• Tidak ada hasil yang ditemukan

MODUL MATEMATIKA VEKTOR

N/A
N/A
Protected

Academic year: 2021

Membagikan "MODUL MATEMATIKA VEKTOR"

Copied!
30
0
0

Teks penuh

(1)

MODUL MATEMATIKA

VEKTOR

Peta Konsep

Vektor dalam Ruang Dimensi Dua

Pengertian Vektor Operasi Vektor Sudut Antar Vektor Proyeksi Vektor

1. Pengertian Vektor

Vektor adalah Besaran yang mempunyai nilai dan arah.sebagai contoh, kecepatan dan percepatan.Adapun notasi vektor adalah sebagai berikut :

a. Vektor dapat ditulis menggunakan huruf kecil dan tebal.Misalnya, a, b, dan c b. anak Vektor dapat ditulis menggunakan huruf kecil menggunakan panah di

atasnya.Misalnya, a,⃗⃗ b,⃗⃗ dan c .

c. anak Vektor dapat ditulis menggunakan huruf kapital menggunakan panah di atasnya.Misalnya, AB,⃗⃗⃗⃗⃗⃗ CD,⃗⃗⃗⃗⃗⃗ dan EF⃗⃗⃗⃗ .

Contoh :

B a

A

Vektor a atau vectorAB⃗⃗⃗⃗⃗

2. Pengertian Vektor Dalam Ruang Dimensi Dua

Pengertian vektor dalam ruang dimensi dua adalah suatu vektor yang hanya memuat dua komponen yaitu komponen mendatar( horizontal ) dan komponen tegak ( vertikal ).Dalam hal ini vektor dimensi dua berada pada bidang datar.Nilai x menyatakan komponen mendatar dan nilai y menyatakan komponen tegak. Vektor Dalam Ruang Dimensi Dua dapat disajikan dalam bentuk vektor baris ( x,y ), vektor kolom atau vector basis xi +yj .

(2)

Contoh :

a =( 2,3 ) Vektor dalam ruang dimensi dua disajikan dalam bentuk vektor posisi baris b

⃗ = (2

3) Vektor dalam ruang dimensi dua disajikan dalam bentuk vektor posisi kolom 𝐴𝐵

⃗⃗⃗⃗⃗ = 2i + 3j Vektor dalam ruang dimensi dua disajikan dalam bentuk vektor basis 3. Macam Macam Vektor

1. Vektor Posisi

Vektor yang disajikan dalam bentuk vector baris ( x, y) atau vektor kolom (𝐱𝐲). Contoh :

a =( -3,4 ) atau b⃗ = (−2 −3)

Jika dalam soal diketahui dua titik maka cara mencari vektor posisinya adalah sebagai berikut :

Misal diketahui titik A( xa,ya ) dan titik B( xb,yb ) makavektor posisi𝐀𝐁⃗⃗⃗⃗⃗ = 𝐁 − 𝐀.

Jadi vector 𝐀𝐁⃗⃗⃗⃗⃗ = (𝒙𝒃− 𝒙𝒂, 𝒚𝒃− 𝒚𝒂) 𝒂𝒕𝒂𝒖 (𝒙𝒚𝒃− 𝒙𝒂 𝒃− 𝒚𝒂) Contoh :

Diketahui koordinat titik A( 3.4 ) dan B( -2,-3 ).Tentukan vektor AB⃗⃗⃗⃗⃗ ! Jawab : Diketahui : A( 3.4 ) dan B( -2,-3 ) Ditanya : AB⃗⃗⃗⃗⃗ ? Alternatif penyelesaian : AB ⃗⃗⃗⃗⃗ = (𝑥𝑏− 𝑥𝑎, 𝑦𝑏− 𝑦𝑎) AB ⃗⃗⃗⃗⃗ = (−2 − 3, −3 − 4) AB ⃗⃗⃗⃗⃗ = (−5, −7)

Jadi vector posisi adalah AB⃗⃗⃗⃗⃗ = (−5, −7). 2. Vektor Basis

Vektor yang disajikan dalam bentuk x𝐢 +y𝐣 .Dimana I dan j membangun vektor vektor pada ruang dimensi dua, i( 1,0 ) dan J( 0,1 ) dengan |i | = |j | = 1. Contoh :

Vektor a = ( 5,7 ) dapat ditulis sebagai vektor basis a = 5i +7j Vektor b = ( 2,-3 ) dapat ditulis sebagai vektor basis b = 2I - 3j Vektor c = ( -1,4 ) dapat ditulis sebagai vektor basis c = −I +4j Vektor d = ( -2,-1 ) dapat ditulis sebagai vektor basis d = −2i -j

(3)

3. Vektor Nol

Vektor nol adalah suatu vector yang panjangnya sama dengan nol dan arahnya sembarang.Vektor nol dapat dinyatakan dengan 0 = (0

0) Contoh :

Vektor a = ( 0,0 ) Vektor𝐛 = (0

0)

4. Vektor Negatif/Vektor Invers

Vektor negatif dari a adalah vektor yang besarnya sama dengan vektor a tetapi arahnya berlawanan.Vektor negatif dari vektor a ditulis – a.

Contoh :

Vektor a = ( 2,4 ) vektor negatif a adalah – a = ( - 2,- 4 ) Vektor a = ( - 2,3 ) vektor negatif a adalah – a = ( 2,- 3 ) Vektor a = ( 6,- 5 ) vektor negatif a adalah – a = ( - 6, 5 ) Vektor a = ( - 2,- 1 ) vektor negatif a adalah – a = ( 2,1 ) 5. Vektor Satuan

Vektor satuan adalah vector yang besarnya atau panjangnya satu satuan.vektor satuan dapat ditentukan dengan cara membagi vector tersebut dengan panjang vector semula.Misalnya e adalah vektor satuan dari vektor a.maka vector

satuannya dinyatakan dengan :

𝐞 = 𝐚 |𝐚| Contoh :

Tentukan vector satuan dari a = 2I - 3j Alternatif Penyelesaian : 𝐞 = 𝐚 |𝐚| 𝐞 = 2I − 3j √𝟐𝟐+ (−𝟑)𝟐 𝐞 =2I − 3j √𝟒 + 𝟗 𝐞 =2I − 3j √𝟏𝟑 e = 2 13√13𝑖 − 3 13√13𝑗

(4)

6. Besar/Modulus Vektor

Misal diketahui a =xi +yj modulus atau panjang vector a dirumuskan sebagai berikut

|𝐚| = √𝐱𝟐+ 𝐲𝟐 Contoh 1:

Tentukan panjang vektor a = 4I +3j ! Alternatif penyelesaian : |𝐚| = √𝐱𝟐+ 𝐲𝟐 |𝐚| = √𝟒𝟐+ 𝟑𝟐 |𝐚| = √𝟏𝟔 + 𝟗 |𝐚| = √𝟐𝟓 = 𝟓 Contoh 2 :

Diketahui vektor a = 𝑥I +3j .Jika panjang a adalah 5.Tentukan nilai x ! Alternatif penyelesaian :

|𝐚| = √𝐱𝟐+ 𝐲𝟐 5 = √𝐱𝟐+ 𝟑𝟐 5 = √𝐱𝟐+ 𝟗

𝟐5 = 𝒙𝟐+ 𝟗kedua ruas dikuadratkan x2 = 25 – 9

x2 = 16

x = √16 = 4

7. Kesamaan Dua Vektor

Dua buah vektor dikatakan sama jika besar dan arah kedua vector tersebut sama. Contoh :

Diketahui 𝐚 = ( 5

−4) dan 𝐛 = ( 𝑥

−4) jika a = b tentukan nilai x Alternatif penyelesaian : a = b ( 5 −4) = ( 𝑥 −4) x = 5

(5)

8. Operasi Vektor 1. Penjumlahan Vektor Contoh 1: Diketahui Diketahui 𝐚 = (3 2) dan 𝐛 = ( 4 −3).Tentukan a + b ! Alternatif penyelesaian : a + b =(3 2) + ( 4 −3). a + b =( 3 + 4 2 + (−3)) a + b =( 7 −1) Contoh 2: Diketahui Diketahui 𝐚 = (−3 4 ), 𝐛 = ( 2 3) dan 𝐜 = ( 5 −2) .Tentukan a + b + c ! Alternatif penyelesaian : a + b + c =(−3 4 ) + ( 2 3) + ( 5 −2) a + b + c =(−3 + 2 + 5 4 + 3 − 2 ) a + b + c =(4 5) 2. Pengurangan Vektor Contoh 1: Diketahui Diketahui 𝐚 = (−2 1 ) dan 𝐛 = ( 3 6).Tentukan a - b ! Alternatif penyelesaian : a - b =(−2 1 ) − ( 3 6). a + b =(−2 − 3 1 − 6 ) a + b =(−5 −5) Contoh 2: Diketahui Diketahui 𝐚 = ( 3 −4), 𝐛 = ( −2 3 ) dan 𝐛 = ( −5 2 ) .Tentukan a - b - c ! Alternatif penyelesaian : a - b - c =( 3 −4) − ( −2 3 ) - ( −5 2 ) a – b - c =( 3 − 2 + 5 −4 − 3 − 2) a – b - c =( 6 −9)

(6)

3. Perkalian Vektor Dengan Dilangan Skalar Contoh 1: Diketahui Diketahui 𝐚 = (−2 1 ) 2a dan -3a ! Alternatif penyelesaian : 2a = 𝟐 (−2 1 ) 2a = (−4 2 ) -3a = −3 (−2 1 ) -3a = ( 6 −3) Contoh 2:

Diketahui Diketahui 𝐚 = 2i + 3j ⃗ dan 𝐛 = 3i − 2j .Tentukan 3a - 2b ! Alternatif penyelesaian : 3a - 2b = 3(2i + 3j ) − 2(3i − 2j ) 3a - 2b = (6i + 9j ) − (6i − 4j ) 3a - 2b = 6i + 9j − 6i + 4j 3a - 2b = 6i − 6i + 9j + 4j 3a - 2b = 13j

4. Perkalian Vektor Dengan Vektor ( Dot )

Ada dua penyelesaian perkalian vektor dengan vektor ( Dot ), yaitu : 1. Jika soal tidak mengandung sudut.

Misal : a = 𝒙𝒂𝐢 + 𝒚𝒂𝐣 , b = 𝒙𝒃𝐢 + 𝒚𝒃𝐣 dan c = 𝒙𝒄𝐢 + 𝒚𝒄𝐣 maka a.b dirumuskan :

a.b = ( xa..xb + ya.yb )

a.b.c = ( xa..xb.xc + ya.yb.yc )

Contoh 1:

Diketahui Diketahui 𝐚 = 2i + 3j dan 𝐛 = 3i − 2j .Tentukan a.b ! Alternatif penyelesaian :

a.b = ( xa..xb + ya.yb )

a.b = 2(3) +3(-2) a.b = 6 – 6 a.b = 0

(7)

Contoh 2:

Diketahui Diketahui 𝐚 = 3i + 4j , 𝐛 = 3i − 2j dan 𝐜 = 5i + 3j .Tentukan a.b.c ! Alternatif penyelesaian :

a.b.c = ( xa..xb.xc + ya.yb.yc )

a.b.c = 3(3)(5) +4(-2)(3) a.b = 45 – 24

a.b = 21

2. Jika soal mengandung sudut.

Misal : a = 𝒙𝒂𝐢 + 𝒚𝒂𝐣 dan b = 𝒙𝒃𝐢 + 𝒚𝒃𝐣 dan sudut yang dibentuk a dan b adalah 𝛼 maka a.b dirumuskan :

𝒂. 𝒃 = |𝒂||𝒃| 𝐜𝐨𝐬 𝜶

Contoh 1:

Diketahui Diketahui 𝐚 = 2i + 3j , 𝐛 = 3i − 2j dan sudut yang dibentuk 600.

Tentukan a.b ! Alternatif penyelesaian : a. b = |a||b| cos α a. b = √22+ 32. √32+ (−2)2. cos 600 a. b = √4 + 9. √9 + 4. (1 2) a. b = √13. √13. (1 2) a. b = 13. (1 2) a. b =13 2 Contoh 2:

Diketahui Diketahui 𝐚 = 2i + 3j , 𝐛 = 3i − yj , a.b = 13

2 dan sudut yang dibentuk 600. Tentukan vektor b ! Alternatif penyelesaian : a. b = |a||b| cos α 13 2 = √22 + 32. √x2+ y2. cos 60 0 13 2 = √4 + 9. √32+ y2. ( 1 2)

(8)

13 2 . ( 2 1) = √13. √9 + y 2. 13 = √13. √9 + y2 169 = 13(9 + 𝑦2) 169 13 = (9 + 𝑦 2) 13 = 9 + 𝑦2 𝑦2 = 13 − 9 y2 = 4

y = √4 = ±2 , Jadi vektor b adalah b =3i − 2j atau b =3i + 2j Contoh 3:

Diketahui vektor a dan bTentukan 1. a.a 2. ( a + b ) ( a + b ) Alternatif penyelesaian : 1. a. a = |a||a| cos 00 a. a = |a||a|. 1 a. a = |a||a| a. a = |𝑎|2 Jadi 𝐚. 𝐚 = |𝒂|𝟐 2. (𝑎 + 𝑏)𝑎 + (𝑎 + 𝑏) = 𝑎(𝑎 + 𝑏) + 𝑏(𝑎 + 𝑏) = 𝑎. 𝑎 + 𝑎. 𝑏 + 𝑎. 𝑏 + 𝑏. 𝑏 = |𝑎|2+ 2. 𝑎. 𝑏 + |𝑏|2 9. Sudut Antara Vektor

Misal : a = 𝒙𝒂𝐢 + 𝒚𝒂𝐣 dan b = 𝒙𝒃𝐢 + 𝒚𝒃𝐣 dan sudut yang dibentuk a dan b adalah 𝛼 maka sudut antara dua vektor dirumuskan :

𝐂𝐨𝐬 𝛂 =

𝐚. 𝐛

|𝐚||𝐛|

Contoh 1 :

Diketahui Diketahui 𝐚 = 2i + 3j , dan 𝐛 = 3i − 2j .Tentukan besarnya sudut antara dua vektor !

(9)

Cos α = a. b |a||b| Cos α = 2(3) + 3(−2) √22+ 32√32+ (−2)2 Cos α = 6 − 6 √4 + 9√9 + 4 Cos α = 0 √13√13 Cos α = 0 13= 0 Cos α = 0 Cos α = cos 900 𝛼 = 900 Contoh 2:

Diketahui Diketahui 𝐚 = i + 2j , dan 𝐛 = −2i + 4j .Tentukan nilai sinus sudut antara dua vektor ! Alternatif penyelesaian : Cos α = a. b |a||b| Cos α = 1(−2) + 2(4) √12+ 22√(−2)2+ 42 Cos α = −2 + 8 √1 + 4√4 + 16 Cos α = 6 √5√20 Cos α = 6 √100 Cos α = 6 10 Cos α =3 5 x 5 3

(10)

x2 = 52 – 32

x2 = 25 – 9

x2 = 16

𝑥 = √16 x = ± 4

Sin 𝛼 =sisi depan sudut

sisi miring

sin 𝛼 = ±4 5

Jadi nilai sin 𝛼 =4

5 𝑎𝑡𝑎𝑢 − 4 5

10. Proyeksi Vektor

Proyeksi vektor ada dua jenis, yaitu : 1. Proyeksi skalar orthogonal.

Proyeksi skalar orthogonal dirumuskan : a. Proyeksi skalar orthogonal a pada b

|𝐜| =

𝐚. 𝐛

|𝐛|

Contoh :

Diketahui Diketahui 𝐚 = 2i + j , dan 𝐛 = 3i − j .Tentukan proyeksi skalar ortogonal vektor a pada vektor b !

Alternatif Penyelesaian : |c| =a. b |b| |c| =2(3) + 1(−1) √32+ (−1)2 |c| = 6 − 1 √9 + 1 |c| = 5 √10 |c| = 5 √10× √10 √10 |c| = 5 10√10 = 1 2√10

(11)

b. Proyeksi skalar orthogonal b pada a

|𝐜| =

𝐚. 𝐛

|𝐚|

Contoh :

Diketahui Diketahui 𝐚 = 2i + j , dan 𝐛 = 3i − j .Tentukan proyeksi skalar ortogonal vektor b pada vektor a !

Alternatif Penyelesaian : |c| =a. b |a| |c| =2(3) + 1(−1) √22+ 12 |c| = 6 − 1 √4 + 1 |c| = 5 √5 |c| = 5 √5× √5 √5 |c| =5 5√5 = √5 2. Proyeksi vektor orthogonal.

Proyeksi vektor orthogonal dirumuskan : a. Proyeksi vektor orthogonal a pada b

|𝐜| =

𝐚. 𝐛

|𝒃|

𝟐

. 𝒃

Contoh :

Diketahui Diketahui 𝐚 = 2i + j , dan 𝐛 = 3i − j .Tentukan proyeksi vektor orthogonal vektor a pada vektor b !

Alternatif Penyelesaian : |c| = a. b |b|2. b |c| = 2(3) + 1(−1) (√32 + (−1)2)2 (3i − j ) |c| = 6 − 1 (√9 + 1)2(3i − j )

(12)

|c| = 5 (√10)2 (3i − j ) |c| = 5 10× (3i − j ) |c| =1 2(3i − j ) = 3 2i − 1 2j

b. Proyeksi vektor orthogonal a pada b

|𝐜| =

𝐚. 𝐛

|𝒃|

𝟐

. 𝒃

Contoh :

Diketahui Diketahui 𝐚 = 2i + j , dan 𝐛 = 3i − j .Tentukan proyeksi vektor orthogonal vektor b pada vektor a !

Alternatif Penyelesaian : |c| = a. b |b|2. b |c| =2(3) + 1(−1) (√22+ 12)2 (2i + j ) |c| = 6 − 1 (√4 + 1)2(2i + j ) |c| = 5 (√5)2 (2i + j ) |c| =5 5× (2i + j ) |c| = 2i + j

(13)

Peta Konsep

Vektor dalam Ruang Dimensi Tiga

Pengertian Vektor Operasi Vektor Sudut Antar Vektor Proyeksi Vektor

1. Pengertian Vektor Dalam Ruang Dimensi Dua

Pengertian Vektor Dalam Ruang Dimensi Dua adalah suatu vektor yang memuat tiga komponen yaitu komponen depan belakang ( sumbu x ), komponen

mendatar/horizontal ( sumbu y ) dan komponen tegak / vertikal ( sumbu z )).Dalam hal ini vektor dimensi tiga berada pada bidang ruang.. Vektor Dalam Ruang Dimensi tiga dapat disajikan dalam bentuk vektor baris ( x,y,z ), vektor kolom (

𝑥 𝑦 𝑧 )atau vektor basis xi +yj +zk⃗ Contoh :

a =( 2,3,4 ) Vektor dalam ruang dimensi tiga disajikan dalam bentuk vektor posisi baris

b ⃗ = (23

4

) Vektor dalam ruang dimensi tiga disajikan dalam bentuk vektor posisi kolom

AB

⃗⃗⃗⃗⃗ = 2i + 3j Vektor dalam ruang dimensi tiga disajikan dalam bentuk vektor basis 2. Macam Macam Vektor

3. Vektor Posisi

Vektor yang disajikan dalam bentuk vector baris ( x, y, z) atau vector kolom ( 𝒙 𝒚 𝒛 ). Contoh : a =( -3,4,1 ) atau b⃗ = ( −3 −4 −1 )

Jika dalam soal diketahui dua titik maka cara mencari vektor posisinya adalah sebagai berikut :

Misal diketahui titik A( xa,ya,za ) dan titik B( xb,yb,zb ) maka vektor posisi𝐀𝐁⃗⃗⃗⃗⃗ =

𝐁 − 𝐀. Jadi vector 𝐀𝐁⃗⃗⃗⃗⃗ = (𝒙𝒃− 𝒙𝒂, 𝒚𝒃− 𝒚𝒂, 𝒛𝒃− 𝒛𝒂) 𝒂𝒕𝒂𝒖 ( 𝒙𝒃− 𝒙𝒂 𝒚𝒃− 𝒚𝒂 𝒛𝒃− 𝒛𝒂 )

(14)

Contoh :

Diketahui koordinat titik A( 3.4,1 ) dan B( -2,-3,3 ).Tentukan vektor AB⃗⃗⃗⃗⃗ ! Jawab : Diketahui : A( 3.4,1) dan B( -2,-3,3 ) Ditanya : AB⃗⃗⃗⃗⃗ ? Alternatif penyelesaian : AB ⃗⃗⃗⃗⃗ = (xb− xa, yb− ya, zb− za) AB ⃗⃗⃗⃗⃗ = (−2 − 3, −3 − 4,3 − 1) AB ⃗⃗⃗⃗⃗ = (−5, −7,2)

Jadi vector posisi adalah AB⃗⃗⃗⃗⃗ = (−5, −7,2). 4. Vektor Basis

Vektor yang disajikan dalam bentuk x𝐢 +y𝐣 +z𝐤.Dimana I dan j membangun vektor vektor pada ruang dimensi dua, 𝑖 ( 1,0,0 ), 𝑗 ( 0,1.0 ) dan ), 𝑘⃗ ( 0,0.1 ) dengan |i | = |j | = 𝑘⃗ = 1.

Contoh :

Vektor a = ( 5,7,-2 ) dapat ditulis sebagai vektor basis a = 5i + 7𝑗 − 2𝑘⃗ Vektor b = ( 2,-3 , 1) dapat ditulis sebagai vektor basis b = 2I - 3j + 𝑘⃗ Vektor c = ( -1,4.5 ) dapat ditulis sebagai vektor basis c = −I + 4j + 5𝑘⃗⃗⃗⃗ Vektor d = ( -2,-1,0 ) dapat ditulis sebagai vektor basis d = −2i - j 3. Vektor Nol

Vektor nol adalah suatu vektor yang panjangnya sama dengan nol dan arahnya sembarang.Vektor nol dapat dinyatakan dengan 0 = (

0 0 0 ) Contoh : Vektor a = ( 0,0,0 ) Vektor𝐛 = ( 0 0 0 )

3. Vektor Negatif/Vektor Invers

Vektor negatif dari a adalah vektor yang besarnya sama dengan vektor a tetapi arahnya berlawanan.Vektor negatif dari vektor a ditulis – a.

Contoh :

Vektor a = ( 2,4,1 ) vektor negatif a adalah – a = ( - 2,- 4,-1 ) Vektor a = ( - 2,3,-1 ) vektor negatif a adalah – a = ( 2,- 3,1 ) Vektor a = ( 6,- 5,4 ) vektor negatif a adalah – a = ( - 6, 5,-4 )

(15)

Vektor a = ( - 2,- 1,5 ) vektor negatif a adalah – a = ( 2,1,-5 ) 4. Vektor Satuan

Vektor satuan adalah vector yang besarnya atau panjangnya satu satuan.vektor satuan dapat ditentukan dengan cara membagi vector tersebut dengan panjang vector semula.Misalnya e adalah vektor satuan dari vektor a.maka vector

satuannya dinyatakan dengan :

𝐞 = 𝐚 |𝐚| Contoh :

Tentukan vector satuan dari a = 2I - 3j + 𝑘⃗ Alternatif Penyelesaian : 𝐞 = 𝐚 |𝐚| 𝐞 = 2I − 3j + 𝑘⃗ √22+ (−3)2 + 12 𝐞 =2I − 3j + 𝑘⃗ √4 + 9 + 1 𝐞 =2I − 3j + 𝑘⃗ √14 e = 2 14√14𝑖 − 3 14√14𝑗 + 1 14√14𝑘⃗ e =1 7√14𝑖 − 3 14√14𝑗 + 1 14√14𝑘⃗ 5. Besar/Modulus Vektor

Misal diketahui a =xi +yj modulus atau panjang vector a dirumuskan sebagai berikut

|𝐚| = √𝐱𝟐+ 𝐲𝟐+ 𝒛𝟐 Contoh 1:

Tentukan panjang vektor a = 4I +3j + 𝑘⃗ ! Alternatif penyelesaian : |𝐚| = √𝐱𝟐+ 𝐲𝟐+ 𝒛𝟐 |𝐚| = √𝟒𝟐+ 𝟑𝟐+ 𝟏𝟐 |𝐚| = √𝟏𝟔 + 𝟗 + 𝟏 |𝐚| = √𝟐𝟔 Contoh 2 :

(16)

Alternatif penyelesaian : |𝐚| = √𝐱𝟐+ 𝐲𝟐+ 𝒛𝟐 √26 = √𝐱𝟐+ 𝟑𝟐+ 𝟏𝟐 √26 = √𝐱𝟐+ 𝟗 + 𝟏

𝟐6 = 𝒙𝟐+ 𝟏𝟎kedua ruas dikuadratkan x2 = 26 – 10

x2 = 16

x = √16 = 4

6. Kesamaan Dua Vektor

Dua buah vektor dikatakan sama jika besar dan arah kedua vector tersebut sama. Contoh : Diketahui 𝐚 = ( 5 −4 1 ) dan 𝐛 = ( 𝑥 −4 1

) jika a = b tentukan nilai x Alternatif penyelesaian : a = b ( 5 −4 1 ) = ( 𝑥 −4 1 ) x = 5 7. Operasi Vektor 5. Penjumlahan Vektor Contoh 1: Diketahui Diketahui 𝐚 = ( 3 2 1 ) dan 𝐛 = ( 4 −3 0 ).Tentukan a + b ! Alternatif penyelesaian : a + b =( 3 2 1 ) + ( 4 −3 0 ). a + b =( 3 + 4 2 − 3 1 + 0 ) a + b =( 7 −1 0 )

(17)

Contoh 2: Diketahui Diketahui 𝐚 = ( 3 2 1 ), 𝐛 = ( 4 −3 0 ) dan 𝐜 = ( 0 −1 1 ) .Tentukan a + b + c ! Alternatif penyelesaian : a + b + c =( 3 2 1 ) + ( 4 −3 0 ) + ( 0 −1 1 ) a + b + c =( 3 + 4 + 0 2 − 3 − 1 1 + 0 + 1 ) a + b + c =( 7 −2 2 ) 6. Pengurangan Vektor Contoh 1: Diketahui Diketahui 𝐚 = ( −2 1 0 ) dan 𝐛 = ( 3 6 −1 ).Tentukan a - b ! Alternatif penyelesaian : a - b =( −2 1 0 ) − ( 3 6 −1 ). a + b =( −2 − 3 1 − 6 0 + 1 ) a + b =( −5 −5 1 ) Contoh 2: Diketahui Diketahui 𝐚 = ( −2 1 0 ), 𝐛 = ( 3 6 −1 ) dan 𝐛 = ( 1 1 1 ) .Tentukan a - b - c ! Alternatif penyelesaian : a - b - c =( −2 1 0 ) − ( 3 6 −1 ) - ( 1 1 1 ) a – b - c =( −2 − 3 − 1 1 − 6 − 1 0 + 1 − 1 ) a – b - c =( −6 −6 0 )

(18)

7. Perkalian Vektor Dengan Dilangan Skalar Contoh 1: Diketahui Diketahui 𝐚 = ( −2 1 0 ) 2a dan -3a ! Alternatif penyelesaian : 2a = 𝟐 ( −2 1 0 ) 2a = ( −4 2 0 ) -3a = −3 ( −2 1 0 ) -3a = ( 6 −3 0 ) Contoh 2:

Diketahui Diketahui 𝐚 = 2i + 3j + 𝑘⃗ dan 𝐛 = 3i − 2j + 𝑘⃗ .Tentukan 3a - 2b ! Alternatif penyelesaian : 3a - 2b = 3(2i + 3j + 𝑘⃗ ) − 2(3i − 2j + 𝑘⃗ ) 3a - 2b = (6i + 9j + 3𝑘⃗ ) − (6i − 4j + 2𝑘⃗ ) 3a - 2b = 6i + 9j + 3𝑘⃗ − 6i + 4j + 2𝑘⃗ 3a - 2b = 6i − 6i + 9j + 4j + 3𝑘⃗ + 2𝑘⃗ 3a - 2b = 13j + 5𝑘⃗

8. Perkalian Vektor Dengan Vektor ( Dot )

Ada dua penyelesaian perkalian vektor dengan vektor ( Dot ), yaitu : 2. Jika soal tidak mengandung sudut.

Misal : a = 𝒙𝒂𝐢 + 𝒚𝒂𝐣 + 𝒛𝒂𝐤 , b = 𝒙𝒃𝐢 + 𝒚𝒃𝐣 +𝒛𝒃𝐤 dan c = 𝒙𝒄𝐢 + 𝒚𝒄𝐣 + 𝒛𝒄𝐤maka a.b dirumuskan :

a.b = ( xa..xb + ya.yb + za.zb)

a.b.c = ( xa..xb.xc + ya.yb.yc ++ za.zb+ zc )

Contoh 1:

(19)

Alternatif penyelesaian : a.b =( xa..xb + ya.yb ) a.b = 2(3)( 1)+3(-2)(1) a.b = 6 – 6 a.b = 0 Contoh 2:

Diketahui Diketahui 𝐚 = 2i + 3j + 𝑘⃗ , 𝐛 = 3i − 2j + 𝑘⃗ dan 𝐜 = 5i + 3j + 2𝑘⃗ .Tentukan a.b.c ! Alternatif penyelesaian : a.b.c = ( xa..xb.xc + ya.yb.yc ) a.b.c = 3(3)(5) +4(-2)(3) + 1(1)(2) a.b = 45 – 24+ 2 a.b = 23

2. Jika soal mengandung sudut.

Misal : a = 𝒙𝒂𝐢 + 𝒚𝒂𝐣 + 𝒛𝒂𝐤 , b = 𝒙𝒃𝐢 + 𝒚𝒃𝐣 +𝒛𝒃𝐤dan sudut yang dibentuk a dan b adalah 𝛼 maka a.b dirumuskan :

𝒂. 𝒃 = |𝒂||𝒃| 𝐜𝐨𝐬 𝜶

Contoh 1:

Diketahui Diketahui 𝐚 = 2i + 3j + 𝑘⃗ , 𝐛 = 3i − 2j + 𝑘⃗ dan sudut yang dibentuk 600. Tentukan a.b ! Alternatif penyelesaian : a. b = |a||b| cos α a. b = √22+ 32+ 12. √32+ (−2)2+ +12. cos 600 a. b = √4 + 9 + 1. √9 + 4 + 1. (1 2) a. b = √14. √14. (1 2) a. b = 14. (1 2) a. b =14 2 = 7

(20)

Contoh 2:

Diketahui Diketahui 𝐚 = 2i + 3j + 𝑘⃗ , 𝐛 = 3i − yj + 𝑘⃗ , a.b = 7 dan sudut yang dibentuk 600. Tentukan vektor b !

Alternatif penyelesaian : a. b = |a||b| cos α 7 = √22+ 32+ 12. √x2+ y2 + 12. cos 600 7 = √4 + 9 + 1. √32+ y2+ 1. (1 2) 7. (2 1) = √14. √9 + y2 + 1. 14 = √14. √10 + y2 196 = 14(10 + 𝑦2) 196 14 = (10 + 𝑦 2) 14 = 10 + 𝑦2 𝑦2 = 14 − 10 y2 = 4

y = ±√4 = ±2, Jadi vector b adalah b = 3i − 2j + 𝑘⃗ atau b = 3i + 2j + 𝑘⃗ Contoh 3:

Buktikan bahwa |𝑎 + 𝑏| = √|𝑎|2+ |𝑏|2+ 2|𝑎||𝑏| cos 𝛼 Alternatif penyelesaian :

(𝑎 + 𝑏)(𝑎 + 𝑏) = |𝑎 + 𝑏||𝑎 + 𝑏| cos 00 a.a + a.b + a.b + b.b = |𝑎 + 𝑏|2(1) |𝑎|2+ 2. 𝑎. 𝑏 + |𝑏|2 = |𝑎 + 𝑏|2 |𝑎 + 𝑏|2 = |𝑎|2+ 2. 𝑎. 𝑏 + |𝑏|2 |𝑎 + 𝑏|2 = |𝑎|2+ |𝑏|2+ 2. 𝑎. 𝑏

(21)

8. Sudut Antara Vektor

Misal : a = 𝒙𝒂𝐢 + 𝒚𝒂𝐣 + 𝒛𝒂𝐤 , b = 𝒙𝒃𝐢 + 𝒚𝒃𝐣 +𝒛𝒃𝐤dan sudut yang dibentuk a dan b adalah 𝛼 maka sudut antara dua vektor dirumuskan :

𝐂𝐨𝐬 𝛂 =

𝐚. 𝐛

|𝐚||𝐛|

Contoh 1 :

Diketahui Diketahui 𝐚 = 2i + 3j + 𝑘⃗ , 𝐛 = 3i − yj + 𝑘⃗ .Tentukan besarnya sudut antara dua vektor ! Alternatif penyelesaian : Cos α = a. b |a||b| Cos α = 2(3) + 3(−2) + 1(1) √22+ 32+ 12√32+ (−2)212 Cos α = 6 − 6 + 1 √4 + +9 + 1√9 + 4 + 1 Cos α = 1 √14√14 Cos α = 1 14 𝛼 = 𝑎𝑟𝑐 cos 1 14 Contoh 2:

Diketahui Diketahui 𝐚 = i + 2j + 3𝑘⃗ , dan 𝐛 = −2i + 4j + 𝑘⃗ .Tentukan nilai sinus sudut antara dua vektor !

Alternatif penyelesaian : Cos α = a. b |a||b| Cos α = 1(−2) + 2(4) + 3(1) √12+ 22+ 32√(−2)2+ 42+ 12 Cos α = −2 + 8 + 3 √1 + 4 + 3√4 + 16 + 1 Cos α = 9 √8√21 Cos α = 9 √168

(22)

x √168 9 x2 = (√168)2 – ( 9 )2 x2 = 168 – 81 x2 = 87 𝑥 = √87

Sin 𝛼 =sisi depan sudut

sisi miring

sin 𝛼 = √87 √168

Jadi nilai sin 𝛼 = √87 √168 9. Proyeksi Vektor

Proyeksi vektor ada dua jenis, yaitu : 1. Proyeksi skalar orthogonal.

Proyeksi skalar orthogonal dirumuskan : a. Proyeksi skalar orthogonal a pada b

|𝐜| =

𝐚. 𝐛

|𝐛|

Contoh :

Diketahui Diketahui 𝐚 = 2i + j + k⃗ , dan 𝐛 = 3i − j + k⃗ .Tentukan proyeksi skalar ortogonal vector a pada vektor b !

Alternatif Penyelesaian : |c| =a. b |b| |c| =2(3) + 1(−1) + 1(1) √32+ (−1)2+ 12 |c| = 6 − 1 + 1 √9 + 1 + 1 |c| = 6 √11 |c| = 5 √11× √11 √11

(23)

|c| = 5 11√11

b. Proyeksi skalar orthogonal b pada a

|𝐜| =

𝐚. 𝐛

|𝐚|

Contoh :

Diketahui Diketahui 𝐚 = 2i + j − 2k⃗ , dan 𝐛 = 3i − j + k⃗ .Tentukan proyeksi skalar ortogonal vector b pada vektor a !

Alternatif Penyelesaian : |c| =a. b |a| |c| =2(3) + 1(−1) + (−2)(1) √22+ 12+ (−2)2 |c| = 6 − 1 − 2 √4 + 1 + 4 |c| = 3 √9 |c| =3 3 |c| = 1

2. Proyeksi vektor orthogonal.

Proyeksi vektor orthogonal dirumuskan : a. Proyeksi vektor orthogonal a pada b

|𝐜| =

𝐚. 𝐛

|𝒃|

𝟐

. 𝒃

Contoh :

Diketahui Diketahui 𝐚 = 2i⃗⃗⃗ + j + k⃗ , dan 𝐛 = 3i − j + k⃗ .Tentukan proyeksi vektor orthogonal vektor a pada vektor b !

Alternatif Penyelesaian : |c| = a. b |b|2. b |c| = 2(3) + 1(−1) + 1(1) (√32 + (−1)2+ 12)2 (3i − j + k⃗ )

(24)

|c| = 6 − 1 + 1 (√9 + 1 + 1)2(3i − j + k⃗ ) |c| = 6 (√11)2 (3i − j + k⃗ ) |c| = 5 11× (3i − j + k⃗ ) |c| =15 11i − 5 11j + 5 11k⃗

b. Proyeksi vektor orthogonal a pada b

|𝐜| =

𝐚. 𝐛

|𝒃|

𝟐

. 𝒃

Contoh :

Diketahui Diketahui 𝐚 = 2i + j − 2k⃗ , dan 𝐛 = 3i − j + k⃗ .Tentukan proyeksi vektor orthogonal vektor b pada vektor a !

Alternatif Penyelesaian : |c| = a. b |b|2. b |c| =2(3) + 1(−1) + (−2)(1) (√22+ 12 + (−2)2)2 (2i + j − 2k⃗ ) |c| = 6 − 1 − 2 (√4 + 1 + 4)2(2i + j − 2k⃗ ) |c| = 3 (√9)2 (2i + j − 2k⃗ ) |c| =3 3× (2i + j − 2k⃗ ) |c| = 2i + j − 2k⃗

(25)

LATIHAN SOAL VEKTOR DAN PEMBAHASAN

I. Isilah titik titik di bawah ini dengan benar !

1. Diketahui 𝑎 = (

3 −2

1

) maka vektor basis dari 𝑎 adalah.... a. 3i − 2j + k b. −3i − 2j c. 3i + 2j d. −3i + 2j e. 2i − 3j Pembahasan :

Vektor basis adalah : xi + yj + zk sehingga menajdi menjadi 3i – 2j + k ( A)

2. Diketahui b⃗ = i − j + k maka vector posisi dari 𝑏⃗ adalah…. a. b⃗ = ( 1 1 1 ) b. b⃗ = ( 1 −1 1 ) c. b⃗ = ( −1 1 1 ) d. b⃗ = ( 1 1 −1 ) e. b⃗ = ( −1 −1 −1 ) Pembahasan :

Vektor posisi adalah vector basis dengan menghilangkan unsur i ; j ; k atau ( x, y, z ) b⃗ = (

1 −1

1 ) (𝐁) 3. Diketahui P = ( 3,- 2,1 ) dan Q = ( 5,- 4.-1 ) maka PQ⃗⃗⃗⃗⃗ adalah....

a. PQ⃗⃗⃗⃗⃗ = (−7,6.2) b. PQ⃗⃗⃗⃗⃗ = (7, −6, −2) c. PQ⃗⃗⃗⃗⃗ = (2, −2, −2) d. PQ⃗⃗⃗⃗⃗ = (−2,2,2) e. PQ⃗⃗⃗⃗⃗ = (−2, −2,6) Pembahasan :

(26)

4. Diketahui a⃗ = 2i + j − k dan b⃗ = i − j + 𝑘 maka hasil dari 2 a⃗ + b⃗ adalah .... a. 5i − j + k b. −5i + j + k c. −5i − j + k d. 5i + j – k e. 5i − 5j – k Pembahasan : a⃗ = 2i + j − k 2a⃗ = 4i + 2j − 2k b ⃗ = i − j + 𝑘 Maka 2a + b = 4i + 2j − 2k + i − j + 𝑘 = 5i + j – k ( D )

5. Diketahui a⃗ = 3i + 2j + k dan b⃗ = i + j + 𝑘 maka hasil dari a⃗ − 3b⃗ adalah .... a. i − j b. −i − j c. −i + j d. i + j e. −j − 2𝑘 Pembahasan : a⃗ = 3i + 2j + k b ⃗ = i + j + 𝑘 3b⃗ = 3i + 3j + 3𝑘 Maka a – 3b = 3i + 2j + k − (3i + 3j + 3𝑘) = −𝑗 − 2𝑘( E )

6. Diketahui S = ( 4,- 1,2 ) dan T = ( -3,4,2 ) maka -2.TS⃗⃗⃗⃗ adalah....

a. ( 7,- 5,0 )

b. ( - 7, 5 ,0 )

c. ( 14,10, 0 )

d. ( - 14, - 10, 0 )

(27)

Pembahasan :

Vektor TS = S – T = ( 4,- 1,2 ) - ( -3,4,2 ) = ( 4 - (-3), -1 – 4 , 2 – 2 ) = ( 7, - 5, 0 ) 2TS = 2( 7,- 5, 0 ) = ( 14, - 10, 0 ) ( E )

7. Diketahui r = 2i + 3j + k maka vector satuan 𝑟 adalah….

a. 2 15√13i + 3 15√13j + 1 15√15𝑘 b. 2 15√13i − 3 15√13j + 1 15√15𝑘 c. − 2 13√13i + 3 13√13j + 12k d. − 2 13√13i − 3 13√13j – 12k e. √13i + √13j – 13k Pembahasan : Vektor satuan c = 𝑥𝑖+𝑦𝑗+𝑧𝑘 √𝑥2+𝑦2+𝑧2 r = 2i + 3j + k c = 2𝑖+3𝑗+𝑘 √22+32+12= 2𝑖+3𝑗+𝑘 √4+9+1 = 2𝑖+3𝑗+𝑘 √15 = 2 15√13i + 3 15√13j + 1 15√15𝑘( A ) 8. Diketahui A = ( 1,- 2,1 ) , B = ( 4,- 5,-1 ) vektor satuan AB⃗⃗⃗⃗⃗ adalah....

a. 1 2√2i + 1 2√2j + k b. 3 √22𝑖 − 3 √22𝑗 − 2 √22𝑘 c. −1 2√2i + 1 2√2j + 3k d. −1 2√2i − 1 2√2j – 4k e. √2i + √2j - k Pembahasan : AB = B – A AB = ( 4,- 5,-1 ) - ( 1,- 2,1 ) = ( 3, - 3, - 2 ) Vektor satuan c = 𝑥𝑖+𝑦𝑗+𝑧𝑘 √𝑥2+𝑦2+𝑧2 AB = 3𝑖−3𝑗−2𝑘 √32+(−3)2+(−2)1= 3𝑖−3𝑗−2𝑘 √9+9+4 = 3𝑖−3𝑗−2𝑘 √22 = 3 √22i − 3 √22j − 2 √22k( B ) 9. Diketahui a⃗ = 3i − 4j − 𝑘 maka |a⃗ | adalah....

a. √23

b. √24

c. 5

d. √26

(28)

Pembahasan :

|a⃗ | = √𝑥2+ 𝑦2+ 𝑧2 |a⃗ | = √32+ (−4)2+ (−1)2 |a⃗ | = √9 + 16 + 1 = √26( D )

10.Diketahui a⃗ = 2i + 3j + k dan b⃗ = 3i − j − 𝑘 maka hasil dari |2b⃗⃗⃗⃗ − a⃗ | adalah ....

a. 5√3 b. √42 c. 4√3 d. 4√2 e. 5 Pembahasan : b ⃗ = 3i − j − 𝑘 2b⃗ = 6i − 2j − 2𝑘 a⃗ = 2i + 3j + k 2b – a = 6i − 2j − 2𝑘 − (2i + 3j + k ) = 4i − 5j − k |2b⃗⃗⃗⃗ − a⃗ | = √42+ (−5)2+ (−1)2= √16 + 25 + 1 = √42( B ) 11.Diketahui r = 2i + j + 2k dan s = i − j + 𝑘 maka hasil dari r . s adalah ...

a. 5 b. 4 c. 3 d. 2 e. 1 Pembahsan : r . s = 2(1) + 1( −1) + 2(1) = 2 − 1 + 2 = 3( C )

12.Diketahui a⃗ = 2i − j + k dan b⃗ = 3i − 2j − 𝑘 sudut antara a⃗ dan b⃗ adalah 600 maka hasil dari a⃗ . b adalah .... a. 1 8√85 b. 1 4√85 c. 1 3√84 d. 1 2√84 e. √85

(29)

Pembahasan : a⃗ . b⃗ = |𝑎||𝑏| cos 𝛼 a⃗ . b⃗ = √22+ (−1)2+ 12√32+ (−2)2+ (−1)2cos 600 a⃗ . b⃗ = √4 + 1 + 1√9 + 4 + 1 (1 2) a⃗ . b⃗ = √6√14 (1 2) = ( 1 2) √84( D )

13.Diketahui p⃗ = 2i + j + k dan q⃗ = i − 2j maka besarnya sudut antara p⃗ dan q⃗ adalah ...

a. 00 b. 300 c. 450 d. 600 e. 900 Pembahasan : 𝐶𝑜𝑠 𝛼 = 𝑎.𝑏 |𝑎||𝑏|= 2(1)+1(−2)+1(0) √22+12+12√12+(−2)2+(0)2 = 2−2+0 √2+1+1√1+2+0= 0 √4√3= 0 2√3= 0 = 90 0( E ) 14.Diketahui a⃗ = 3i + j + k dan b⃗ = i − 2j − 𝑘 maka proyeksi skalar ortogonal a⃗ pada b⃗ adalah ...

a. 1 4√5 b. 0 c. 1 6√5 d. 1 7√5 e. 1 8√5 Pembahasan : c =a. b |b| 𝑐 =3(1)+1(−2)+1(−1) √12+(−2)2+(−1)2 = 3−2−1 √1+4+1= 0 √6= 0( B )

15.Diketahui a⃗ = 2i + j + k dan b⃗ = i − j + 𝑘 maka proyeksi vektor ortogonal b⃗ pada a⃗ adalah ...

a. 1 4i − 1 4j + 4k b. 4 3𝑖 + 4 6𝑗 + 4 6𝑘 c. 1 6i − 1 6j + 2k d. 2 7i − 1 7j – 3k e. 1 8i − 1 8j – 5k

(30)

Pembahasan : c = a. b |𝑎|2× 𝑎 c =2(1) + 1(−1) + 1(1) (√22+ 12+ 12)2 × 2i + j + k c = 2 + 1 + 1 (√4 + 1 + 1)2× 2i + j + k c = 4 (√6)2× 2i + j + k = 4 6× 2i + j + k = 4 3𝑖 + 4 6𝑗 + 4 6𝑘( B )

16. Vektor a mempunyai panjang 2√3.Jika a.( a + b ) = 15 sudut antara a dan b = 𝜋

6, maka |𝑏| adalah…. a. 1 b. 2 c. 3 d. 4 e. 5 Pembahasa : a.( a + b ) = 15 a.a + a.b = 15 |a|2+ a. b = 15 |a|2+ |𝑎||𝑏| cos𝜋 6= 15 (2√3)2+ 2√3|𝑏|1 2√3 = 15 12 + 3.|𝑏| = 15 3.|𝑏| = 15 − 12 3.|𝑏| = 3 |𝑏| = 𝟏 ( A )

Referensi

Dokumen terkait

Kelimpahan dan jumlah jenis ikan pada Stasiun bervegetasi lamun (Wawatoe dan P. Wowonii) menunjukkan rata-rata yang relatif lebih tinggi dibandingkan Stasiun tanpa

Penelitian yang dilakukan penulis memiliki perbedaan yang signifikan karena penulisan hukum yang diteliti penulis berjudul Penyelesaian Kredit Bermasalah Terhadap Debitur

Rangkaian huruf dalam sebuah kata atau kalimat bukan hanya berarti sebuah makna yang mengacu pada sebuah objek atau gagasan, tetapi juga memiliki kemampuan untuk

Dalam Tugas Akhir ini penelitian dilakukan dengan variasi beban kombinasi resistif, induktif dan kapasitif yang seimbang sekaligus tidak seimbang dengan beban yang

Akan tetapi beliau diakui sebagai Nabi oleh orang-orang Madinah dan beliau sungguh-sungguh diminta untuk datang ke kota mereka, dengan harapan bahwa melalui

Rumusan masalah penelitian adalah: 1) Bagaimana peran guru dan orang tua dalam menumbuhkan minat membaca al- Qur’an pada peserta didik di MI Diniyyah Putri lampung..

Lebih lanjut disebutkan dalam pasal 53 ayat (1) bahwa setiap satuan pendidikan dikelola atas dasar rencana kerja tahunan yang merupakan penjabaran rinci dari

Sedangkan Baier (Mulyana, 2004:8) nilai sering kali dirumuskan dalam konsep yang berbeda-beda, hal tersebut disebabkan oleh sudut pandangnya yang berbeda-beda