk membuat
perhitungan asuransi sehubungan dengan orang-orang yang dipilih untuk cakupan
xiv
DAFTAR PUSTAKA
[1] Hendrajaya, Yani, Adi Setiawan dan Hanna Arini Parhusip.2008. Penerapan Analisis Survival untuk Menaksir Waktu Bertahan Hidup bagi Penderita Penyakit Jantung. Program Studi Matematika. Fakultas Sains dan Matematika. UKSW : Salatiga.
[2] Departemen Kesehatan Republik Indonesia.2007.Profil Kesehatan Indonesia 2005. Jakarta.
[3] World Health Organization. 2014. The top 10 causes of death. Swiss: WHO. diakses pada Senin,15 September 2014 pukul 9.41.
http://www.who.int/mediacentre/factsheets/fs310/en/.
[4] London,Dick FSA. 1997.Survival Model and Their Estimation. ACTEX Publication : USA.
[5] Reskianti,Kiki, Nuriti Sunusi dan Nasrah Sirajang.2014.Estimasi Bayesian pada Analisis Data Ketahanan Hidup Berdistribusi Eksponensial melalui Pendekatan SELF. Studi Kasus: Analisis Ketahanan Hidup Flourophores.Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam.Universitas Harsanudin : Makassar.
[6] Subanar.2013.Statistika Matematika.Graha Ilmu: Yogyakarta.
[7] Perra, Silvia.2013. Objective Bayesian Variable Selection for Censored Data. Universitas Cagliari: Italia.
[8] Hidayah, Eny. 1994. Analisis Ketahanan Hidup dengan Metode Gehan
Mantel-Haenszel dan Tarone-Ware untuk 2 Sampel Sampai K Sampel. Universitas
Diponegoro : Semarang.
[9] Candra Siska, Ade. 2011. Inferensi Statistik Distribusi Binomial Dengan Metode Bayes Menggunakan Prior Konjugat. Universitas Diponegoro: Semarang.
http://eprints.undip.ac.id/29153/1/ade_candra.pdf
[10] Klein, J.P dan Moeschberger, M.L.1997. Survival Analysis : Techniques for
Censored and Truncated Data. New York. Springer-Verlag New York Inc.
[11] Andrew E Long. 1999. Leuk: survival analysis using Cox regression. Diakses pada Selasa 16 September 2014 pukul 20.12.
xv
[12] Rahayu, Ninuk, Adi Setiawan, Tundjung Mahatma.2013. Analisis Regresi Cox Proporsional Hazards pada Ketahanan Hidup Pasien Diabetes Mellitus. Program Studi Matematika. Fakultas Sains dan Matematika. UKSW : Salatiga.
[13] Hidayah,Entin.2013.Model Disagregasi Data Hujan Temporal dengan
Pendekatan Bayesian sebagai Input Permodelan Banjir.ITS:Surabaya.
1
BAYESIAN SURVIVAL ANALYSIS UNTUK MENGETIMASI PARAMETER MODEL COX-REGRESSION PADA KASUS KETAHANAN HIDUP
PASIEN PENDERITA JANTUNG KORONER
A. Dewi Lukitasari1, Adi Setiawan2, Leopoldus Ricky Sasongko3 1,2,3
Program Sudi Matematika, Fakultas Sains dan Matematika,
Universitas Kristen Satya Wacana, Jl.Diponegoro No.52-60, Salatiga. 1
[email protected],[email protected],
3
ABSTRAK
Penerapan model Cox-Regression dalam konteks survival analysis dengan
pendekatan Bayesian untuk memodelkan ketahanan hidup pasien penderita jantung
koroner dibahas dalam paper ini. Data yang digunakan adalah waktu hidup pasien,
status pasien (hidup/mati) dan treatment yang dikenakan. Diambil dua treatment yang
digunakan oleh pasien penderita jantung koroner yaitu ring dan bypass. Pendekatan
yang digunakan adalah pendekatan Bayesian (Bayesian approach) untuk mencari
distribusi posterior parameter. Updating data menggunakan metode Markov Chain
Monte Carlo (MCMC) dengan algoritma Gibbs Sampling. Software winBUGS 1.4
membantu dalam mengestimasi nilai setiap parameter yaitu koefisien regresi .
Parameter yang diestimasi dari model Cox-Regression digunakan untuk menghitung
probabilitas bertahan hidup pasien penderita jantung koroner.
2 PENDAHULUAN
Kemajuan ilmu pengetahuan dan teknologi yang kian pesat menuntut berbagai
aspek untuk menemukan inovasi guna mempermudah kehidupan manusia. Inovasi
teknologi yang serba canggih membawa dampak pada perubahan pola hidup
masyarakat yang cenderung serba instan. Tidak dapat dipungkiri pola hidup tersebut
membawa dampak negatif. Diantaranya muncul berbagai jenis penyakit yang
berbahaya dan mematikan, salah satunya adalah penyakit jantung koroner [1].
Menurut World Health Organization (WHO) atau Badan Kesehatan Dunia, penyakit
jantung koroner merupakan penyakit dengan urutan pertama penyebab kematian dan
tersebar di seluruh dunia. Pada tahun 2012 tercatat 7,2 juta orang di seluruh dunia
meninggal setiap tahunnya akibat penyakit ini. Banyaknya orang yang meninggal
akibat ini diperkirakan akan terus meningkat hingga 23,3 juta di tahun 2030 [2].
Karena penyakit ini sangat berbahaya maka seseorang yang terkena penyakit ini akan
melakukan investasi sebagai bentuk antisipasi apabila sewaktu-waktu penyakit ini
kambuh dan harus menjalani perawatan atau operasi. Perusahaan asuransi perlu untuk
menentukan peluang waktu hidup seseorang yang akan melakukan asuransi. Peluang
hidupnya biasa direpresentasikan dengan membuat tabel mortalitas.
Angka kematian yang tinggi akibat penyakit jantung koroner menimbulkan
perkembangan inovasi di bidang aktuaria, engineering dan biostatistik yaitu
munculnya survival analysis yang digunakan untuk memodelkan data survival [3].
Survival analysis bertujuan menduga probabilitas kelangsungan hidup, kekambuhan,
kematian, dan peristiwa-peristiwa lainnya sampai pada periode waktu tertentu serta
mejelaskan pengaruh variabel independent terhadap waktu survive [4]. Teknik
analisis yang biasa digunakan antara lain parametric, semi-parametric dan
non-parametric [5]. Salah satu teknik analisis non-non-parametric sederhana yang digunakan
untuk memodelkan data survival adalah model Cox-regression. Sedangkan untuk
permodelan data dikenal ada dua pendekatan yaitu pendekatan klasik (classical
3
memandang parameter bernilai tetap, sedangkan pada pendekatan bayesian parameter
dipandang sebagai variabel random yang memiliki distribusi (distribusi Prior).
Keunggulan pendekatan Bayesian diantaranya mampu menyelesaikan masalah yang
tidak dapat diselesaikan secara analitis dan mampu menawarkan kemungkinan yang
kaya dengan interferensia serta mengeksplor perbedaan-perbedaan interpretasi data
terhadap kriteria kinerja prior [7]. Estimasi parameter model menggunakan estimasi
Bayesian dengan metode Markov-Chain Monte-Carlo (MCMC) berdasarkan
algoritma Gibbs Sampling. Salah satu kontribusi yang dapat bermanfaat bagi
perusahaan asuransi kejiwaan untuk penyakit kritis seperti asuransi operasi dalam
membuat kalkulasi asuransi (insurance calculations) yang akan digunakan untuk
membuat perhitungan asuransi sehubungan dengan orang-orang yang dipilih untuk
cakupan asuransi.
Berdasarkan uraian di atas, pada paper ini dibahas terlebih dahulu cara
mengestimasi parameter menggunakan pendekatan klasik dengan menggunakan
model regresi Cox-Proporsional Hazard pada kasus ketahanan hidup pasien
penderita jantung koroner, kemudian dilanjutkan dengan menggunakan pendekatan
Bayesian survival analysis menggunakan Cox-regression. Tujuan dari penelitian ini
untuk memperoleh model ketahanan hidup pasien penderita jantung koroner dengan
Bayesian survival analysis menggunakan Cox-regression. Dalam proses estimasi
diasumsikan bahwa tidak ada kegagalan yang dapat terjadi secara bersamaan. Hal
tersebut berarti terdapat asumsi bahwa satu pasien hanya dapat mengalami satu kali
kegagalan dan satu pasien hanya dikenakan satu treatment saja. Alat bantu
perhitungan menggunakan paket program winBUGS 1.4 yang telah memuat
4 DASAR TEORI
Fungsi Survival
Fungsi survival S(t) merupakan probabilitas dari seseorang untuk bertahan
hidup setelah waktu yang ditetapkan sebut t. Fungsi survival merupakan merupakan
komplemen dari variabel random fungsi distribusi kumulatif F(t) maka ditulis
dengan fungsi kepadatan probabilitas (probability density function) f(t), diperoleh
dengan cara mengintegralkan fungsi kepadatan probabilitas sehingga diperoleh
t
failure time atau waktu bertahan hidup sampai munculnya kejadian tertetu. Kejadian
yang dimaksud adalah kematian [9].
Fungsi Hazard
Fungsi Hazard 0(t) menunjukkan laju kegagalan individu untuk mampu
bertahan hidup setelah melewati waktu yang ditetapkan, t. Didefinisikan sebagai
berikut :
dengan T asumsikan kontinu sehingga memiliki fungsi kepadatan probabilitas dan
kejadian berlangsung untuk rentang waktu [t,t dt)[10]. Untuk fungsi Hazard
kumulatif yaitu
Proses Intensitas dan model regresi Cox
Data survival yang ada perlu dilakukan proses menghitung jumlah kegagalan
5
data yang ada sebelum waktu t. Jika nilai i masuk di interval waktu maka diambil
nilai dNi(t) 1dan sebaliknya jika tidak maka diambil nilai dNi(t) 0.
Jika nilai dt 0 untuk D {Ni(t),Yi(t),zi(t)}, probabilitas pada proses
intensitas berubah menjadi instantaneous hazard untuk waktu t dan subjek i
ditunjukkan pada persamaan di bawah ini
Ii(t) Yi(t) 0(t)exp( 'zi) (4) dengan D mencerminkan data, Yi(t) adalah indikator risiko yang ditunjukkan dari
status hidup pasien terdiri dari 0 atau 1 dan zi(t) adalah vektor covariate. Model
Cox-Regression ditunjukkan dari 0(t)exp( 'zi) yang menunjukan skor risiko untuk
individu ke-i . Parameter menunjukkan koefisien regresi.
Fungsi eksponensial menjamin Ii(t) bernilai positif. Probabilitas fungsi
survival dirumuskan sebagai berikut :
t
0( ) ( ) yang akan diestimasi dengan estimasi
non-parametric yang akan digunakan untuk mengestimasi model survival [11].
Distribusi Prior
Distribusi prior mencerminkan kepercayaan subyektif parameter sebelum sampel
6
hazard yang belum diketahui dan c menujukkan derajat konfidensi [11].
Fungsi Likelihood
Fungsi likelihood yang biasa digunakan adalah :
L(D| , 0(t))) Li(D| , 0(t)) (6)
Mengganti nilai Ii(t) dengan persamaan (4) diperoleh persamaan likelihoodsebagai
berikut:
Dalam estimasi Bayes, setelah informasi tentang sampel dan prior dapat
ditentukan maka distribusi posteriornya dicari dengan mengalikan priornya dengan
informasi sampel yang diperoleh dari likelihoodnya [7]. Dituliskan sebagai berikut:
P( , 0(t)|D) L(D| , 0(t)P( )P( 0(t)). (9)
Akan difokuskan dalam mengestimasi parameter dan 0(t). Karena model cukup kompleks distribusi posterior susah untuk dicari secara langsung maka perlu adanya
suatu pendekatan menggunakan metode simulasi dengan MCMC (Markov Chain
7
Kemudahan yang diperoleh dari penggunaan metode MCMC pada analisis
Bayesian antara lain metode MCMC dapat menyederhanakan bentuk integral yang
kompleks dengan dimensi besar menjadi bentuk integral yang sederhana dengan satu
dimensi. MCMC dapat mengestimasi densitas data dengan cara membangkitkan suatu
rantai Markov yang berurutan sebanyak N yang cukup besar sampai diperoleh
konvergen [12]. Salah satu keunggulan MCMC terletak pada performa yang tidak
terlalu sensitif pada penggunaan nilai awal.
Proses penyusunan algoritma Gibbs Sampling perlu ditentukan nilai awal dari
parameter yang akan diestimasi yaitu 0
~
Normal(
0
,
2)
dan 0 (t). Manual penyusunan algoritma Gibbs Sampling mengikuti prosedur penentuan))
Langkah pada persamaan (10) dan (11) diulang sebanyak B yang cukup besar, dengan
B merupakan banyaknya update pada penyusunan rantai Markov hingga diperoleh
deret rantai Markov yang konvergen.
Gibbs Sampling termasuk ke dalam dua kategori algoritma utama
dalam MCMC selain algoritma Metropolis. Gibbs Sampling adalah teknik
membangkitkan variabel acak dari distribusi marginal secara tidak langsung tanpa
8 METODE PENELITIAN
Profil data
Data yang digunakan adalah data waktu bertahan hidup, status hidup pasien dan
treatment yang digunakan pasien penderita jantung koroner [4]. Data ditunjukkan
pada Tabel 1. Pasien sebanyak 40 pasien dan pasien yang mengalami kegagalan
(meninggal) saat menjalani treatment sebanyak 8 pasien.
Langkah-langkah penelitian
Pengolahan data dengan menggunakan software winBUGS 1.4. Software
winBUGS 1.4 adalah paket program yang dirancang khusus untuk memfasilitasi
permodelan data Bayesian menggunakan implementasi MCMC yang bekerja dalam
sistem operasi windows. Pengolahan data survival dilakukan dengan tahapan dan
spesifikasi model meliputi pengecekan terhadap syntax model, loading data,
compiling model, inisialisasi, menentukan iterasi MCMC sebanyak 10.000 kali guna
membangkitkan Rantai-Markov. Penyusunan parameter dan node Ring serta node
Bypass. Updating data parameter sebanyak 10.000. Dalam ploting masing-masing
node dan parameter beta nilai Markov dilakukan burn in sebanyak 5000 data, dan
diambil bangkitan rantai dari data ke 5001 sampai dengan 10.000.
Tabel 1. Data waktu bertahan hidup pasien penderita jantung koroner
No Waktu
(bulan) Status Treatment No
Waktu
(bulan) Status Treatment
9
T , dengan n menyatakan total pasien dan T menunjukkan pasien yang mengalami
kegagalan dalam proses treatment. Digunakan dan diselidiki terlebih dahulu dengan
pendektan klasik yaitu Regresi Cox-Proporsional Hazard dengan load packages
survival yang ada pada software R i386 3.0.1. Waktu hidup dan status sebagai
variabel yang dependent terhadap treatment. Hal tersebut berarti treatment sebagai
variabel independent dan probabilitas survival tergantung pada jenis treatment yang
digunakan. Diperoleh gambaran hasil yang dinyatakan pada Tabel 2.
Tabel 2. Hasil estimasi node Ring dengan metode klasik non-parametrik
Node Waktu Survival Standard Error
Tabel 3. Hasil estimasi node Bypass dengan metode klasik non- parametric
10
Bypass[5] 178 0.212 0.1833 0.0391 1
Bypass[6] 182 0.000 - - -
Tabel 4. Hasil estimasi parameter Beta dengan metode klasik
Node Survival Estimasi Titik
Batas minimum
Batas Maksimum
Beta 0.408 -0.6851 0.0778 0.9053
Tabel 4. menunjukkan nilai estimasi titik yang sekaligus menunjukkan nilai
koefisien regresi yakni sebesar -0.6851. Tingkat signifikansi alfa sebesar 0.5%.
Estimasi interval diambil dengan mengambil exponensial dari minus lower.95 dan
minus upper.95. Batas bawah dan batas atas diperoleh (0.0778, 0.9053) dengan
probabilitas 0.408 yang sudah signifikan karena nilai probabilitasnya lebih besar dari
0.05. Dengan estimasi non parametrik gambaran nilai probabilitas pasien bertahan
hidup untuk masing-masing treatment yang dikenakan terdapat pada Tabel 2 dan
Tabel 3. Ditunjukkan bahwa nilai probabilitas tertinggi ada dalam kelompok bypass
dengan nilai probabilitas sebesar 0.929 hanya selisih cukup kecil yaitu 0.005
signifikan dengan pasien dengan ring yang memiliki probabilitas tertinggi 0.923.
Gambaran grafik estimasi mean dari fungsi survival ditunjukan pada
Gambar 1. Pada Gambar 1. Sumbu horizontal menunjukkan waktu bertahan hidup
pasien penderita jantung koroner dalam satuan bulan , sedangkan sumbu vertical
menunjukkan presentase subjek yang masih bertahan hidup. Garis putus-putus pada
Gambar 1. menunjukkan garis survival untuk treatment Ring dan Bypass. Grafik
memiliki kecenderungan mengalami penurunan secara bertahap, tidak dapat
dipungkiri probabilitas pasien untuk bertahan hidup juga semakin kecil. Pada Gambar
1. Terlihat bahwa probabilitas bertahan hidup penderita dengan treatment ring jauh
lebih besar karena penurunan probabilitas tidak sesignifikan jika dengan
menggunakan bypass
11
Gambar 1. Estimasi mean fungsi survival untuk treatment Ring dan Bypass
Hasil nilai estimasi dan karakteristik untuk masing-masing parameter
ditunjukkan pada Tabel 5, Tabel 6, dan Tabel 7.
Tabel 5. Hasil estimasi Bayesian node Ring
12
Tabel 6. Hasil estimasi Bayesian node Bypass
Node Mean Standard
Tabel 7. Hasil estimasi Bayesian parameter Beta
Node Mean Standard
titik. Rata-rata dari parameter dalam Tabel 5 dan Tabel 6 merepresentasikan estimasi
nilai rata-rata posterior untuk pasien yang menggunakan treatment ring dan bypass
yang sekaligus mencerminkan peluang pasien untuk bertahan hidup jika
menggunakan treatment tersebut. Nilai mean yang tertinggi untuk pasien dengan treatment ring adalah 0.9771 sedangkan dengan bypass 0.953 menunjukkan peluang
bertahan hidup seseorang bertahan dengan menggunakan treatment ring akan
menghasilkan nilai peluang bertahan hidup lebih besar dibandingkan dengan
menggunakan bypass yakni sebesar 0.9771. Nilai error dalam penyusunan MCMC
dengan algoritma Gibbs Sampling ditunjukkan dari MC error, diperoleh nilai error
yang kecil karena mendekati 0. Estimator interval untuk parameter ditunjukkan dari
interval konfidensi yakni batas minimum dan maksimum dengan pengambilan nilai
13
parameter terletak dalam batas interval konfidensi pada posisi antara 2,50% dan
97,50% dan nilainya signifikan yang tidak melewati nilai nol. Adanya interval
konfidensi tersebut menjamin pencakupan dari parameter yang diselidiki. Nilai
rata-rata posterior yaitu standar error sekaligus menunjukkan koefisien regresi,
diperoleh ditunjukkan pada Tabel 7 sebesar -0.8789.
Gambar 2. Plot time series untuk MCMC Bayesian dan densitas kernel Ring[1], Bypass[1], dan beta
Plot time series untuk MCMC Bayesian dan densitas kernel ditujukkan dalam
Gambar 2. Rantai Markov yang terbentuk ditunjukkan dari garis hitam untuk
MCMC-Ring[1], MCMC-Bypass[1] dan MCMC-Beta. Plot dari time series
menunjukkan gambaran rantai Markov yang dibangkitkan. Updating rantai Markov
sebanyak 10.000 iterasi. Plot Gambar 2. menunjukkan nilai MCMC selalu positif,
hasil plot nampak rapat dan dapat merespon keseluruhan variabel berarti didapati
0 1000 2000 3000 4000 5000
0.7
De nsita s Ke rne l-Ring[1]
N = 5000 Bandw idth = 0.00302
Ri
ng
1
0 1000 2000 3000 4000 5000
0.6
De nsita s Ke rne l-Bypa ss[1]
N = 5000 Bandw idth = 0.006248
By
pa
ss
1
0 1000 2000 3000 4000 5000
14
model telah konvergen. Nilai estimasi densitas posterior dapat dilihat dari plot
dnsitas kernel. Estimasi densitas kernel memberikan plot yang bagus karena
dihasilkan densitas yang cenderung halus. Plot dari parameter beta menunjukkan
bahwa distribusi gambar yang dihasilkan berdistribusi normal. Gambaran MCMC
mengindikasikan bahwa nilai yang ditunjukkan berasal dari sebaran posterior yang
dibentuk oleh rantai Markov.
Gambar 3. Gambaran running quantiles dan autokorelasi
Ring[1]
Gambar 3. menunjukkan plot dari running quantiles yang merepresentasikan
gambaran mengenai nilai dari gambaran kinerja dari sampel yang bagus karena
ditunjukkan dari posisi plot garis berada di tengah dari batas atas dan bawah. Pada
gambaran running quantiles sumbu horizontal menunjukkan bangkitan rantai
Markov, sedangkan sumbu vertikal menunjukkan nilai estimasi titik nya. Nilai
autokorelasi untuk tiap node dan parameter ditunjukkan pula pada Gambar 3. Nilai
autokorelasi menunjukkan bahwa data yang dibangkitkan memenuhi sifar rantai
0 10 20 30
Se rie s Ring1[5001:10000]
0 10 20 30
Se rie s Bypa ss1[5001:10000
15
Markov. Untuk menggambar nilai autokorelasi digunakan fungsi acf pada R i386
3.0.1.
Berdasarkan analisis yang dilakukan diperoleh estimasi parameter beta dari
model Cox-Regresion untuk pasien penderita jantung koroner dengan estimasi
Bayesian menggunakan dua treatment yakni ring dan bypass sebesar -0.8789
Dalam paper ini diperoleh parameter dari model Cox-Regression untuk data
ketahanan hidup pasien penderita jantung koroner dengan Bayesian survival analysis.
Penelitian ini dapat dikembangkan untuk analisis survival model Weibul dengan
metode Bayesian.
DAFTAR PUSTAKA
[1] Departemen Kesehatan Republik Indonesia.2007.Profil Kesehatan Indonesia 2005. Jakarta
[2] World Health Organization. 2014. The top 10 causes of death. Swiss: WHO. diakses pada Senin 15 September 2014 pukul 9.41. http://www.who.int/mediacentre/factsheets/fs310/en/
[3] Reskianti,Kiki, Nuriti Sunusi dan Nasrah Sirajang.2014.Estimasi Bayesian pada Analisis Data Ketahanan Hidup Berdistribusi Eksponensial melalui Pendekatan SELF. Studi Kasus: Analisis Ketahanan Hidup Flourophores.Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam.UNHAS:Makassar.
16
[5] Perra, Silvia.2013. Objective Bayesian Variable Selection for Censored Data. Universitas Cagliari: Italia.
[6] Subanar,Prof.,Ph.D.2013.Statistika Matematika.Graha Ilmu: Yogyakarta
[7] Candra Siska, Ade. 2011. Inferensi Statistik Distribusi Binomial Dengan Metode Bayes Menggunakan Prior Konjugat. Universitas Diponegoro: Semarang.
http://eprints.undip.ac.id/29153/1/ade_candra.pdf
[8] Rahayu, Ninuk, Adi Setiawan, Tundjung Mahatma.2013. Analisis Regresi Cox Proporsional Hazards pada Ketahanan Hidup Pasien Diabetes Mellitus. Program Studi Matematika. Fakultas Sains dan Matematika. UKSW : Salatiga.
[9] Hidayah, Eny. 1994. Analisis Ketahanan Hidup dengan Metode Gehan
Mantel-Haenszel dan Tarone-Ware untuk 2 Sampel Sampai K Sampel. Universitas
Diponegoro : Semarang.
[10] Mustafa, Ayman dan Anis Ben Ghorbal.2011. Using WinBUGS to Cox Model with Changing from the Ba seline Hazard Function. Fakultas Matematika. Universitas Islam Al-Imam Muhammad Ibn Saud : Saudi Arabia.
[11] Andrew E Long. 1999. Leuk: survival analysis using Cox regression. Diakses
pada Selasa 16 September 2014 pukul 20.12 .
http://users.aims.ac.za/~mackay/BUGS/Manual05/Examples1/node29.html
[12] Hidayah,Entin. Model Disagregasi Data Hujan Temporal dengan Pendekatan Bayesian sebagai Input Permodelan Banjir.ITS:Surabaya.
[13] London,Dick FSA. 1997.Survival Model and Their Estimation. ACTEX Publication : USA.
1
BAYESIAN SURVIVAL ANALYSIS UNTUK MENGESTIMASI PARAMETER MODEL WEIBULL-REGRESSION PADA KASUS KETAHANAN HIDUP
PASIEN PENDERITA JANTUNG KORONER
A. Dewi Lukitasari1, Adi Setiawan2, Leopoldus Ricky Sasongko3 1,2,3
Program Sudi Matematika, Fakultas Sains dan Matematika,
Universitas Kristen Satya Wacana, Jl.Diponegoro No.52-60, Salatiga. 1
[email protected],[email protected],
3
ABSTRAK
Paper ini membahas mengenai estimasi parameter model Weibull-Regression
untuk data tersensor pada kasus ketahanan hidup pasien penderita jantung koroner
dengan pendekatan Bayesian survival analysis. Data yang digunakan adalah data
simulasi waktu hidup pasien, status pasien (hidup/mati) dan treatment yang
dikenakan yaitu ring dan bypass. Pendekatan Bayesian (Bayesian approach)
digunakan untuk mencari distribusi posterior parameter. Metode Markov Chain
Monte Carlo (MCMC) digunakan untuk membangkitkan Rantai Markov guna
mengestimasi parameter meliputi koefisien regresi () dan parameter r dari model
survival Weibull. Parameter  dan r yang diperoleh digunakan untuk menghitung
fungsi survival tiap pasien untuk tiap treatment yang sekaligus menunjukkan
probabilitas bertahan hidup pasien penderita jantung koroner.
2 PENDAHULUAN
Pada makalah [1] telah dibahas cara mengestimasi parameter model
Cox-Regression pada kasus ketahanan hidup pasien penderita jantung koroner [1].
Permodelan data survival dengan menggunakan Bayesian survival analysis
menggunakan Cox-Regression tidak memperhatikan adanya data tersensor.
Kenyataannya, selama proses pengamatan berlangsung terdapat data tersensor
(censored data) yaitu data yang tidak terobservasi secara penuh (not completely
observable) dalam waktu pengamatan [2]. Hal ini berarti selama proses pengamatan
dalam rentang waktu yang ditentukan, terdapat pasien yang belum selesai menjalani
treatment dan waktu hidupnya tetap dicatat dalam pengamatan. Oleh karena itu
untuk mengolah data tersensor digunakan analisis model survival parametrik. Model
yang sering digunakan adalah model Weibull [2]. Distribusi Weibull digunakan
secara efektif untuk menganalisis data waktu hidup khususnya untuk data tersensor
[3]. Fungsi survival distribusi Weibull diestimasi dan digunakan sebagai distribusi
probabilitas untuk data waktu bertahan hidup pasien penderita jantung koroner.
Diasumsikan data yang digunakan termasuk ke dalam Random Censoring.
DASAR TEORI Data Tersensor
Data tersensor adalah data yang tidak teramati secara penuh (not completely
observable). Biasanya data tersensor ini dijumpai untuk studi observasi dan penelitian
dengan adanya batasan waktu. Terdapat 3 tipe data tersensor yaitu Tersensor tipe I,
Tersensor tipe II dan Random Censoring. Data tersensor tipe I terjadi apabila subjek
berhenti sebelum pemberian waktu sensor. Data tersensor tipe II terjadi apabila
subjek melampaui batas waktu pengamatan dan waktu survivenya catat jika subjek
telah mengalami kegagalan. Random Censoring adalah tipe data tersensor yang sering
3
Distribusi Weibull Distribusi Weibull merupakan distribusi yang sering digunakan dalam analisis
parametrik untuk fungsi survival. Distibusi Weibull banyak digunakan pada aplikasi
di bidang industri maupun biomedis. Realitas yang ditemui untuk bidang engineering
digunakan untuk menggambarkan waktu kegagalan (time to failure) pada barang
elektronik dan sistem mekanik serta untuk memodelkan ketahanan barang elektronik
[3]. Secara umum fungsi kepadatan probabilitas (probability density function) dari
distribusi Weibull adalah:
Shape parameter dan scale parameter berurutan ditunjukkan oleh nilai r dan . Scale
parameter (parameter skala) adalah jenis khusus dari parameter numerik yang
menunjukkan besarnya distribusi data. Semakin kecil nilai dari scale arameter maka
distribusi data akan menyebar. Scale parameter (parameter bentuk) adalah jenis
khusus dari parameter numerik yang menunjukkan bentuk dari kurva. Fungsi
survival untuk distribusi Weibull dapat diperoleh dengan mengintegralkan fungsi
kepadatan probabilitas pada persamaan (1) sehingga
( ) ( ) exp( r).
Laju kegagalan pasien ditunjukkan oleh fungsi hazard (hazard function) dari
distribusi Weibull yaitu:
Fungsi hazard kumulatifnya (cumulative hazard function) ditunjukkan seperti di
4
Model regresi Weibull untuk distribusi dari fungsi survival dapat dirumuskan
sebagai berikut:
dengan mengganti zi
i e ' 
  maka persamaan (6) berubah menjadi:
f(ti,i)ritir1exp(itir)
(7)
dengan ti menunjukkan waktu bertahan hidup untuk data pasien yang tersensor
dengan vektor covariate zi [5]. Dalam hal ini r sebagai parameter yang akan
diestimasi nilainya. Distribusi Weibull digunakan karena fleksibel meliputi bentuk
dan model sederhana yang memungkinkan perubahan kenaikan r 1, penurunan
1
r dan laju kegagalan yang konstan untuk r 1 [6]. Koefisien regresi dari model
Weibull adalah  yang diperoleh dengan mengasumsikannya sebagai prior yang
berdistribusi normal  ~N(0,0.0001). Parameterisasinya Ti ~Weibull(ri,i).
Distribusi Prior Model Weibull
Penentuan distribusi prior model Weibull ditentukan dengan mengambil
distribusi yang sering digunakan sebagai standar yaitu Normal N(0,2) dengan nilai
2
 diambil nilai 0.0001 sebagai vague precision untuk model regresi Weibull. Penentuan distribusi Prior untuk penentuan shape parameter r menggunakan
distribusi Gamma(1,0.0001) untuk fungsi distribusi survival yang turun perlahan pada
5 Fungsi Likelihood Model Weibull
Fungsi likelihood yang biasa digunakan untuk menganalisis data tersensor adalah
 
(1 )persamaan (3) maka diperoleh fungsi likelihood untuk Model Weibull yaitu:
(1 )Dalam estimasi Bayes, setelah informasi tentang sampel dan prior dapat
ditentukan maka distribusi posteriornya dicari dengan cara mengalikan priornya
dengan informasi sampel yang diperoleh dari likelihoodnya [7]. Dituliskan sebagai
berikut:
P(r,
|D)  L(D|r,
)P(r)P(
). (11)Akan difokuskan dalam mengestimasi parameter r dan . Karena model rumit
karena mengandung banyak parameter maka distribusi posterior susah untuk
diestimasi secara langsung, maka perlu adanya suatu pendekatan menggunakan
metode simulasi dengan MCMC (Markov Chain Monte Carlo). Pada proses MCMC
dipilih menggunakan algoritma Gibbs Sampling.
Algoritma Gibbs Sampling dalam winBUGS membutuhkan nilai awal dari
parameter yang akan di estimasi. Nilai awal ditentukan yaitu
~ Normal(0,0.0001)dan r ~Ga mma1,0.0001( ). Langkah manual penyusunan algoritma Gibbs Sampling dibuat dengan prosedur penentuan (P(r|D,
),P(r|D,
)) dengan langkah padapersamaan (12) dan (13) yaitu:
P(
|D,r)P(
)L(D|r,
) (12)6
P(r|D,
)P(r)L(D|r,
). (13)Langkah pada persamaan (12) dan (13) diulang sebanyak bilangan B yang cukup
besar, dengan B merupakan banyaknya update pada software WinBUGS 1.4 yaitu
proses iterasi guna menyusun rantai Markov hingga diperoleh deret rantai Markov
yang konvergen.
METODE PENELITIAN Profil data
Data yang digunakan adalah data waktu bertahan hidup, status hidup pasien dan
treatment yang digunakan pasien penderita jantung koroner [4]. Kemudian dilakukan
simulasi dengan menambah data yang tersensor. Data survival ditunjukkan pada
Tabel 1 dengan banyaknya pasien sejumlah 40 pasien dan dua treatment yang
dikenakan yaitu treatment Ring dan Bypass. Dalam hal ini tanda * menunjukkan data yang tersensor. Banyaknya data yang tersensor untuk treatment Ring sebanyak 1
pasien dan untuk treatment Bypass sebanyak 7 pasien. Status hidup pasien bernilai 0
menunjukkan pasien tetap bertahan hidup saat menjalani treatment dan bernilai 1
menunjukkan pasien meninggal saat proses treatment berlangsung
Langkah-langkah penelitian
Pengolahan data dengan menggunakan winBUGS 1.4. Sspesifikasi model
meliputi pengecekan terhadap syntax model, loading data, compiling model,
inisialisasi model, menentukan iterasi MCMC sebanyak 200.000 kali guna
membangkitkan Rantai-Markov hingga mencapai konvergen. Parameter yang
akan diestimasi meliputi treatment ring, bypass serta parameter distribusi Weibull r.
Updating data parameter ditentukan sebanyak 200.000 titik sampel. Dalam ploting
masing-masing node dan parameter beta nilai rantai Markov dilakukan burn in
sebanyak 100.000 data, dan diambil bangkitan rantai dari data ke 100.001 sampai
7
Tabel 1. Data survival pasien penderita jantung koroner
No Waktu
(bulan) Status Treatment No
Waktu
(bulan) Status Treatment
1 26 0 Ring 21 32 0 Bypass
menyatakan total pasien penderita penyakit jantung koroner dan M menunjukkan
banyaknya treatment yang digunakan oleh pasien meliputi metode pengobatan Ring
dan Bypass.
Weibull-Regresion menggunakan pendekatan Bayesian dilakukan dengan
update untuk menyusun MCMC dengan iterasi sebanyak 200.000 titik sampel. Hasil
nilai estimasi dan karakteristik untuk masing-masing parameter ditunjukkan pada
8
Tabel 2. Hasil estimasi Bayesian untuk parameter  node Ring dan Bypass
Node Mean Standard
Deviasi
MC error
Batas
minimum 2,5% Median
Batas maksimum
97,5%
Ring -8.936 1.248 0.02904 -11.51 -8.889 -6.627
Bypass -0.7868 0.3685 0.00155 -1.524 -0.7821 -0.07581
Tabel 3. Hasil estimasi Bayesian untuk parameter r
Node Mean Standard
Tabel 4. Probabilitas tiap pasien untuk masing-masing treatment
9
Pada [1] telah diperoleh satu nilai estimasi parameter  model
Cox-Regression untuk kedua teknik pengobatan Ring dan Bypass yaitu sebesar -0.8789
[1]. Pada model Weibull-Regression didapatkan dua nilai parameter  untuk
treatment Ring dan Bypass berurutan sebesar -8.936 dan -0.7868. Probabilitas tiap
pasien untuk masing-masing treatment ditunjukkan pada Tabel 4. Nilai probabiitas
tertinggi untuk pasien menggunakan treatment Ring adalah 0.9200 dan yang terendah
adalah 0.0189. Sedangkan untuk treatment bypass diperoleh nilai probabilitas yang
sangat kecil. Pebandingan nilai probabilitas ketahanan hidup pasien penderita jantung
koroner untuk model Cox-Regression dan Weibull-Regression ditunjukkan pada
Tabel 5. Dari Tabel 5. Terlihat nilai probabilitas bertahan hidup pasien dengan
menggunakan Weibull-Regression jauh lebih kecil jika dibandingkan dengan model
Cox-Regression. Nilai probabilitas fungsi survival yang bernilai 0 diduga karena
model Weibull-Regression kurang sesuai untuk mengestimasi parameter ktahanan
hidup pasien penderita jantung koroner.
Tabel 5. Probabilitas survival untuk model Cox-Regression dan Weibull-Regression
Pasien ke - Waktu
Mean dan Median dalam Tabel 2 menunjukkan nilai estimasi titik untuk nilai
parameter . Rata-rata dari parameter dalam Tabel 2 merepresentasikan estimasi
nilai rata-rata posterior untuk pasien yang menggunakan ring dan bypass
menggunakan kedua treatment tersebut. Nilai mean untuk pasien dengan ring adalah
-8.936 sedangkan dengan bypass -0.7868. Nilai error dalam penyusunan MCMC
10
yang cukup kecil karena mendekati nol. Estimator interval untuk parameter
ditunjukkan dari interval konfidensi yakni batas minimum dan maksimum dengan
pengambilan nilai
0,5. Estimasi parameter menunjukkan bahwa semua parameterterletak dalam batas interval konfidensi pada posisi antara 2,50% dan 97,50% dan
nilainya signifikan karena tidak melewati nilai nol. Adanya interval konfidensi tersebut menjamin pencakupan dari parameter yang diselidiki. Nilai dari koefisien
regresi  ditunjukkan dari nilai mean dari ring dan bypass.
Plot time series untuk MCMC Bayesian dan densitas kernel ditujukkan dalam
Gambar 1. Plot dari time series menunjukkan gambaran rantai Markov yang
dibangkitkan dari data dengan updating sebanyak 200.000 iterasi.
Gambar 1. Plotime series untuk MCMC Bayesian dan densitas kernel node Ring, node
11
Plot Gambar 1. menunjukkan nilai MCMC tidak selalu positif, hasil plot
nampak rapat dan dapat merespon keseluruhan sampel berarti didapati model telah
konvergen. Nilai estimasi densitas posterior dapat dilihat dari plot densitas kernel.
Estimasi densitas kernel memberikan plot yang bagus karena dihasilkan densitas yang
cenderung halus. Plot dari densitas kernel untuk setiap node Ring dan Bypass
mengikuti densitas prior yakni berdistribusi normal sedangkan untuk parameter r juga
cenderung normal. Gambaran MCMC mengindikasikan bahwa nilai yang
ditunjukkan berasal dari sebaran posterior yang dibentuk oleh rantai Markov.
Gambar 3. Gambaran running quantiles dan autokorelasi
ring
Gambar 3. menunjukkan plot dari running quantiles yang merepresentasikan
gambaran mengenai nilai dari kinerja sampel yang cukup bagus. Hal tersebut
ditunjukkan dari posisi plot garis yang masih terletak di dalam rentang interval yaitu
12
parameter ditunjukkan pula pada Gambar 3. Nilai autokorelasi menunjukkan bahwa
data yang dibangkitkan memenuhi sifar rantai Markov [8]. Plot nilai autokorelasi
dengan menggunakan fungsi acf pada R i386 3.0.1. ACF merupakan singkatan dari
Auto Corelation Function. Nilai autokorelasi untuk ring dan r kuat ditunjukkan dari
plot autokorelasi yang turun secra perlahanan, Sedangkan untuk node bypass tidak
sekuat nilai autokorelasi untuk ring dan r. Hal tersebut terlihat dari plot autokorelasi
yang turun tajam.
Berdasarkan analisis yang dilakukan diperoleh nilai estimasi parameter 
dan r dari model Weibull-Regresion untuk pasien penderita jantung koroner.
Kesimpulan
Dalam paper ini diperoleh nilai parameter  dan r serta nilai probabilitas
bertahan hidup pada model Weibull-Regression untuk mengolah data tersensor
ketahanan hidup pasien penderita jantung koroner dengan Bayesian survival analysis.
DAFTAR PUSTAKA
[1] Lukitasari, A.Dewi, Adi Setiawan dan Leopoldus Ricky Sasongko.2014. Bayesian Survival Analysis menggunakan Cox-Regression untuk Mengestimasi
Model Ketahanan Hidup Pasien Penderita Jantung Koroner. Prosiding Seminar
Nasional Sains dan Pendidikan Sains. Universitas Muhammadiyah : Purworejo.
[2] Perra, Silvia.2013. Objective Bayesian Variable Selection for Censored Data. Fakultas Matematika dan Informatika. Universitas Cagliari: Italia.
[3] Klein, J.P dan Moeschberger, M.L.1997. Survival Analysis : Techniques for Censored and Truncated Data. New York. Springer-Verlag New York Inc.
[4] Hendrajaya, Yani, Adi Setiawan dan Hanna Arini Parhusip.2008. Penerapan Analisis Survival untuk Menaksir Waktu Bertahan Hidup bagi Penderita Penyakit Jantung. Program Studi Matematika. Fakultas Sains dan Matematika. UKSW : Salatiga.
[5] Andrew E Long. 1999. Weibull Regression in Censored Survival Analysis. Diakses pada Selasa, 16 Desember 2014 pukul 14:02.
13
[6] Thamrin, Sri Astuti.2013.Bayesian Survival Analysis Using Gene Expression.Fakultas Sains dan Teknik.Universitas Teknologi Queensland : Australia.
[7] Subanar.2013.Statistika Matematika.Graha Ilmu: Yogyakarta.
[8] Hidayah,Entin.2013.Model Disagregasi Data Hujan Temporal dengan
Pendekatan Bayesian sebagai Input Permodelan Banjir.ITS:Surabaya.
[9] Candra Siska, Ade. 2011. Inferensi Statistik Distribusi Binomial Dengan Metode Bayes Menggunakan Prior Konjugat. Universitas Diponegoro: Semarang. http://eprints.undip.ac.id/29153/1/ade_candra.pdf
[10] Rahayu, Ninuk, Adi Setiawan, Tundjung Mahatma.2013. Analisis Regresi Cox Proporsional Hazards pada Ketahanan Hidup Pasien Diabetes Mellitus. Program Studi Matematika. Fakultas Sains dan Matematika. UKSW : Salatiga.
[11] London,Dick FSA. 1997.Survival Model and Their Estimation. ACTEX Publication : USA.
xvi Lampiran 1
Data survival pasien penderita jantung koroner
No Waktu
(bulan) Status Treatment No
Waktu
(bulan) Status Treatment
1 26 0 Ring 21 32 0 Bypass
2 26 0 Ring 22 33 0 Bypass
3 38 0 Ring 23 42 0 Bypass
4 51 0 Ring 24 42 0 Bypass
5 52 0 Ring 25 56 0 Bypass
6 56 0 Ring 26 56* 0 Bypass
7 57 0 Ring 27 60* 1 Bypass
8 61 1 Ring 28 65 0 Bypass
9 62 0 Ring 29 78 0 Bypass
10 62 0 Ring 30 87 0 Bypass
11 66 0 Ring 31 87* 0 Bypass
12 71 1 Ring 32 93 0 Bypass
13 71 0 Ring 33 102* 0 Bypass
14 75 0 Ring 34 116* 0 Bypass
15 83 0 Ring 35 116* 1 Bypass
16 106 0 Ring 36 146* 1 Bypass
17 123 0 Ring 37 161 0 Bypass
18 128* 0 Ring 38 173 1 Bypass
19 156 0 Ring 39 178 1 Bypass
xvii Lampiran 2
Program WINBUGS 1.4 untuk Bayesian Survival Analysis menggunakan Cox-Regression
#Program WINBUGS 1.4 untuk model Cox-Regression data survival pasien penderita jantung koroner
dL0.star[T], # prior guess at hazard function
xviii
# beta0[j] ~ dnorm(0,0.001); # include this when using Poisson trick
for(i in 1:N) {
dN[i,j] ~ dpois(Idt[i,j]); # Likelihood Idt[i,j] <- Y[i,j]*exp(beta*Z[i])*dL0[j]; # Intensity
# Try Poisson trick - independent log-normal hazard increments
# - enables dL0, c, r, mu to be dropped from model
# Idt[i,j] <- Y[i,j]*exp(beta0[j]+beta*Z[i]); # Intensity
Integral{l0(u)du})^exp(beta*z)
Ring[j] <- pow(exp(-sum(dL0[1:j])), exp(beta * -0.5)); Bypass[j] <- pow(exp(-sum(dL0[1:j])), exp(beta * 0.5));
}
c <- 0.001; r <-0.1; for (j in 1:T) {
xix
}
beta ~ dnorm(0.0,0.000001); }
#List data pasien penderita jantung koroner
list(N=60, T=8, eps = 1.0E-10,
obs.t=c(6,7,7,8,11,17,20,21,21,25,26,26,38,51,52,56, 57,61,62,62,66,71,71,75,83,106,123,128,156,183,6,6,7,12,1 2,16,17,17,21,26,32,33,42,42,56,56,60,65,78,87,87,93,102, 116,116,146,161,173,178,182),
fail=c(0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0, 0,0,0,1,1,0,1,1,1),
Z=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5, 0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0 .5,0.5,0.5,0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-
0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,
-0.5,-0.5,-0.5,-0.5,-0.5),t=c(60,61,71,116,146,173,178,182,183))
#inisialisasi untuk treatment ring dan bypass
list( beta = 0.0,
xx Lampiran 3
Program WINBUGS 1.4 untuk Bayesian Survival Analysis menggunakan Weibull-Regression
#Program WINBUGS 1.4 untuk model Weibull-Regression data survival pasien penderita jantung koroner
model {
for(i in 1 : M) {
for(j in 1 : N) { t[i, j] ~ dweib(r, mu[i])I(t.cen[i, j],)
}
mu[i] <- exp(beta[i])
beta[i] ~ dnorm(0.0, 0.001)
median[i] <- pow(log(2) * exp(-beta[i]), 1/r)
#List untuk data simulasi pasien penderita jantung koroner
xxi Lampiran 4
Manual penggunaan WINBUGS 1.4
1. Buka software WINBUGS 1.4 sehingga muncul tampilan sebagai berikut
2. Open file yang akan dirunning dengan klik file  open, dilanjutkan dengan
xxii
3. Mengecek model dengan klik model  specification sehinga muncul kotak dialog sebagai berikut
xxiii
5. Loading data dilakukan dengan cara blok list data kemudian pilih load data
xxiv
7. Lakukan inisialisasi dengan cara blok list inisialisasi data kemudian pilih load inits dan klik gene inits
xxv
9. Lakukan paramerisasi dengan cara set parameter . meliputi ring, bypass dan r
xxvi
11.Pada kolom node di sample monitor tool, isi dengan * (untuk memunculkan semua node yang telah di set). Untuk mencari statistik dari parameter pilih stats maka akan muncul statistik dari keseluruhan parameter yang telah di set.
xxviii Lampiran 6