Media Pembelajaran Matematika SMP Lengkap (Power Point) Gratis 13 OPERASIALJABAR

53  19  Download (1)

Teks penuh

(1)
(2)

PENJUMLAHAN DAN

PENGURANGAN SUKU-SUKU

SEJENIS

Penjumlahan Suku-Suku Sejenis

Penjumlahan suku-suku

sejenis dapat dilakukan jika

suku-suku tersebut memiliki:

a. Variabelnya sama

b. Pangkat variabelnya

a. Variabelnya sama

(3)

PENJUMLAHAN DAN

PENGURANGAN SUKU-SUKU

SEJENIS

Pengurangan Suku-Suku Sejenis

Pengurangan suku-suku

sejenis dapat dilakukan jika

suku-suku tersebut memiliki:

a. Variabelnya sama

b. Pangkat variabelnya

a. Variabelnya sama

(4)

Contoh

5x

2

+ 7xy + 3x

2

+ 5x

2

y – 5xy + 7y

5x

2

3x

2

5x

2

+ 3x

2

(5)

PERKALIAN SUKU DUA

Perkalian Suatu Bilangan dengan Suku Dua

x

x

4

4x

x

2

(6)

PERKALIAN SUKU DUA

Perkalian Suku Dua dengan Suku Dua

x

2

3

x

x

2

2x

(7)

x(x +

4)

=

(x+2)

(x+3)

x

2

+

4x

= x

2

+

3x

+

(8)

PENGKUADRATAN SUKU DUA

(a + b)

2

=

(a + b)(a + b)

a

2

+ 2a

b

+ b

2

=

(a - b)

2

=

(a - b)(a - b)

a

2

- 2a

+ b

2

(9)
(10)

Soal 1

Sederhanakan bentuk berikut ini.

a.

6x

2

– 3x

2

– 4x

2

p

2

b.5a

2

– 6ab + 3a

2

– 4ab

c. 4p

2

+ 7p – 3p

2

– 6p

d.6p + 5pq – 2q – 4p + 3pq – 7q

e.4(x + 3y) + 3(x – 4y)

(11)
(12)
(13)
(14)
(15)

Soal 2

Tentukan hasil perkalian Suku Dua

dibawah ini.

(16)

Pembahasan

a. (x + 4)(x + 3)

(x+4)

(x+3)

= x

2

+

3x

+

(17)

b. (x - 5)(x - 2)

(x- 5)(x-2) = x

2

-

2x

(18)

c. (x + 3)(x - 2)

(x

+3)(x-2)

= x

2

-

2x

+

3x -

6

(x+3)(x-2)= x

2

+ x -

(19)

d. (2x + 4)(x - 5)

(2x + 4)(x -

5)

= 2x

2

10

x

-

+

(20)

e. (4x - 2)(x - 3)

(4x - 2)(x - 3) = 4x

2

12

x

-

-2x +

6

(21)

Soal 3

Tentukan hasil

pengkuadratan berikut ini.

a.

(x + 4)

2

b.

(x – 7)

2

c.

(2x + 3)

2

(22)
(23)
(24)
(25)
(26)

PEMFAKTORAN

Pemfaktoran dengan Hukum

Distributif.

Memfaktorkan adalah

menyatakan bentuk

penjumlahan menjadi bentuk

perkalian.

(27)

Contoh

Faktorkanlah bentuk berikut ini.

a. 4a + 8

b. 6ab – 4a

c. 9p

3

+ 18p

(28)

a.

4a + 8

FPB dari 4a dan

8

Faktor dari 4a + 8 = 4(a +

4a +

8

(a + 2)

(a + 2)

4

= 4

(29)

b. 6ab – 4a

FPB dari 6ab dan

4a

Faktor dari 6ab – 4a = 2a(3b -

6ab – 4a

(3b -

(3b -

2)

2)

2a

= 2a

(30)
(31)

d. 4x

2

+ 6y

2

FPB dari 4x

2

dan

6y

2

Faktor dari 4x

2

+ 6y

2

= 2(x

2

+

4x

2

+ 6y

2

(x

(x

2

2

+

+

y

y

2

2

)

)

2

= 2

(32)

Pemfaktoran Bentuk :

1. x

2

+ 2xy + y

2

dan

2. x

2

- 2xy + y

2

Contoh

:

1. (x + 3)

2

= x

2

+ 6x + 9

(33)

1. (x + 3)

2

= x

2

+ 6x +

9

2. (3x – 4)

2

= 9x

2

– 24x +

16

(x)

2

2(x)(3)

(3)

2

(34)

1. (x + 3)

2

=

x

2

+ 6x +

9

2. (3x – 4)

2

= 9x

2

– 24x +

16

(x)

2

2(x)(3)

(3)

2

(35)

1. x

2

+ 6x + 9 = ( x + 3 )

2

2. 9x

2

– 24x + 16 = ( 3x – 4)

2

Ketentuan diatas berlaku jika:

1. Suku pertama dan ketiga

merupakan bentuk kuadrat.

2. Suku tengah merupakan hasil

kali 2 terhadap akar kuadrat

(36)

KESIMPULAN

x

2

+ 2xy + y

2

= (x + y)

2

Dan

(37)

Pemfaktoran Selisih dua Kuadrat

x

2

+ 2xy + y

2

= (x + y)

2

maka :

(x + y)

2

= x

2

+ 2xy + y

2

x

2

- 2xy + y

2

= (x - y)

2

maka :

(38)

Contoh

:

1. (x + 5)

2

= (x)

2

+ 2(x)(5) + (5)

2

= x

2

+ 10x + 25

2. (x – 7)

2

= (x)

2

+ 2(x)7) +

(39)
(40)

Soal 1

Faktorkan bentuk-bentuk berikut

ini!

a.

3a + 9b + 6c

b.

4p – 2q – 8r

c.

4abc + 6ac – 8bc

(41)

Pembahasa

n

a. 3a + 9b + 6c

FPB nya adalah : 3

3a + 9b + 6c = 3 (a + 3b + 2c)

b. 4p – 2q – 8r

FPB nya adalah : 2

(42)
(43)

Soal 2

Faktorkan bentuk-bentuk berikut ini!

a.

9a

2

+ 6a + 1

b.

4p

2

– 8p + 4

c.

16b

2

– 24b + 9

(44)

Pembahasa

n

a. 9a

2

+ 6a + 1

=(3a)

2

+ 2(3a)(1) + (1)

2

=(3a + 1)(3a + 1)

=(3a + 1)

2

(45)

Pembahasa

n

b. 4p

2

– 8p + 4

=(2p)

2

- 2(2p)(2) + (2)

2

=(2p - 2)(2p - 2)

=(2p - 2)

2

(46)

Pembahasa

n

c. 16b

2

– 24b + 9

=(4b)

2

- 2(4b)(2) + (3)

2

=(4b - 3)(4b - 3)

=(4b - 3)

2

(47)

Pembahasa

n

d. 49x

2

– 56x + 16

=(7x)

2

- 2(7x)(4) + (4)

2

=(7x - 4)(7x - 4)

=(7x - 4)

2

(48)

Soal 3

Faktorkanlah selengkapnya!

a.

5x

2

– 5y

b.

X

2

– 16y

4

c.

3x

4

- 243

(49)

Pembahasa

n

a. 5x

2

– 5y

2

= 5(x

2

– y

2

)

= 5(x + y)(x – y)

Jadi, faktornya adalah:

5(x + y)(x – y)

5(x + y)(x –

(50)

Pembahasa

n

b. x

4

– 16y

4

= (x

2

– 4y

2

)(x

2

+ 4y

2

)

= (x

2

+ 4y

2

)(x + y)(x – y)

Jadi, faktornya adalah:

(x

(x

2

2

+ 4y

+ 4y

2

)(x + y)(x – y)

2

)(x + y)(x –

(51)

Pembahasa

n

c. 3x

4

- 243

= 3(x

4

– 81)

= 3(x

2

+ 9)(x

2

– 9)

= 3(x

2

+ 9)(x + 3)(x – 3)

Jadi, faktornya adalah:

(52)

Pembahasa

n

d. 25x

2

– 9y

2

= (5x + 3y)(5x - 3y)

Jadi, faktornya adalah:

(53)

Figur

Memperbarui...

Referensi

Memperbarui...